Simulating direct and indirect damages to commercial fisheries from marine sand mining: A case study in korea

Document Type


Date of Original Version



Rapid growth in marine sand mining for construction and other uses poses environmental challenges to coastal nations virtually worldwide. Yet the development of management policies, such as a system of fees imposed on operators for damage caused by mining, has been frustrated by a lack of studies to support such measures. Adapting a Beverton-Holt bioeconomic model, this paper attempts to contribute to the estimation of external costs to commercial fisheries due to marine mining. Using the major mining area of Ongjin in Korea as a case study, we estimate economic losses in use value of commercial fisheries through the time to recovery of the injured resource stocks. Present value of lost catch over a 1-year period from mining to resource recovery is estimated at $38,851 for a single "prototype" mining site. Estimated cumulative damages due to recurring mining for 5 and 10 years are $1.5 million and $2.2 million, respectively, at 20 mining sites. Sensitivity analyses are used to examine the effects of alternative assumptions to assess the many sources of uncertainty. Using a form of meta-analysis, dose-response information is used to assess the excess mortality the mining sediment plume has on eggs and larvae and, ultimately, on the value of lost catch ($841). Also addressed is the importance of specifying the appropriate "premining" conditions against which to assess environmental losses at the mining site. Damages estimated with premining fish populations are $23,066 higher than is the case using postmining conditions. Overall, the illustrative results suggest the variety of complex conditions which influence damage to fisheries from mining and which can benefit from further study to improve management guidelines. © 2009 Springer Science+Business Media, LLC.

Publication Title, e.g., Journal

Environmental Management





This document is currently not available here.