Cortical ultrastructure and chemoreception in ciliated protists (ciliophora)

Document Type


Date of Original Version



The ciliated protists (ciliates) offer a unique opportunity to explore the relationship between chemoreception and cell structure. Ciliates resemble chemosensory neurons in their responses to stimuli and presence of cilia. Ciliates have highly patterned surfaces that should permit precise localization of chemoreceptors in relation to effector organelles. Furthermore, ciliates are easy to grow and to manipulate genetically; they can also be readily studied biochemically and by electrophysiological techniques. This review contains a comparative description of the ultrastructural features of the ciliate cell surface relevant to chemoreception, examines the structural features of putative chemoreceptive cilia, and provides a summary of the electron microscopic information available so far bearing on chemoreceptive aspects of swimming, feeding, excretion, endocytosis, and sexual responses of ciliates. The electron microscopic identification and localization of specific chemoreceptive macromolecules and organelles at the molecular level have not yet been achieved in ciliates. These await the development of specific probes for chemoreceptor and transduction macromolecules. Nevertheless, the electron microscope has provided a wealth of information about the surface features of clliates where chemoreception is believed to take place. Such morphological information will prove essential to a complete understanding of reception and transduction at the molecular level. In the ciliates, major questions to be answered relate to the apportionment of chemoreceptive functions between the cilia and cell soma, the global distribution of receptors in relation to the anteriorposterior, dorsalventral, and leftright axes of the cell, and the relationship of receptors to ultrastructural components of the cell coat, cell membrane, and cytoskeleton.1992 WileyLiss, Inc. Copyright1992 WileyLiss, Inc.

Publication Title, e.g., Journal

Microscopy Research and Technique