Accumulation of explosives in hair - Part II: Factors affecting sorption

Document Type

Article

Date of Original Version

11-1-2007

Abstract

This study examines the sorption of eight explosives (2,4,6-trinitrotoluene [TNT]; pentaerythritol tetranitrate [PETN]; hexahydro-1,3,5-trinitro-s-triazine [RDX]; diacetone diperoxide [DADP]; triacetone triperoxide [TATP]; ethylene glycol [EGDN], nitroglycerin [NG]; and 2,4-dinitrotoluene [DNT]) to human hair. The study uses only cut hair, which is exposed to explosive vapor. The vapor transfer studies reported herein indicated that hair did not reach saturation even after 2.5 years of exposure to TNT. While previous studies showed black hair sorbed more explosive than blond or brown, this study reports that red hair sorption is similar to black, while grey hairs, exposed along with black hair from the same individual, sorbed significantly less explosive than the same individual's black hairs. In a study using only black hair, a slight racial bias was observed with sorption greater for Mongoloid hair as compared to Caucasian or Negroid. Only for Mongoloid hairs were enough samples studied to examine for a gender bias, but one was not observed. There was much variability in results in all categories (hair color, race, and gender) that trends were established only in general terms. Hair at different ages was tested for a few individuals. Detailed studies focused on the sorption of TATP and TNT as these appear to be sorbed most differently - TATP mainly on the hair surface and TNT both on the surface and in the cortex. The uptake of high vapor pressure explosives (e.g., TATP) and moderate vapor pressure explosives (e.g., TNT) by hair was rapid and could be detected within about 1 h of exposure. Both explosives were readily sorbed by pure melanin. © 2007 American Academy of Forensic Sciences.

Publication Title, e.g., Journal

Journal of Forensic Sciences

Volume

52

Issue

6

Share

COinS