Date of Award


Degree Type


Degree Name

Master of Science in Mechanical Engineering and Applied Mechanics


Mechanical, Industrial and Systems Engineering

First Advisor

Carl-Ernst Rousseau


This thesis comprises two main sections, namely a critical evaluation of the use of the Ultrasonic pulse echo immersion technique to measure attenuation and an application of the same to particulate composites. The former consisted of testing the main assumptions adopted by the different approaches developed to carry out the attenuation coefficient measurement. The first assumption states that a perfectly bonded interface between water and specimen exists. A second assumption requires consistent reflection coefficients every time the specimen is immersed. Finally, some existing methods assume equal reflection coefficients on either side of any specimen during a particular immersion. Herein, it is experimentally shown that while these conditions hold true for some materials (i.e. Polycarbonate), they are nevertheless violated for others (some hydrophobic materials). The materials that violate all three assumptions are more likely to be those that present hydrophobic surfaces. Due to their hydrophobicity the bond between water and the specimen is very weak and random distributions of air molecules can be trapped and retained over the surfaces during the immersion. In these cases, all current techniques would provide erroneous values for the attenuation coefficient. Therefore, a new method was proposed, tested and validated to measure the attenuation coefficient of these special materials and any others. A new methodology having been derived, it was then applied to glass/epoxy particulate composites where longitudinal wave speeds and attenuation coefficients were measured for several specimens with different solid glass microspheres and different volume fractions. Contrary to expectations, it was observed that the presence of microspheres is not always beneficial, if an increase in the attenuation coefficient is desired, and often adversely affects the behavior of the matrix.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.