Time frequency analysis techniques for long range sediment tomography

Document Type

Conference Proceeding

Date of Original Version



Long range sediment tomography inversion technique requires accurate estimation of the arrival times of acoustic normal modes. The inversion technique is based on minimizing the difference between the forward model predictions and the data using a global optimization scheme. Predictions are computed using a trial parameter set which is iteratively modified until the algorithm converges. The modal arrival times are calculated from the time-frequency analysis of broadband acoustic data collected on a single hydrophone. During the initial stages of the development of the inversion scheme, fourier based spectrogram and wavelet based scalograms were used. Taking advantage of some of the recent developments, dispersion based short time fourier transform (DSTFT) and warping transform techniques were used for the time-frequency analysis, in recent times. This paper will summarize and compare the performance of these time frequency techniques in the context of long range sediment tomography. Data from some of the recent field tests (Shelfbreak Primer and Shallow Water-06 experiments) will be analyzed for this study. Finally, time-frequency analysis performance of another new technique, Modified S transform, will be examined using the field data. © 2013 Acoustical Society of America.

Publication Title, e.g., Journal

Proceedings of Meetings on Acoustics