Document Type

Article

Date of Original Version

2009

Department

Physics

Abstract

Solid tumors often develop an acidic environment due to the Warburg effect. The effectiveness of diagnosis and therapy may therefore be enhanced by the design and use of pH-sensitive agents that target acidic tumors. Recently, a novel technology was introduced to target acidic tumors using pH low insertion peptide (pHLIP), a peptide that inserts across cell membranes as an α-helix when the extracellular pH (pHe) is acidic. In this study, we expanded the application of the pHLIP technology to include positron emission tomography imaging of the acidic environment in prostate tumors using 64Cu conjugated to the pHLIP (64Cu-DOTA-pHLIP). Studies showed that this construct avidly accumulated in LNCaP and PC-3 tumors, with higher uptake and retention in the LNCaP tumors. Uptake correlated with differences in the bulk pHe of PC-3 and LNCaP tumors measured in magnetic resonance spectroscopy experiments by the 31P chemical shift of the pHe marker 3-aminopropylphosphonate. This article introduces a novel class of noninvasive pH-selective positron emission tomography imaging agents and opens new research directions in the diagnosis of acidic solid tumors.

COinS