Date of Award


Degree Type


Degree Name

Master of Science in Statistics


Computer Science and Statistics

First Advisor

Natallia Katenka


The goal of this thesis is to model and predict the probability of default (PD) for a mortgage portfolio. In order to achieve this goal, logistic regression and survival analysis methods are applied to a large dataset of mortgage portfolios recorded by one of the national banks. While logistic regression has been commonly used for modeling PD in the banking industry, survival analysis has not been explored extensively in the area. Here, survival analysis is offered as a competitive alternative to logistic regression.

The results of the final modeling for both methods show very similar fit in terms of the ROC with the survival model having slightly better performance than logistic regression in the training dataset and almost the same performance in the testing dataset. In term of prediction of defaulted and non-defaulted mortgage portfolios, the logistic regression model outperforms survival analysis in the training dataset, while survival model outperforms logistic regression in the testing dataset.

Overall, the results support that the survival analysis approach is competitive with the logistic regression approach traditionally used in the banking industry. In addition, the survival methodology offers a number of advantages useful for both credit risk management and capital management.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.