Implementing an FPGA system for real-time intent recognition for prosthetic legs

Document Type

Conference Proceeding

Date of Original Version



This paper presents the design and implementation of a cyber physical system (CPS) for neural-machine interface (NMI) that continuously senses signals from a human neuromuscular control system and recognizes the user's intended locomotion modes in real-time. The CPS contains two major parts: a microcontroller unit (MCU) for sensing and buffering input signals and an FPGA device as the computing engine for fast decoding and recognition of neural signals. The real-time experiments on a human subject demonstrated its real-time, self-contained, and high accuracy in identifying three major lower limb movement tasks (level-ground walking, stair ascent, and standing), paving the way for truly neural-controlled prosthetic legs. © 2012 ACM.

Publication Title

Proceedings - Design Automation Conference