Document Type

Article

Date of Original Version

1984

Department

Chemistry

Abstract

By expanding Feynman path integrals in a Fourier series a practical Monte Carlo method is developed to calculate the thermodynamic properties of interacting systems obeymg quantum Boltzmann statistical mechanics. Working expressions are developed to calculate internalenergies, heatcapacities, and quantum corrections to free energies. The method is applied to the harmonic oscillator, a double-well potential, and clusters of Lennard-Jones atomsparametrized to mimic the behavior of argon. The expansion of the path integrals in a Fourier series is foundto be rapidly convergentand the computational effort for quantum calculations is found to be wlthin an orderof magnitudeof the corresponding classical calculations. Unlike other related methods no specIal techmques are required to handle systems with strong short-range repulsive forces.

Publisher Statement

© 1984 American Institute of Physics.

Share

COinS