Operating parameters optimization for the aluminum electrolysis process using an improved quantum-behaved particle swarm algorithm

Document Type


Date of Original Version



Improvements in the production and energy consumption of the aluminum electrolysis process (AEP) directly depend on the operating parameters of the electrolytic cell. To balance the conflicting goals of efficiency and productivity with reduced energy consumption and emissions, AEP operating parameter optimization is formulated as a constrained multiobjective optimization problem with competing objectives of current efficiency and cell voltage. Then, the improved multiobjective quantum-behaved particle swarm optimization (IMQPSO) algorithm is proposed. The application of an adaptive opposition-based learning strategy and a piecewise Gauss mutation operator can increase the diversity of the population and enhance the global search ability of the IMQPSO. To expand the creativity of the particles, two iterative methods of the mean best position with weighting and the attractor position are redesigned. Experimental analyses are conducted for the benchmark problems and a real case to verify the effectiveness of the proposed method.

Publication Title, e.g., Journal

IEEE Transactions on Industrial Informatics