Ceramic temperature sensors for harsh environments

Document Type


Date of Original Version



A ceramic thermocouple based on indium-tin-oxide (ITO) thin films is being developed to measure the surface temperature of gas turbine engine components employed in power and propulsion systems that operate at temperatures in excess of 1500 °C. By fabricating ITO elements with substantially different charge carrier concentrations, it was possible to construct a robust ceramic thermocouple. A thermoelectric power of 6.0 μV/°C, over the temperature range 25-1250 °C, was realized for an unoptimized ITO ceramic thermocouple. The charge carrier concentration difference in the legs of the ITO thermocouple was established by r.f. sputtering in oxygen-rich and nitrogen-rich plasmas. SEM micrographs revealed that after high-temperature exposure, the surfaces of the nitrogen prepared ITO films exhibited a partially sintered microstructure with a contiguous network of ITO nanoparticles. Thermal cycling of ITO films in various oxygen partial pressures showed that the temperature coefficient of resistance was nearly independent of oxygen partial pressure at temperatures above 800 °C and eventually became independent of oxygen partial pressure after repeated thermal cycling below 800 °C. Based on these results, a versatile ceramic sensor system has been envisioned where a ceramic thermocouple and strain sensor can be combined to yield a multifunctional ceramic sensor array. © 2005 IEEE.

Publication Title

IEEE Sensors Journal