Document Type


Date of Original Version





Silicon electrodes were cycled with electrolytes containing different salts to investigate the effect of salt on the electrochemical performance and SEI structure. Comparable capacity retention were observed for the 1.2 M LiPF6, LiTFSI and LiClO4 electrolytes in ethylene carbonate (EC):dimethyl carbonate (DEC), 1:1, but severe fading was observed for the 1.2 M LiBF4 electrolyte. The differential capacity plots and EIS analysis reveals that failure of the 1.2 M LiBF4 electrolyte is attributed to large surface resistance and increasing polarization upon cycling. However, when LiBF4 was added as an electrolyte additive (10% LiBF4 and 90% LiPF6), the capacity retention and Coulombic efficiency were improved. The SEI was analyzed by FTIR and XPS for each electrolyte. Both spectroscopic methods suggest that the main components of the SEI are lithium ethylene dicarbonate (LEDC) and Li2CO3 in the 1.2 M LiPF6, LiTFSI and LiClO4 electrolytes, while an inorganic-rich SEI, composed of LiF and borates, was generated for both the 1.2 M LiBF4 electrolyte and the 10% LiBF4 electrolyte. The chemical composition of the SEIs and corresponding electrochemical performance of the Si electrodes were strongly correlated with electrolyte solution structure.

Creative Commons License

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.