Title

POLLEN73S: An image dataset for pollen grains classification

Document Type

Article

Date of Original Version

11-1-2020

Abstract

The classification of pollen species and types is an important task in many areas like forensic palynology, archaeological palynology, and melissopalynology. This paper presents a new public annotated image dataset for the Brazilian Savanna called POLLEN73S composed of 2523 images from 73 pollen types. Using the state-of-the-art Convolutional Neural Networks (CNNs), we provide a baseline for pollen grain classification. Our experiments showed evidence that DenseNet-201 and ResNet-50 have superior performance against the other CNNs tested, achieving precision results of 95.7% and 94.0%, respectively. Due to its category coverage and satisfactory diversity of examples, POLLEN73S offers a diversity of pollen grain to guide progress in computer vision to solve Palynology problems.

Publication Title

Ecological Informatics

Volume

60

Share

COinS