Document Type


Date of Original Version



Chemical Engineering


Microplastics or plastic particles less than 5 mm in size are a ubiquitous and damaging pol- lutant in the marine environment. However, the interactions between these plastic particles and marine microorganisms are just starting to be understood. The objective of this study was to measure the responses of a characteristic marine organism (Synechococcus sp. PCC 7002) to an anthropogenic stressor (polyethelene nanoparticles and microparticles) using molecular techniques. This investigation showed that polyethylene microparticles and nanoparticles have genetic, enzymatic and morphological effects on Synechococcus sp. PCC 7002. An RT-PCR analysis showed increases in the expression of esterase and hydro- lase genes at 5 days of exposure to polyethylene nanoparticles and at 10 days of exposure to polyethylene microparticles. A qualitative enzymatic assay also showed esterase activity in nanoparticle exposed samples. Cryo-scanning electron microscopy was used to assess morphological changes in exopolymer formation resulting from exposure to polyethylene microparticles and nanoparticles. The data from this paper suggests that microplastic and nanoplastics could be key microbial stressors and should be investigated in further detail.

Creative Commons License

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.