Document Type

Article

Date of Original Version

6-17-2022

Department

Computer Science and Statistics

Abstract

Reproducibility of research is essential for science. However, in the way modern computational biology research is done, it is easy to lose track of small, but extremely critical, details. Key details, such as the specific version of a software used or iteration of a genome can easily be lost in the shuffle, or perhaps not noted at all. Much work is being done on the database and storage side of things, ensuring that there exists a space to store experiment-specific details, but current mechanisms for recording details are cumbersome for scientists to use. We propose a new metadata description language, named MEDFORD, in which scientists can record all details relevant to their research. Human-readable, easily-editable, and templatable, MEDFORD serves as a collection point for all notes that a researcher could find relevant to their research, be it for internal use or for future replication. MEDFORD has been applied to coral research, documenting research from RNA-seq analyses to photo collections.

Publication Title, e.g., Journal

Database

Volume

2022

Issue

2022

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.