Title

Fuel-oxidizer mixtures: Their stabilities and burn characteristics

Document Type

Article

Date of Original Version

1-1-2014

Abstract

A survey of the stability and performance of 11 solid oxidizers and eight fuels was performed by differential scanning calorimetry (DSC), simultaneous differential thermolysis (SDT), and hot-wire ignition. Fuels used in the study were sugars and alcohols as well as sulfur and charcoal; all but charcoal melted below 200°C. The goal of the study was to determine whether the oxidizer or fuel controls the essential properties of the mixture. Several general observations were made: (1) There was wide variability in DSC results, even using the same batch of a mixture. (2) SDT traces often differed markedly from those of DSC. (3) At 50 wt % sugar, decomposition generally occurred as soon as the fuel melted. (4) With only 20 wt % sucrose, many of the oxidizer/fuel mixtures still exhibited the first exotherm immediately after the melt of the fuel. This behavior was so general that we have classified the decomposition of the fuel-oxidizer mixtures as fuel or oxidizer controlled. Oxidizer-controlled mixtures were those made with KClO4, KNO3, or NH4ClO4; they did not exhibit substantial exotherms until the oxidizer underwent a phase change or decomposition. A fuel-controlled mixture meant decomposition of the mixture ensued immediately after the fuel melted. This was the case with KIO4, KIO3, KBrO3, KMnO4, KNO2, and KClO3. Fuel-controlled oxidizer/fuel mixes exhibited lower decomposition temperatures than oxidizer-controlled mixtures.

Publication Title

International Journal of Energetic Materials and Chemical Propulsion

Volume

13

Issue

6

Share

COinS