Document Type

Article

Date of Original Version

2015

Abstract

Tin (Sn) nanoparticle electrodes have been prepared and battery cycling performance has been investigated with 1.2 M LiPF6 in ethylene carbonate (EC) / diethyl carbonate (DEC) electrolyte (1:1, w/w) with and without added vinylene carbonate (VC) or fluoroethylene carbonate (FEC). Incorporation of either VC or FEC improves the capacity retention of Sn nanoparticle electrodes although incorporation of VC also results in a significant increase in cell impedance. The best electrochemical performance was observed with electrolyte containing 10% of added FEC. In order to develop a better understanding of the role of the electrolyte in capacity retention and solid electrolyte interface (SEI) structure, ex-situ surface analysis has been performed on cycled electrodes with infrared (IR) spectroscopy, X-ray photoelectron spectroscopy (XPS), and Hard XPS (HAXPES). The ex-situ analysis reveals a correlation between electrochemical performance, electrolyte composition, and SEI structure.

Comment

Daniel M. Seo, Brett L. Lucht and Cao Cuong Nguyen are in the Department of Chemistry.

Benjamin T. Young and David R. Heskett are in the Department of Physics.

Creative Commons License

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.