Document Type


Date of Original Version



The number of tick bites received by individuals wearing either permethrin-treated or untreated summer clothing (T-shirt, shorts, socks, and sneakers) was compared during a controlled indoor study. Pathogen-free nymphal Ixodes scapularis Say were placed on the left shoe, right leg, and left arm of 15 (5/treatment group/d) human volunteers wearing untreated outfits or outfits treated with permethrin either commercially or using a do-at-home treatment kit. The number and location of ticks attached to subjects' skin were recorded 2.5 h postinfestation. Subjects wearing outfits treated with permethrin received 3.36 times fewer tick bites than subjects wearing untreated outfits. No statistically significant differences in number of tick bites were detected between commercial permethrin treatment (19.33%) and the do-at-home permethrin application method (24.67%). The success of permethrin-treated clothing in reducing tick bites varied depending on the specific article of clothing. Subjects wearing permethrin-treated sneakers and socks were 73.6 times less likely to have a tick bite than subjects wearing untreated footware. Subjects wearing permethrin-treated shorts and T-shirts were 4.74 and 2.17 times, respectively, less likely to receive a tick bite in areas related to those specific garments than subjects wearing untreated shorts and T-shirts. Ticks attached to subjects were classified as alive or dead before removal. On subjects wearing untreated outfits, 97.6% of attached nymphs were alive, whereas significantly fewer (22.6%) attached nymphs were alive on subjects wearing repellent-treated outfits. Results of this study demonstrate the potential of permethrin-treated summer clothing for significantly reducing tick bites and tick-borne pathogen transmission.

Creative Commons License

Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial 3.0 License


M. Liliana González is from the Department of Computer Science and Statistics.

Nathan J. Miller, Erin E. Rainone, Megan C. Dyer and Thomas N. Mather are from the Department of Plant Sciences and Entomology and Center for Vector-Borne Disease.