Date of Award


Degree Type


Degree Name

Doctor of Philosophy in Mathematics



First Advisor

Araceli Bonifant


We investigate a relationship between escape regions in slices of the parameter space of cubic polynomials. The focus of this work is to give a precise description of how to obtain a topological model for the boundary of an escape region in the slice consisting of all cubic polynomials with a marked critical point belonging to a two cycle. To obtain this model, we start with the unique escape region in the slice consisting of all maps with a fixed marked critical point, and make identifications which are described using the identifications which are made in the lamination of the basilica map zz2 – 1.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.