Document Type

Article

Date of Original Version

2016

Abstract

There is a growing recognition of the impact of environmental toxins on the epigenetic regulation of gene expression, including the genes that play a critical role in neural development, neural function and neurodegeneration. We have shown previously that exposure to the heavy metal lead (Pb) in early life results in a latent over-expression of AD-related proteins in rodents and primates. The present study provides evidence that early postnatal exposure to Pb also alters the expression of select miRNA. Mice were exposed to 0.2% Pb acetate from Postnatal Day 1 (PND 1, first 24 hours after birth) to PND 20 via their mother’s milk, brain tissue was harvested at PND 20, 180, or 700 and miRNA were isolated and quantified by qPCR. This exposure produced a transient increase (relative to control) in the expression of miR-106b (binds to AβPP mRNA), miR-29b (targets the mRNA for the transcription factor SP1) and two miRNAs (miR- 29b and miR-132) that have the ability to inhibit translation of proteins involved in promoter methylation. The expression of miR-106b decreased over time in the Pb-exposed animals and was significantly less than the levels exhibited by the control animals at PND700. The level of miR-124, which binds to SP1 mRNA, was also reduced (relative to controls) at PND700. In summary, we show that exposure to the heavy metal Pb in early life has a significant impact on the short- and long-term expression of miRNA that target epigenetic mediators and neurotoxic proteins.

COinS