Curricular Report No. 2001-2002-4C from the Graduate Council to the Faculty Senate: Proposal for a Master of Environmental Science and Management (MESM) Program

University of Rhode Island Faculty Senate

Follow this and additional works at: http://digitalcommons.uri.edu/facsen_bills

Recommended Citation
University of Rhode Island Faculty Senate, "Curricular Report No. 2001-2002-4C from the Graduate Council to the Faculty Senate: Proposal for a Master of Environmental Science and Management (MESM) Program" (2002). Faculty Senate Bills. Paper 1623.
http://digitalcommons.uri.edu/facsen_bills/1623
TO: President Robert L. Carothers
FROM: Chairperson of the Faculty Senate

1. The attached BILL, titled Curricular Report No. 2001-2002-4C from the Graduate Council to the Faculty Senate: Proposal for Master of Environmental Science and Management (MESM) Program is forwarded for your consideration.

2. The original and two copies for your use are included.

3. This BILL was adopted by vote of the Faculty Senate on February 28, 2002.

4. After considering this bill, will you please indicate your approval or disapproval. Return the original or forward it to the Board of Governors, completing the appropriate endorsement below.

5. In accordance with Section 10, paragraph 4 of the Senate's By-Laws, this bill will become effective March 21, 2002 three weeks after Senate approval, unless: (1) specific dates for implementation are written into the bill; (2) you return it disapproved; (3) you forward it to the Board of Governors for their approval; or (4) the University Faculty petitions for a referendum. If the bill is forwarded to the Board of Governors, it will not become effective until approved by the Board.

March 1, 2002
(date)
C. B. Peters
Chairperson of the Faculty Senate

ENDORSEMENT

TO: Chairperson of the Faculty Senate
FROM: President of the University

Returned.

a. Approved _.

b. Approved subject to final approval by Board of Governors _.

c. Disapproved _.

3/18/02
(date)
President

Form revised 9/98
UNIVERSITY OF RHODE ISLAND
The Graduate School

Curricular Report from the Graduate Council to the Faculty Senate
Report No. 2001-2002-4 C
Master of Environmental Science and Management (MESM)
As approved by the Faculty Senate on February 28, 2002

At Meeting No. 375 held on 7 December, 2001, the Graduate Council approved the following proposal that is now submitted to the Faculty Senate.

SECTION I
BACKGROUND INFORMATION

ABSTRACT

The Graduate Council approved a proposal from the College of the Environment and Life Sciences for a Master of Environmental Science and Management (MESM). The Master of Environmental Science and Management is proposed as an interdisciplinary, interdepartmental, non thesis professional degree with specializations in Conservation Biology; Earth and Hydrologic Science; Environmental Policy and Management; Remote Sensing and Spatial Analysis; Sustainable Systems; and Wetland, Watershed, and Ecosystem Science. The program requires no new resources, is deemed of significant merit, and is forwarded to the Faculty Senate at the Class A* level.

BACKGROUND

The proposed degree would replace the non thesis option of the Master of Science in Environmental Sciences which currently serves students in the Departments of Geosciences, Natural Resources Science, and Plant Sciences. It also would serve students from four other CELS departments: Community Planning and Landscape Architecture; Environmental and Natural Resource Economics; Fisheries, Animal, and Veterinary Science; and Marine Affairs. Unlike the Master of Science in Environmental Sciences degree, which emphasizes research, the primary focus of MESM would be the application of scientific knowledge in environmental problem-solving and management. MESM features a blend of natural and social sciences, to better prepare students to deal with increasingly complex environmental management issues.

The proposal was reviewed under the process established by the Faculty Senate in which the Graduate Council serves as the Coordinating and Review Committee. Announcements of the receipt of the proposal were sent to the President and Joint Educational Policy Committee, the Provost and the Council of Deans, the Budget Office, and Department Chairs and Directors. Recommendations were sought from each of these, and the comments received are appended. Comments and recommendations have been kept on file in the Graduate School.

The Budget Office found that no additional resources would be required for implementation of the MESM degree program. The Council of Deans stated that the program will be "a valuable program for professional development for those already working in government agencies..." and that "the proposal is a much needed professional degree." The JEPC also supports the program, but questioned whether the program "reverses actions taken to consolidate graduate programs in CELS in recent years." In meeting with the Graduate Council, Professor Frank Golet indicated that the proposal actually further consolidates existing programs, and in a single degree program provides opportunities that were not previously available to members of other groups.

SECTION II
RECOMMENDATION

The Graduate Council approved the proposal for the Master of Environmental Science and Management at its meeting number 375 on 7 December, 2001, and forwards it to the Faculty Senate at the Class A* level.

*Approved at the Class C level.

1
Master of Environmental Science and Management (MESM)

A. PROGRAM INFORMATION

1. Name of institution: University of Rhode Island

2. Administrative units involved: College of the Environment and Life Sciences; Departments of Community Planning and Landscape Architecture; Environmental and Natural Resource Economics; Fisheries, Animal, and Veterinary Science; Geosciences; Marine Affairs; Natural Resources Science; and Plant Sciences.

3. Title of proposed program: Master of Environmental Science and Management (MESM).

4. Intended date of change: September 2002

5. Anticipated date for granting first degrees: May 2004

6. Intended location of proposed program: Kingston Campus

7. Institutional review and approval process:

 Department of Community Planning and Landscape Architecture 8/16/01
 Department of Environmental and Natural Resource Economics 9/14/01
 Department of Fisheries, Animal, and Veterinary Science 8/15/01
 Department of Geosciences 8/20/01
 Department of Marine Affairs 8/30/01
 Department of Natural Resources Science 9/14/01
 Department of Plant Sciences 8/23/01
 College of the Environment and Life Sciences
 Graduate Council 12/1/01
 Faculty Senate
 President of the University
 Board of Governors

8. Summary of proposed change: The Master of Environmental Science and Management (MESM), which would be offered through the College of the Environment and Life Sciences (CELS), is proposed as an interdisciplinary, interdepartmental, professional degree with specializations in Conservation Biology; Earth and Hydrologic Science; Environmental Policy and Management; Remote Sensing and Spatial Analysis; Sustainable Systems; and Wetland, Watershed, and Ecosystem Science. The new degree would replace the nonthesis option of the Master of Science in Environmental Sciences, which currently serves students in the Departments of Geosciences, Natural Resources Science, and Plant Sciences. At the same time, it would serve students from four other CELS departments: Community Planning and Landscape Architecture; Environmental and Natural Resource Economics; Fisheries, Animal, and Veterinary Science; and Marine Affairs. Unlike the Master of Science in Environmental Sciences degree, which emphasizes research, the primary focus of MESM would be the application of scientific knowledge in environmental problem-solving and management; it is designed for students seeking careers with state or federal regulatory or resource management agencies, nongovernmental organizations, or private industry. MESM features a blend of natural and social sciences, to better prepare students to grapple with increasingly complex environmental management issues.

9. Statement on resource needs: Implementation of the Master of Environmental Science and Management degree program will require no new or additional resources.

10. Signature of the President: ________________________________
11. **Persons to be contacted during the review:** Dean Jeffrey Seemann, College of the Environment and Life Sciences, 874-2957; Frank Golet, Professor, Natural Resources Science, 874-2916.

B. **RATIONALE**

Currently, students enrolled in the Master of Science in Environmental Sciences (MSES) degree program may pursue either of two options: thesis or nonthesis. Thesis students take 30 credits of coursework, including 6 credits of thesis research, and write and defend a thesis before a faculty committee; they are expected to conduct original research that is worthy of publication in scientific journals. Thesis students frequently are pursuing research careers, and many go on for the Ph.D. degree. Nonthesis students take 36 credits of coursework, including a 3-credit research project, and must pass a comprehensive exam on coursework; however, they are not required to write or defend a thesis. Nonthesis students typically enter the workplace immediately after graduation and settle in positions more closely related to environmental policy or management than research.

Faculty from those departments participating in the Environmental Sciences M.S. degree program—namely, Geosciences (GEO), Natural Resources Science (NRS), and Plant Sciences (PLS)—have felt for some time that the nonthesis Master’s experience could be vastly improved if it were given more structure, in the form of standard course requirements and focused specializations. At the same time, many faculty and students alike have expressed the desire for a more interdisciplinary approach, given that such an approach is often the most successful way to attack complex environmental problems. Finally, many students and faculty have argued that the goals and aspirations of thesis and nonthesis students often are so dissimilar that separate degrees—not just separate options—are in order.

The Master of Environmental Sciences and Management degree program is being proposed to address all of the above issues and concerns. It is proposed as a professional degree with six specializations (see “E. Content” below), which represent both areas of great strength at URI and key focus areas for environmental management and policy specialists. The proposed program would replace the nonthesis option of the Master of Science in Environmental Sciences, which currently serves students in GEO, NRS, and PLS. But more significantly, the new program would join these three departments with four others—Community Planning and Landscape Architecture (CPLA); Environmental and Natural Resource Economics (ENRE); Fisheries, Animal, and Veterinary Science (FAVS); and Marine Affairs (MAF)—to produce a truly outstanding, interdisciplinary blend of natural science and social science faculty and students with a common goal: more effective management of environmental resources.

Nationwide, there is a growing trend to elevate the nonthesis Master’s experience to the degree level; prominent examples are Duke’s Master of Environmental Management, Cornell’s Master of Professional Studies, the University of Massachusetts’ Master’s in Wildlife and Fisheries Conservation, Yale’s Master of Environmental Studies, and URI’s own Master’s of Oceanography. Given the popularity of professional environmental management degree programs at these and other schools, and the impressive array of top-notch environmental science, policy, planning, and economics faculty and courses at URI, the demand for such a program should be high. In fact, there would appear to be few institutions in the nation that can boast the depth and breadth that URI has to offer in environmental studies.

Faculty representatives from the above departments have met numerous times over a 2-year period to draft the various components of this proposal. They are convinced that a professional Master’s degree in Environmental Science and Management is both timely and in keeping with URI’s Land Grant, Sea Grant, and Urban Grant missions. They firmly believe that such a degree program, featuring a solid core of courses from the natural and social sciences; independent research on science, policy, or management topics; and professional internship opportunities, is the ideal approach for training environmental regulators, managers, policy specialists, and consultants. MESM should also be an attractive degree program for environmental professionals who seek to advance their careers, but who can attend school only on a part-time basis and whose work schedules might not permit the
intensive field or laboratory research typical of the M.S. degree. Creation of the MESM degree program would have the added benefit of bolstering enrollment in undersubscribed graduate courses.

C. INSTITUTIONAL ROLE

The University of Rhode Island has one of the largest, most distinguished marine and environmental science faculties, and some of the most extensive environmental course offerings, in the nation. President Robert Carothers formally recognized this strength when he designated the Marine and Environmental Focus as one of a small number of core areas in which the University would be investing significant resources in future years. The Partnership for the Coastal Environment and the Coastal Fellows Program are shining examples of the University's commitment to environmental research, instruction, and outreach. Three years ago, URI's Departments of Fisheries, Animal, and Veterinary Science; Geology; Natural Resources Science; and Plant Sciences launched a new M.S. and Ph.D. umbrella program in Environmental Sciences. Creation of a professional Master's degree in Environmental Science and Management represents another step toward full realization of President Carothers' vision for the Marine and Environmental Focus.

As described below, MESM would require students to take a basic core of natural science and social science courses from the College of the Environment and Life Sciences, but students would be strongly encouraged to bolster those courses with selections from related units on the Kingston and Narragansett Bay campuses. The aim is to produce graduates who understand the principles of natural science and who know how to apply those principles to the solution of pressing environmental problems. By integrating subject matter from the diverse environmental science, natural resource management, policy, planning, law, and economics courses at URI with applied research projects, MESM stands to become a major contributor to the advancement of URI's already strong reputation in marine and environmental science.

D. INTERINSTITUTIONAL CONSIDERATIONS

None of the other institutions of higher education in Rhode Island offer graduate degree programs that are comparable to MESM. Brown University offers a Master of Arts in Environmental Studies, but the program is almost exclusively focused on environmental policy. There might be minor overlap between Brown's program and the proposed MESM specialization in Environmental Policy and Management; however, MESM would require students to take more coursework in the natural and quantitative sciences. Outside of URI and Brown, there are no other Master's degree programs in environmental science fields in Rhode Island.

For these reasons, creation of MESM should have little or no adverse impact on other institutions of higher education in the State. On a more positive note, the MESM degree may be an attractive option for those graduates of other State institutions who desire to pursue graduate study and careers in environmental science and management.

E. CONTENT

1. Overview: The proposed Master of Environmental Science and Management (MESM) is an interdisciplinary, interdepartmental, professional degree program designed for students who are seeking professional environmental positions in areas other than research. It is considered to be a terminal degree; students who plan to go on for a Ph.D. should enroll in the Master of Science in Environmental Sciences degree program instead. The MESM degree program would serve graduate students from seven departments within URI's College of the Environment and Life Sciences: Community Planning and Landscape Architecture; Environmental and Natural Resource Economics; Fisheries, Animal, and Veterinary Science; Geosciences; Marine Affairs; Natural Resources Science; and Plant Sciences. It would replace the current nonthesis option within the Master of Science in Environmental Sciences degree program.
2. **Admission requirements:** GRE and Bachelor's degree in biological science, physical science, environmental science, natural resources, or engineering. Applicants with course deficiencies may be required to take appropriate undergraduate courses for no program credit and to demonstrate, by their performance in such coursework or through a qualifying exam, basic knowledge of the subject matter in the area(s) of deficiency.

3. **General program requirements:**
 a. Thirty-six (36) credits of coursework, consisting of:
 1.) Core courses (21-25 credits), including:
 - Natural Sciences (at least 9 credits)
 - Social Sciences (at least 6 credits)
 - Numerical Methods (at least 3 credits)
 2.) Elective courses (6-10 credits), up to 3 credits of which might be an internship (EVS 597, Professional Internship in Environmental Science and Management) with an environmental agency, nongovernmental organization, or private firm.
 3.) Independent study (3 credits: EVS 598, Professional Master's Research), an independent research project that culminates in a substantial, high-quality, written report.
 4.) Graduate seminar (2 credits), including a terminal oral presentation.
 b. Written comprehensive examination on coursework.

4. **Specializations:** Each MESM degree candidate shall enroll in one of the following six specializations. Each specialization has unique course requirements (see Appendix for possible course selections) and faculty advisors drawn from two or more CELS departments. Changes in course requirements may be effected by the MESM Steering Committee after consultation with program faculty from the specializations involved. The MESM Steering Committee shall include one member from each of the seven participating departments and be chaired by the CELS Graduate Programs Coordinator.
 a. **Conservation Biology Specialization:** This specialization prepares students for professional positions in the science and management of the earth's biological diversity. Students may concentrate their studies in ecological aspects of applied conservation biology, in the management of biodiversity, or in the economics and policy aspects of conservation biology. Under this specialization, students take courses in plant and animal biology, ecology, and biodiversity analysis and management, as well as in numerical methods and social sciences. Graduates find employment with federal and state resource management and regulatory agencies, nongovernmental conservation organizations, and private environmental consulting firms.
 1.) Core courses (21-25 credits), including:
 - Natural Sciences (12-16 credits)
 - Plant & Animal Biology (at least 3 credits)
 - Ecology (at least 3 credits)
 - Biodiversity Analysis & Management (at least 3 credits)
 - Social Sciences (6 credits)
 - Numerical Methods (3 credits)
 2.) Electives (6-10 credits)
 3.) Independent study (3 credits: EVS 598)
 4) Graduate seminar (2 credits from NRS, PLS, or REN)
b. Earth and Hydrologic Science Specialization: This specialization is focused on the study of earth sciences at multiple scales. It gives students insight into the structure and process in earth systems, stresses the understanding of earth and hydrologic hazards and the application of earth science to management issues, and provides students with tools for effectively communicating how to live with the natural environment. Students concentrate their studies in one of the following: 1) earth surface processes, including coastal hazards and landscape development during and after deglaciation; 2) soil-landscape relationships and applied pedology; 3) hydrogeology, including groundwater and surface water processes, contaminant transport and cleanup, and modeling; 4) solid earth materials and processes, including natural hazards, mineral resources, and forensic science; 5) geoarcheology, including sources of lithic materials and paleoclimates; and 6) paleoenvironments of dinosaur-bearing rocks. Complementary background knowledge in spatial analysis (GIS) is strongly suggested. Required coursework comes from the areas of: earth surface processes; hydrology; earth materials; spatial analysis; numerical methods; and environmental economics, policy, planning, and law. Graduates find employment with federal and state resource management and regulatory agencies, private environmental consulting firms, academic laboratories, and nongovernmental conservation organizations.

1.) Core courses (21-25 credits), including:

- Natural Sciences (12-16 credits from any or all of the following)
- Earth Surface Processes
- Hydrology
- Solid Earth Materials & Processes
- Spatial Analysis & Remote Sensing
- Social Sciences (6 credits)
- Numerical Methods (3 credits)

2.) Elective courses (6-10 credits)

3.) Independent study (3 credits: EVS 598)

4.) Graduate seminar (2 credits from GEO, MAF, or NRS)

c. Environmental Policy and Management Specialization: This specialization prepares students for positions requiring an ability to integrate natural science into policy development and implementation affecting ecosystems, landscapes, land use and development, environmental regulation of industry, or conservation of biological diversity or environmental quality. Students concentrate their coursework in policy, planning, law, and economics, as well as taking a substantial share of courses in natural sciences including geology, hydrology, and soil science; ecology and management; or remote sensing and spatial analysis. Graduates are prepared for careers in federal, state, or municipal government; nonprofit organizations; and private consulting firms requiring professionals who can bring science to bear on policy and management solutions that succeed in a modern political and economic setting.

1.) Core courses (21-25 credits), including:

- Social Sciences (12-16 credits)
- Policy, Planning & Law (at least 6 credits)
- Economic Theory & Methods (at least 6 credits; may include 3 credits from Numerical Methods)
- Natural Sciences (9 credits from any or all of the following or from Numerical Methods)
- Geology, Hydrology & Soil Science
- Ecology & Management
- Remote Sensing & Spatial Analysis
- Numerical Methods (3 credits)
2.) Electives (6-10 credits)

3.) Independent study (3 credits: EVS 598)

4.) Graduate seminar (2 credits from CPL, GEO, MAF, NRS, or REN)

d. **Remote Sensing and Spatial Analysis Specialization:** This specialization provides students with the technical skills required to use state-of-the-art mapping technologies, such as geographic information systems (GIS), and cutting-edge data systems, such as those provided by satellite and aerial remote sensing and global positioning systems (GPS), for the analysis and presentation of environmental data. Students completing this specialization will have mastered a large and diverse suite of technical tools in geospatial data analysis. These tools can be used to solve practical problems in watershed modeling, ecosystem science, wildlife ecology, water resource management, landscape ecology, pollution control, conservation biology, and land use/land cover dynamics. Under this specialization, students take a core of basic and advanced courses in remote sensing and GIS, where they learn how to use modern mapping technologies. Additional coursework provides students with practical instruction in how GIS and remote sensing are applied in environmental analysis and basic research. Graduates of this program find employment with public- and private-sector agencies, firms, and organizations that use computerized mapping technologies for natural resource management and environmental protection.

1.) Core courses (21-25 credits), including:
 - Natural Sciences (12-16 credits)
 - Remote Sensing & Spatial Analysis (at least 9 credits)
 - Earth & Ecosystem Science (0-7 credits)
 - Social Sciences (6 credits)
 - Numerical Methods (3 credits)

2.) Electives (6-10 credits)

3.) Independent study (3 credits: EVS 598)

4.) Graduate seminar (2 credits from GEO or NRS)

e. **Sustainable Systems Specialization:** This specialization focuses on the science and management of designed and domesticated ecosystems. A graduating student has a strong understanding of the functional dynamics of an ecosystem, comprehensive appreciation of ecosystem responses to manipulation, and the ability to link ecosystem processes to human and environmental health and economic output. Students may concentrate their efforts toward understanding terrestrial, aquacultural, or environmental impact and system function. The student develops expertise in the production of food, fiber, ornamental, and utility products from domesticated systems and the potential interactions with natural enemies and indigenous species. Required and optional coursework addresses natural ecosystem functions, management of designed ecosystems, numerical methods, environmental policy, land use planning, environmental law, and economics. Graduates find employment with private-sector firms in the production of food, fiber, ornamental, and utility products from domesticated systems and have ample opportunity with government advisory and regulatory agencies.

1.) Core courses (21-25 credits), including:
 - Natural Sciences (12-16 credits)
 - Natural Ecosystems (at least 3 credits)
 - Managed Ecosystems (at least 3 credits)
• Social Sciences (6 credits)
• Numerical Methods (3 credits)

2.) Electives (6-10 credits)

3.) Independent study (3 credits: EVS 598)

4.) Graduate seminar (2 credits from ASP, NRS, PLS, or REN)

f. **Wetland, Watershed, and Ecosystem Science Specialization:** This specialization focuses on the science and management of ecosystems at all scales from landscape to interstitial. Students may concentrate their studies in the ecology, management, and conservation of inland or coastal wetlands; in watershed science and management, particularly land use-water quality interactions; in the ecology and management of forests for human use and biodiversity; or in soil ecology, including bioremediation of organic pollutants. Under this specialization, students take courses from four key areas: ecosystem science and management; earth science, soils, and spatial analysis; statistics; and environmental planning, policy, law, and economics. Graduates find employment with federal and state resource management and regulatory agencies, municipal government, nongovernmental conservation organizations, and private environmental consulting firms.

1.) Core courses (21-25 credits), including:

- Natural Sciences (12-16 credits)
- Ecosystem Science & Management (at least 6 credits)
- Earth Science, Soils & Spatial Analysis (at least 3 credits)
- Social Sciences (6 credits)
- Numerical Methods (3 credits)

2.) Electives (6-10 credits)

3.) Independent study (3 credits: EVS 598)

4.) Graduate seminar (2 credits from GEO, MAF, NRS, or REN)

5. **Existing program courses:** Except for the proposed internship course (EVS 597; see below) course selections for the Master of Environmental Science and Management degree program will come primarily from existing course offerings from the participating departments: Community Planning and Landscape Architecture (CPL); Environmental and Natural Resource Economics (REN); Fisheries, Animal, and Veterinary Science (ASP, AVS, FST); Geosciences (GEO); Marine Affairs (MAF); Natural Resources Science (NRS); and Plant Sciences (ENT, PLS). These courses will be supplemented by selections from related departments such as Biological Sciences (BIO), Civil and Environmental Engineering (CVE), Oceanography (OCG), Political Science (PSC), and Statistics (STA). See the Appendix for a comprehensive listing of program courses.

6. **New program courses:** URI already offers a tremendous diversity of courses related to environmental science and management. For that reason, only one new course is proposed:

EVS 597 Professional Internship in Environmental Science and Management (I and II, 3 credits) Supervised work performed with an environmental agency, nongovernmental organization, or private firm as part of the requirements of the Master of Environmental Science and Management degree. (Practicum) S/U credit.

In addition, the title and description of EVS 598, Nonthesis Master’s Research, will be changed to read as follows:
EVS 598 Professional Master's Research (I and II, 3 credits) Independent investigation to satisfy the research requirement for the Master of Environmental Science and Management degree. Substantial paper required. (Independent Study).

7. **Program faculty:** At the time of this proposal, the following faculty have expressed a desire to serve as major professor for students in the Master of Environmental Science and Management degree program. Additional program faculty may be added in the future, subject to approval by the MESM Steering Committee.

 a. **Conservation Biology Specialization**
 - Peter V. August, Professor, NRS*
 - Kimberley D. Brosowske, Assistant Professor, NRS
 - Howard S. Ginsberg, Resident Professor, PLS
 - Francis C. Golet, Professor, NRS
 - Thomas D. Husband, Professor, NRS
 - Roger A. LeBrun, Professor, PLS
 - Patrick A. Logan, Professor, PLS
 - Scott R. McWilliams, Assistant Professor, NRS
 - James J. Opaluch, Professor, ENRE
 - Peter W.C. Paton, Associate Professor, NRS
 - Jon G. Sutinen, Professor, ENRE
 - Stephen K. Swallow, Professor, ENRE

 b. **Earth and Hydrologic Science Specialization**
 - Jon C. Boothroyd, Professor, GEO
 - Thomas B. Boving, Assistant Professor, GEO
 - J. Allen Cain, Professor, GEO
 - David E. Fastovsky, Professor, GEO
 - Reinhard K. Frohlich, Associate Professor, GEO
 - Arthur J. Gold, Professor, NRS
 - William R. Gordon, Associate Professor, MAF
 - O. Don Hermes, Professor, GEO
 - Daniel P. Murray, Professor, GEO
 - Mark H. Stolt, Assistant Professor, NRS
 - Anne I. Veeger, Associate Professor, GEO

 c. **Environmental Policy and Management Specialization**
 - James L. Anderson, Professor, ENRE
 - Jon C. Boothroyd, Professor, GEO
 - Thomas B. Boving, Assistant Professor, GEO
 - Paul A. Buckley, Resident Professor, NRS
 - Richard Burroughs, Professor, MAF
 - J. Allen Cain, Professor, GEO
 - Reinhard K. Frohlich, Associate Professor, GEO
 - John M. Gates, Professor, ENRE
 - Francis C. Golet, Professor, NRS
 - Thomas A. Grigalunas, Professor, ENRE
 - Timothy M. Hennessey, Professor, MAF
 - O. Don Hermes, Professor, GEO
 - Lawrence Juda, Professor, MAF
 - Bruce E. Marti, Professor, MAF
 - Dennis W. Nixon, Professor, MAF
 - James J. Opaluch, Professor, ENRE
 - Richard B. Pollnac, Professor, MAF
 - Jon G. Sutinen, Professor, ENRE
 - Stephen K. Swallow, Professor, ENRE
 - Robert H. Thompson, Assistant Professor, CPLA
 - Timothy J. Tyrrell, Professor, ENRE
 - Cathy R. Wessells, Professor, ENRE

 d. **Remote Sensing and Spatial Analysis Specialization**
 - Peter V. August, Professor, NRS
Jon C. Boothroyd, Professor, GEO
Reinhard K. Frohlich, Associate Professor, GEO
O. Don Hermes, Professor, GEO
Daniel P. Murray, Professor, GEO
Yeqiao Wang, Associate Professor, NRS

e. **Sustainable Systems Specialization**
 Steven R. Alm, Professor, PLS
 James L. Anderson, Professor, ENRE
 David A. Bengtson, Professor, FAVS
 Kimberley D. Brosofske, Assistant Professor, NRS
 Richard A. Casagrande, Professor, PLS
 John M. Gates, Professor, ENRE
 Howard S. Ginsberg, Research Associate Professor, PLS
 Marta Gomez-Chiarri, Assistant Professor, FAVS
 Roger A. LeBrun, Professor, PLS
 Thomas N. Mather, Professor, PLS
 Nathaniel A. Mitkowski, Assistant Professor, PLS
 Brian K. Maynard, Associate Professor, PLS
 Michael A. Rice, Professor, FAVS
 Cathy R. Wessells, Professor, ENRE

f. **Wetland, Watershed, and Ecosystem Science Specialization**
 Jose A. Amador, Professor, NRS
 Peter V. August, Professor, NRS
 Jon C. Boothroyd, Professor, GEO
 Thomas B. Boving, Assistant Professor, GEO
 Kimberley D. Brosofske, Assistant Professor, NRS
 Richard Burroughs, Professor, MAF
 David E. Fastovsky, Professor, GEO
 Arthur J. Gold, Professor, NRS
 Francis C. Golet, Professor, NRS
 James J. Opaluch, Professor, ENRE
 Mark H. Stolt, Assistant Professor, NRS
 Jon G. Sutinen, Professor, ENRE
 Stephen K. Swallow, Professor, ENRE
 Anne I. Veeger, Associate Professor, GEO

8. **Target enrollment:** With existing faculty, courses, and facilities, as many as 50 MESM candidates could be easily accommodated.

F. **PROGRAM EVALUATION**

The MESM Steering Committee will compile annual statistics on the number and demographic characteristics of applicants, the number of enrollees, and the number of graduates by specialization. These data and other pertinent information will be forwarded to the College of the Environment and Life Sciences (CELS) Graduate Programs Committee for review. At the time of graduation, each student will be asked to complete an exit questionnaire. The results of the questionnaires will be reviewed by the MESM Steering Committee to identify any issues of concern. If enrollments are lower than desired, more vigorous recruitment efforts will be undertaken. If any other issues of concern are identified, the MESM Steering Committee will appoint subcommittees to study the issues in detail and to propose remedies to the parent Committee and to the CELS Graduate Programs Committee.
APPENDIX

Course Selections for MESM Specializations
Master of Environmental Science and Management
CONSERVATION BIOLOGY SPECIALIZATION
(Total credits = 36)

1. Core Courses (21-25 credits)
 - Natural Sciences (12-16 credits)
 - Plant & Animal Biology (at least 3 credits):
 BIO 418 Marine Botany
 BIO 454 Genetics Lab
 BIO 464 Invert. Zoology
 BIO 466 Vertebrate Biology
 BIO 522 Plant Molec. Biology
 BIO 563 Ichthyology
 BIO 568 Ornithology
 - Ecology (at least 3 credits):
 BIO 455 Marine Ecology
 BIO 458 Limnology
 BIO 560 Sem. Plant Ecology
 BIO 562 Sem. Behav. Ecology
 ENT 544 Insect Ecology
 NRS 423 Wetland Ecology
 NRS 555 Appl. Coast. Ecology
 - Biodiversity Analysis & Management (at least 3 credits):
 ENT 519 Insect Biol. Control
 NRS 406 Wetland Wildlife
 NRS 410 Fundamentals GIS
 NRS 424 Wetlands/Land Use
 NRS 516 Adv. Remote Sensing
 NRS 533 Landsc. Pattern/Change
 - Social Sciences (6 credits)
 CPL 511 Plann./Nat. Env. Syst.
 CPL 545 Land Devel. Seminar
 MAF 521 Coastal Zone Law
 MAF 562 Estuarine Mgt.
 REN 432 Envir. Econ./Policy
 REN 514 Econ. Marine Resour.
 - Numerical Methods (3 credits)
 ENT 529 Systems Sci. Ecol.
 STA 412 Stat. Meth. Res. II

2. Electives (6-10 credits)
 Selections may come from the above lists or from other approved graduate-level courses.
 Enrollment in a 3-credit internship (EVS 597) with a professional environmental agency, organization, or firm is optional.

3. Independent Study (3 credits)
 EVS 598 Professional Master's Research

4. Graduate Seminar (2 credits)
 Graduate Seminar in NRS or PLS.
Master of Environmental Science and Management

EARTH AND HYDROLOGIC SCIENCE SPECIALIZATION

(Total credits = 36)

1. Core Courses (21-25 credits)
 - Natural Sciences (12-16 credits)
 - Earth Surface Processes:
 GEO 450 Intro. Sed. Geology
 NRS 412 Soil-Water Chem.
 NRS 424 Wetlands/Land Use
 NRS 441 Meth. Ecosys. Anal.
 NRS 452 Soil, Water Invest.
 NRS 525 Wetland Field Invest.
 NRS 567 Soil Genesis/Classif.
 - Hydrology:
 CVE 475 Water in Environment
 GEO 468 Ground-Water Chern.
 GEO 485 Envir. Engin. Geophys
 GEO 582 Innov. Remed. Technol
 NRS 510 Soil-Water Relations
 - Solid Earth Materials & Processes:
 GEO 401 Ore Deposits
 GEO 465 Intro. Geophysics
 GEO 530 Petrogenic Ign. Proc.
 GEO 565 Geophys. Models
 GEO 581 Topics Tectonic Geol.
 - Spatial Analysis & Remote Sensing:
 NRS 410 Fundamentals GIS
 NRS 509 GIS Concepts/Applic.
 NRS 522 Adv. GIS Analysis
 CPL 539 Environmental Law
 MAF 461 Coastal Zone Mgt.
 MAF 544 Water Resource Law
 REN 440 Benefit-Cost Analysis
 REN 528 Microeconomic Theory
 - Social Sciences (6 credits)
 CPL 539 Environmental Law
 MAF 461 Coastal Zone Mgt.
 MAF 544 Water Resource Law
 REN 440 Benefit-Cost Analysis
 - Numerical Methods (3 credits)
 ENT 529 Systems Sci. Ecol.
 STA 412 Stat. Meth. Res. II
 - Numerical Methods (3 credits)
 ENT 529 Systems Sci. Ecol.
 STA 412 Stat. Meth. Res. II

2. Electives (6-10 credits)
 Selections may come from the above lists or from other approved graduate-level courses.
 Enrollment in a 3-credit internship (EVS 597) with a professional environmental agency, organization, or firm is optional.

3. Independent Study (3 credits)
 EVS 598 Professional Master's Research

4. Graduate Seminar (2 credits)
 Graduate Seminar in GEO or NRS.
1. **Core Courses** (21-25 credits)
 - Social Sciences (12-16 credits)
 - **Policy, Planning & Law** (at least 6 credits):
 - CPL 501 Comm. Plann. Practice
 - CPL 511 Plann./Nat. Env. Syst.
 - CPL 538 Site Planning
 - MAF 456 Polar Resources/Policy
 - MAF 471 Island Ecosystem Mgt.
 - MAF 475 Human Respons. Coast. Hazards
 - CPL 548 Site Planning
 - CPL 550 Site Planning
 - **Economic Theory & Methods** (at least 6 credits; may include 3 credits from Numerical Methods):
 - REN 410 Fish/Wildl. Economics
 - REN 432 Envi r. Econ./Policy
 - REN 456 Tourism Economics
 - REN 529 Game Theory
 - **Natural Sciences** (9 credits; may include 3 credits from Numerical Methods)
 - GEO 450 Intro. Sed. Geology
 - GEO 484 Envir. Hydrogeology
 - NRS 412 Soil-Water Chemistry
 - NRS 450 Capstone Soil/Water
 - NRS 471 Soil Morphol./Mapp.
 - NRS 557 Soil Genesis/Classif.
 - NRS 406 Wetland Wildlife
 - NRS 424 Wetlands/Land Use
 - NRS 526 Microbial Ecology
 - NRS 410 Fish/Wildl. Economics
 - NRS 516 Adv. Remote Sensing
 - STA 412 Stat. Meth. Res. II
 - STA 550 Ecological Statistics

2. **Electives** (6-10 credits)
 - Selections may come from the above lists or from other approved graduate-level courses.
 - Enrollment in a 3-credit internship (EVS 597) with a professional environmental agency, organization, or firm is optional.

3. **Independent Study** (3 credits)
 - EVS 598 Professional Master's Research

4. **Graduate Seminar** (2 credits)
 - Graduate Seminar in CPL, MAF, or REN
 - *May be counted as Natural Sciences.
 - **May be counted as Economic Theory & Methods.
Master of Environmental Science and Management
REMOTE SENSING AND SPATIAL ANALYSIS SPECIALIZATION
(Total credits = 36)

1. Core Courses (21-25 credits)
 - Natural Sciences (12-16 credits)
 - Remote Sensing & Spatial Analysis (at least 9 credits):
 - NRS 410 Fundamentals of GIS*
 - NRS 509 GIS Concepts/Applic.*
 - NRS 522 Adv. GIS Analysis*
 - NRS 533 Landsc. Pattern/Change
 - Earth & Ecosystem Science (0-7 credits):
 - GEO 483 Hydrogeology
 - GEO 515 Glacial Geology
 - GEO 577 Coastal Geol. Hazards
 - NRS 423 Wetland Ecology
 - NRS 440 Ecosystem Processes
 - NRS 450 Capstone Soil/Water
 - NRS 471 Soil Morphol./Mapp.
 - NRS 525 Wetland Field Invest.
 - NRS 567 Soil Genesis/Classif.
 - CPL 511 Plann./Nat. Env. Syst.
 - CPL 549 Seminar Ecol. Planning
 - MAF 582 Estuarine Mgt.
 - REN 432 Envir. Econ./Policy
 - REN 514 Econ. Marine Resour.
 - STA 412 Stat. Meth. Res. II

2. Electives (6-10 credits)
 Selections may come from the above lists or from other approved graduate-level courses.
 Enrollment in a 3-credit internship (EVS 597) with a professional environmental agency, organization, or firm is optional.

3. Independent Study (3 credits)
 EVS 598 Professional Master's Research

4. Graduate Seminar (2 credits)
 Graduate Seminar in GEO or NRS.

*This course or an equivalent is required, unless it was taken prior to matriculation in this degree program.
Master of Environmental Science and Management
SUSTAINABLE SYSTEMS SPECIALIZATION
(Total credits = 36)

1. Core Courses (21-25 credits)
 • Natural Sciences (12-16 credits)
 - Natural Ecosystems (at least 3 credits):
 ASP 401 Pathobiology
 BIO 524 Methods Plant Ecology
 ENT 519 Insect Biol. Control
 ENT 544 Insect Ecology
 FST 415 Fishery Science
 NRS 440 Ecosystem Processes
 PLS 511 Nature Plant Disease
 ASP 400 Diseases Cult. Fishes
 ASP 432 Mar. Finfish & Aquacult.
 ASP 483 Salmonid Aquaculture
 ASP 581 Topics Mollusc. Aquacult.
 ASP 586 Fish Nutrition
 AVS 420 Animal Breed. Genetics
 ENT 571 Insect Microbiology
 FST 421 Design Fish Capture Syst.
 FST 521 Eval. Fish Capture Syst.
 PLS 405 Propag. Plant Materials
 PLS 463 Prin. Plant Disease Control
 PLS 472 Plant Improvement II
 CPL 511 Plann./Nat. Env. Syst.
 CPL 545 Land Devel. Seminar
 MAF 544 Water Resources Law
 PSC 402 Envir. Policy/Politics
 REN 432 Envir. Econ./Poli
 REN 528 Microeconomic Theory
 - Managed Ecosystems (at least 3 credits):
 ASP 476 Genetics of Fish
 BIO 560 Sem. Plant Ecology
 ENT 529 Systems Sci. Ecol.
 ENT 561 Aquatic Entomology
 FST 416 Fishery Science Lab
 NRS 406 Wetland Wildlife
 PLS 576 Envir. Plant Physiol.
 - Social Sciences (6 credits)
 CPL 539 Environmental Law
 MAF 523 Fisheries Law/Mgt.
 MAF 582 Estuarine Mgt.
 REN 410 Fish/Wildl. Economics
 REN 440 Benefit-Cost Analysis
 REN 535 Envir. Economics
 - Numerical Methods (3 credits)
 STA 412 Stat. Meth. Res. II
 STA 520 Fund. Samp./Applic.
 STA 550 Ecological Statistics

2. Electives (6-10 credits)
 Selections may come from the above lists or from other approved graduate-level courses. Enrollment in a 3-credit internship (EVS 597) with a professional environmental agency, organization, or firm is optional.

3. Independent Study (3 credits)
 EVS 598 Professional Master’s Research

4. Graduate Seminar (2 credits)
 Graduate Seminar in ASP, NRS, PLS, or REN.
Master of Environmental Science and Management
WETLAND, WATERSHED, AND ECOSYSTEM SCIENCE SPECIALIZATION
(Total credits = 36)

1. **Core Courses** (21-25 credits)
 - Natural Sciences (12-16 credits)
 - Ecosystem Science & Management (at least 6 credits):
 - NRS 406 Wetland Wildlife
 - NRS 424 Wetlands/Land Use
 - NRS 526 Microbial Ecology
 - NRS 582 Sem. Soil Ecol./Biochem.
 - Earth Science, Soils & Spatial Analysis (at least 3 credits):
 - GEO 450 Intro. Sed. Geology
 - GEO 483 Hydrogeology
 - GEO 515 Glacial Geology
 - GEO 577 Coastal Geol. Hazards
 - NRS 410 Fundamentals GIS
 - NRS 450 Capstone Soil/Water
 - NRS 471 Soil Morphol./Mapp.
 - NRS 510 Soil-Water Relations
 - NRS 533 Landsc. Pattern/Change
 - Social Sciences (6 credits)
 - CPL 511 Plann./Nat. Env. Syst.
 - CPL 545 Land Devel. Seminar
 - MAF 461 Coastal Zone Mgt.
 - MAF 521 Coastal Zone Law
 - MAF 582 Estuarine Mgt.
 - REN 410 Fish/Wildl. Economics
 - REN 440 Benefit-Cost Analysis
 - REN 535 Envir. Economics
 - Numerical Methods (3 credits)
 - STA 412 Stat. Meth. Res. II

2. **Electives** (6-10 credits)
 Selections may come from the above lists or from other approved graduate-level courses.
 Enrollment in a 3-credit internship (EVS 597) with a professional environmental agency,
 organization, or firm is optional.

3. **Independent Study** (3 credits)
 EVS 598 Professional Master's Research

4. **Graduate Seminar** (2 credits)
 Graduate Seminar in NRS.