INAPPROPRIATE MEDICATION USE IN AN ELDERLY NURSING HOME POPULATION

Jyotsna Dhall
University of Rhode Island

Follow this and additional works at: http://digitalcommons.uri.edu/theses

Terms of Use
All rights reserved under copyright.

Recommended Citation
http://digitalcommons.uri.edu/theses/241

This Thesis is brought to you for free and open access by DigitalCommons@URI. It has been accepted for inclusion in Open Access Master’s Theses by an authorized administrator of DigitalCommons@URI. For more information, please contact digitalcommons@etal.uri.edu.
INAPPROPRIATE MEDICATION USE
IN AN ELDERLY NURSING HOME POPULATION

BY

JYOTSNA DHALL

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE
MASTER OF SCIENCE
IN
APPLIED PHARMACEUTICAL SCIENCES

UNIVERSITY OF RHODE ISLAND
2000
ABSTRACT

Objective: This study was designed to study the inappropriate medication utilization in patients aged 65 years or older residing in a long term care facility; to examine patterns in the use of inappropriate medications during the stay in the facility; and to determine predictors of inappropriate medication use.

Design: Retrospective, cross-sectional study

Methods: We used the Systematic Assessment of Geriatric Drug Use via Epidemiology (SAGE) database that includes data from all Medicaid/Medicare certified nursing homes located in 5 US states. We examined data collected with the federally mandated Minimum Data Set along with the sociodemographic, clinical and treatment information during the period October 1995 to September 1996 (n = 44,562).

Measurements: Inappropriate medication was defined according to Beers' criteria. Use of inappropriate medication was determined at admission and at ninety days. We calculated incidence of discontinuation, initiation, and continuance of these medications over the ninety-day period in the nursing home. A logistic regression model provided estimates of Odds Ratio (OR) for the predictors of inappropriate use of drugs.

Results: Thirt-three percent of the residents were receiving at least one inappropriate medication on admission to the long term care facility. Of the 29,082 remaining in long term care facility ninety days after admission, 16% on an inappropriate medication at admission had the medication discontinued, while 18% of non-users at admission initiated an inappropriate agent during the 90 days, a net result of 39% using an inappropriate agent at 90 days. The number of medications taken by the
patient, race, age and level of cognitive impairment were found to be associated with the use of inappropriate medications.

Discussion: Overall use of inappropriate medication increased significantly during the first 90 days of residence in a long term care facility. Inappropriate use of long acting benzodiazepines and analgesics was of particular concern. These findings highlight the need for careful patient medication regimen assessment and medication prescribing upon long term care admission.
ACKNOWLEDGEMENTS

This is the beginning of the end. The end of a journey at the University of Rhode Island. A journey I am glad I made because of the knowledge I gained and the people I met.

"No duty is more urgent than that of returning thanks" (St. Ambrose). I am privileged to get a chance to thank all those wonderful people who have touched my life in one way or another over the past two years.

What would a Masters Degree be without a major professor? Thanks to Dr. Paul Larrat for agreeing to be my major (and for funding me of course!). His time, patience and guidance has been invaluable during my studies. Special thanks to Dr. Kate Lapane for her guidance and time with my thesis. All those hours you spent with my SAS code and me really paid off. I would also like to thank Dr. Norman Campbell who taught me that a little criticism is not such a bad thing after all. All those seminar courses with him helped me improve my public speaking and presentation skills. I am indebted to him for not turning a deaf ear when dealing with personal problems. I would also like to thank Dr. Norma Owens for agreeing to serve on my thesis committee inspite of her busy schedule and for providing me valuable suggestions and comments.

A journey cannot be complete without friends. Thanks to Karuna, Prashant and Shvima for their friendship and support throughout the way. You were by my side when I wanted to share a good laugh or a tear. When I wanted to have fun or just needed someone to talk to. No words can express my heartfelt thanks to Shail - You've shared every joy and sorrow with me....I would not have done without you.
Finally, I would like to express my appreciation to my sister Priti and brother-in-law Soumya without whom things would have been lonely and difficult. Their constant support, encouragement and inspiration helped me come a long way. Last but not the least, I would like to thank my family back in India, my parents and my sister Priya, for their support and love. Inspite of being so far you were very close to me in heart and mind. I would like to thank them for having the courage and conviction to send me to come to the U.S. to pursue my career. I know it was a tough decision for you, but believe me you made the right choice. Finally I would like to thank God for giving me strength when I needed it and for giving me all these wonderful people when I didn’t have enough to go on myself.
PREFACE

This work has been prepared in accordance with the format for thesis preparation, as outlined in section 11-3 of the Graduate Manual of the University of Rhode Island. Contained within is a body of work divided in two sections.

Included within Section I is the thesis, containing the findings of the research which comprise this thesis.

Section II is comprised of an appendix containing SAS programs

Section III contain the Minimum Data Set (MDS), a comprehensive instrument designed to assess resident health status and functional levels.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section/Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>ii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>iv</td>
</tr>
<tr>
<td>PREFACE</td>
<td>vi</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>viii</td>
</tr>
<tr>
<td>SECTION I</td>
<td>1</td>
</tr>
<tr>
<td>Inappropriate medication use in an elderly nursing home population</td>
<td>30</td>
</tr>
<tr>
<td>SECTION II</td>
<td>57</td>
</tr>
<tr>
<td>SECTION III</td>
<td>63</td>
</tr>
<tr>
<td>BIBLIOGRAPHY</td>
<td></td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1</td>
<td>The use of inappropriate medication for individuals aged 65 years and older on admission to a long term care facility during Oct 1995 to June 1996, using the Beers criteria.</td>
<td>19</td>
</tr>
<tr>
<td>Table 2</td>
<td>Demographic and clinical characteristics associated of the residents aged 65 years and older during residing in the nursing facility for 90 days during Oct 1995 to June 1996</td>
<td>21</td>
</tr>
<tr>
<td>Table 3</td>
<td>Incidence of discontinuation and initiation of inappropriate medication during transition from ambulatory to long term care (LTC) facility during the first 90 days of stay in LTC facility for patients aged 65 years or older</td>
<td>22</td>
</tr>
<tr>
<td>Table 4</td>
<td>Logistic regression model for determining the predictors of inappropriate prescribing, using Beers criteria for residents aged 65 years or older after 90 days of stay in nursing home</td>
<td>25</td>
</tr>
</tbody>
</table>
SECTION I

Inappropriate medication use in an elderly nursing home population
ABSTRACT

Objective: This study was designed to study the inappropriate medication utilization in patients aged 65 years or older residing in a long term care facility; to examine patterns in the use of inappropriate medications during stay in the facility; and to determine predictors of inappropriate medication use.

Design: Retrospective, cross-sectional study

Methods: We used the Systematic Assessment of Geriatric Drug Use via Epidemiology (SAGE) database that includes data from all Medicaid/Medicare certified nursing homes located in 5 US states. We examined data collected with the federally mandated Minimum Data Set along with the sociodemographic, clinical and treatment information during the period October 1995 to September 1996 (n = 44,562).

Measurements: Inappropriate medication was defined according to Beers' criteria. Prescribing of inappropriate medication was determined at admission and at ninety days. We calculated incidence of discontinuation, initiation, and continuance of these medications over the ninety-day period in the nursing home. A logistic regression model provided estimates of Odds Ratio (OR) for the predictors of inappropriate prescribing.

Results: Fifty-two percent of the residents were receiving inappropriate medication on admission to the long term care facility. Of the 29,082 remaining in long term care facility ninety days after admission, 8% on an inappropriate medication at admission had the medication discontinued, while 23% of non-users at admission initiated an inappropriate agent during the 90 days, a net result of 51% using an inappropriate agent at 90 days. The number of medications taken by the patient, race, age and level
of cognitive impairment were found to be associated with the prescribing of inappropriate medications.

Discussion: Overall prescribing of inappropriate medication increased significantly during the first 90 days of residence in a long term care facility. Inappropriate prescribing of long acting benzodiazepines and analgesics was of particular concern. These findings highlight the need for careful patient medication regimen assessment and medication prescribing upon long term care admission.
INTRODUCTION

Individuals who are 65 years of age or older now constitute 11% of the total United States population. By 2030, more than 64 million people will be over age 65, constituting 21% of the population [1]. Of patients aged 85 years and older, 20% are living in long term care (LTC) facilities [2]. With the aging of the population and changes in the American family, nursing homes have taken on an increasingly prominent role in the medical care of disabled older people [3]. In 1990, approximately 1.56 million people over age 65 resided in the 15,600 long term care nursing facilities in the United States (a rate of 53.3/1000 elders) [4]. The increasing importance of long term care has been realized due to changes in the delivery of health care services.

Medicare and Medicaid were enacted in 1965. Prior to this, there were essentially no federal standards governing nursing home care. By the early 1980s, problems in the quality of nursing home care arose. Reacting to this, the Health Care Financing Administration (HCFA) prepared draft guidelines for nursing home regulation. In late 1983, Congress asked the Institute of Medicine (IOM) to conduct a two-year study and make recommendations for improving the quality of care in nursing facilities; a summary of this report was published in 1986 [5]. Finally, continuing problems of inadequate care and ineffective regulation lead the United States Congress to pass the Nursing Home Reform Amendments as part of the Omnibus Budget Reconciliation Act (OBRA) of 1987. It produced an extensive set of reforms in nursing home care. Regulations promulgated as a result of the act included new requirements on quality of care, resident assessments, care planning and the use
of neuroleptic drugs. Many reviews such as the licensure of facilities, inspection of care, ombudsman programs and government regulations of various kinds also evolved to improve the quality of nursing home care. As a result of these legislative initiatives, nursing home care in skilled and intermediate care facilities became the major publicly subsidized form of long term care for the functionally impaired elderly [5].

Elderly nursing home residents tend to utilize more medications than any other group and the utilization of drugs in this setting has come under increased scrutiny [3]. Due to social, psychological and physiological factors, the elderly utilize more medication than younger people and may suffer more adverse effects from medication use. They are often prescribed an average of four to eight medications per day [6].

One of the major problems in the elderly concerning medications is the use of inappropriate drugs. An inappropriate drug (or intervention) is considered as one, which offers greater risk than benefit taking into consideration its adverse effects. Usually, the drug (or intervention) might have an existing safer alternative or that a preferable (usually newer) medication might be available [7]. Since some of the drugs might be appropriate under patient specific conditions, inappropriate use should be referred to as 'potentially inappropriate' use. A review of literature on appropriateness of prescriptions revealed that between 7% to 51% of psychoactives, 22% to 90% of anti-infectives, and 33% to 71% of GI drugs were prescribed inappropriately to the elderly [8]. Inappropriate prescribing prevalence could vary from 7.5% in office based practice to 40% in nursing homes [9]. Many factors contribute to prescribing of inappropriate drugs in nursing homes. A study carried out by Gupta et al on Louisiana's 19,932 ICF (Intermediate Care Facility) beneficiaries revealed that the
number of physicians, number of pharmacies used and the number of drugs prescribed
were the factors responsible for higher inappropriate medication use [10].

In 1991, Beers et al. developed explicit criteria that defined the use of
inappropriate medications for the elderly. These criteria were developed by a
consensus of internationally recognized experts in geriatric medicine for the elderly
population residing in nursing facilities. They were later updated in 1997 [7, 11].
Beers high severity drugs have been included in the recent HCFA interpretive
guidelines for nursing facilities effective July 1, 1999, in the category of unnecessary
drugs while the low severity drugs are a part of the drug therapy review process
conducted by a consultant pharmacist every month [12]. HCFA utilizes these
guidelines as well as nursing facility survey procedures to guide surveyors inspecting
nursing facilities in monitoring compliance with regulations. The Beers criteria have
been extensively used by researchers to study the prevalence of inappropriate
medication use among the elderly population [10, 13] [14, 15] [16, 17] [18, 19].

Most of these studies focussed on the percentage use but none of them had
looked at the pattern of use during the stay in the nursing home. This study was
designed to examine the rates of initiation, discontinuation, and continuance of
inappropriate medication using the Beers criteria during the first 90 days of stay in the
nursing facility for patients aged 65 years of age or older. The study also identified
sociodemographic characteristics and predictors of inappropriate medication use.
METHODS

Data source

We used the Systematic Assessment of Geriatric drug use via Epidemiology (SAGE) database for the study. Briefly, SAGE is a population-based, multi-linked database that includes computerized data collected as part of the HCFA's Multistate, Nursing Home Case-mix and Quality Demonstration Project. This database includes patient information collected with the minimum data set (MDS), drug prescription data, organizational data on nursing home providers and Medicare claims data. Since 1992, nursing home staff in all Medicare and Medicaid facilities of five states (Kansas, Maine, Mississippi, New York, and South Dakota) have evaluated patients using the Resident Assessment Instrument, which includes a more than 350-item Minimum Data Set (MDS). This is a comprehensive instrument designed to assess resident health status and functional levels [20].

MDS Data - The MDS includes sociodemographic information, numerous clinical items ranging from the degree of functional dependence to cognitive functioning, and all clinical diagnoses. It also includes an extensive array of signs, symptoms, syndromes, and treatments being provided to the resident [20, 21]. In addition to the MDS data, nursing staff recorded up to 18 different medications received by each resident during the assessment. Drug information included brand and/or generic name, dosage, route, and frequency of administration [22-24]. Drugs were coded according to the National Drug Coding (NDC) system and the MediSpan® system was used to translate these NDC codes into usable therapeutic class and sub-class information [24].
The SAGE database has been described in detail elsewhere [22-24]. It has been previously documented that the SAGE database has excellent validity, and the database has proved a useful and reliable tool for pharmacoepidemiologic research [21] [25] [26].

Sample

We identified 44,562 people admitted to the 1492 nursing homes in five states (Kansas, Maine, Mississippi, New York, and South Dakota) during October1995 and September1996 and who were greater than 65 years of age. All the nursing homes completed a nursing home assessment for each resident within 14 days of admission, 30 days later and quarterly thereafter. For the baseline evaluation, we chose 44,562 people who had an initial assessment at admission. Of these 44,562 people, we identified 29,082 people who had a follow up assessment done at 90 days.

Outcome

The concepts of appropriateness and appropriateness criteria have often been used in geriatric practice or health services research. There are several definitions of appropriateness defined by most clinicians and health service researchers [27]. For the purpose of this study, the following definition of appropriateness within the risk benefit concept was used, "The use of a drug (or any intervention) is inappropriate when its potential risk outweighed its potential benefits".

In 1991, Beers et al operationalized the definition when he published the first list of explicit criteria identifying inappropriate medications in nursing home residents [7]. In 1997, the criteria were updated and expanded. The new criteria revisited the old criteria, included new products and incorporated new information available in the
scientific literature and also assigned a relative rating of severity to each criteria. These criteria defined medications that should generally be avoided in the elderly, doses or frequencies of administrations that should generally not be exceeded, and medications that should be avoided in older persons known to have any of the several comorbidities. Each of the criteria was also assigned a severity rating. Severity was defined conceptually as combinations of both the likelihood that an adverse outcome would occur and the clinical significance of that outcome should it occur.

For the purpose of this study, inappropriate medications for elderly patients constituted a subset of the Beers updated criteria (Table 1. Final Criteria: Independent of Diagnoses) [11]. Forty-three inappropriate medications that apply to the Beers final criteria were selected. These were categorized into therapeutic classes based on the Beers criteria and the Medispan coding. For this study, a resident was labeled as having received an inappropriate medication if they had used one or more of the drugs mentioned in the Beers criteria.

Outcome measures for this study included baseline evaluation of inappropriate medication use. This gave the percentage use of drugs at admission to the nursing facility. For the 29,082 people who had a 90-day assessment, the incidence of discontinuation and initiation of each of the inappropriate medications was calculated. Discontinuation referred to those who took the drug at baseline but discontinued the drug during their first 90 days of stay in long term care (LTC) facility. Initiation referred to those who did not take the drug at baseline but initiated the drug during first 90 days of stay in LTC facility.
Clinical measures

For the purpose of logistic modeling, two clinical measures were used. To assess the degree of cognitive impairment, the Cognitive Performance Scale (CPS) was used [28]. CPS is a well-validated scale with scores ranging from 0 (intact cognition) to 6 (severe dementia). CPS scores correlate well with the Mini-Mental State Examination (MMSE) and have been shown to be suitable for outcomes research [28] [29]. Each resident was categorized as having no or minimal cognitive impairment (CPS 0 or 1; MMSE equivalent is 24 and 23), moderate cognitive impairment (CPS 2, 3 or 4; MMSE equivalent is 17, 13 and 6), or severe cognitive impairment (CPS 5 or 6; MMSE equivalent is 3 and 2) [29] [28].

The Activities of Daily Living (ADL) scale was used to assess resident’s dependency in the areas of eating, dressing, toileting, bathing, locomotion, transferring, and incontinence [30]. The ADL score ranged from mild (ADL score 0 or 1), moderate (ADL score 2 or 3), or severe (ADL score 4 or 5) dependence.

Analysis

Descriptive analyses were carried out using Statistical Analysis Software (SAS Ver 6.12). For the baseline evaluation, % inappropriate medication use was determined for the 44,562 residents who had an admission assessment. To calculate the discontinuation and initiation rates for the 43 different medications taken by the 29,082 residents during the 90-day period, cross tabulations between the usage of these medications at admission and at 90 days were designed.

Using a logistic model, we evaluated the relation between demographic and clinical variables and the use of drugs during the 90 days of stay in the nursing home.
Missing data were also modeled and it accounted for less than 1% in the model. Odds Ratio and 95% Confidence Intervals were estimated from the model.

RESULTS

Out of 44,562 nursing home residents, 22,234 were receiving potentially inappropriate medication on admission to a long term care facility. The top five frequently prescribed medications included digoxin (in doses > 0.125mg, 22.1%), iron supplements (in doses > 325 mg of ferrous sulphate, 10.3%), propoxyphene (10.1%), lorazepam (4.9%) and temazepam (2.7%). (Refer to Table1) Among the high severity medications, digoxin (in doses > 0.125mg) was most frequently prescribed. Thirty-three percent of the inappropriate medications were of high severity. Inappropriate use of antianxiety agents including the long acting benzodiazepines was noted in 9.3% of the residents. This category included lorazepam, alprazolam, oxazepam, triazolam, diazepam, chlordiazepoxide and meprobamate. Prescribed cardiovascular agents (disopyramide, digoxin, dipyridamole, methyldopa and reserpine) deemed inappropriate was about 23.4%.

Table 2 presents the demographic and clinical characteristics of the residents evaluated after 90 days in the long term care facility. The female population was more than two times larger than the male population. About 80% of the sample under study was 75 or more years of age. Whites were a majority while the black population was about 7%. Seventy-seven percent of the residents under study were admitted from the hospital, while about 13% were admitted from the home.

A review of the clinical characteristics indicated that about 51% of the population had moderate dependency in the areas of eating, dressing, toileting,
bathing, locomotion, transferring, and incontinence, while 33% had severe dependency. A majority of the residents had either minimal or moderate level of cognitive impairment. Residents with minimal or no cognition formed about 11% of the study population.

The pattern of use of inappropriate medication during the 90 days is presented in Table 3 in the form of discontinuation and initiation. For example, there were 2701 users at admission of propoxyphene. After ninety days, 636 (23.6%) residents discontinued its use. Out of the 26,381 non-users of propoxyphene, during the 90 day period, 1345 patients were prescribed a new propoxyphene prescription.

The discontinuation rates show that out of the 43 different drugs, the inappropriate drugs that were discontinued the most included promethazine (56.2%), meperidine (54.8%) and dexchlorpheniramine (54.6%). Of the 43 different Beers drugs, propoxyphene, lorazepam, amitryptiline and combinations, digoxin (in doses > 0.125mg) and iron supplements were used most frequently at admission. But, on average, 17% of these drugs were discontinued during the first 90 days. For example, of the 6490 residents on digoxin at admission, 6218 residents were still on the drug after 90 days. Thus, very few people taking inappropriate drugs at admission tended to discontinue the drug during their initial period of stay in the nursing home.

Overall, initiation of inappropriate drugs was found to be high (about 23%). The top five drugs initiated the most were propoxyphene (5.1%), iron supplements (5%), digoxin (3.4%), lorazepam (2.8%), and hydroxyzine (1.6%). Central nervous system drugs (including anti-anxiety agents, antidepressants, and hypnotics) and
analgesics were the two therapeutic categories with overall high initiation rates of 8.8% and 5.8% respectively.

Table 4 presents the results for the logistic regression analysis of our data. Females were 1.2 times more likely than males to be prescribed an inappropriate drug after controlling for race, age, number of medications taken and clinical status (95% confidence interval [CI], 1.1-1.2). It was found that as the number of medications taken by resident increased, the likelihood of being prescribed an inappropriate medication also increased. Residents on nine or more medications were 6 times more likely than those on one to three medications to be taking an inappropriate drug after other factors were controlled (95% confidence interval [CI], 5.5-6.4). Patients admitted from hospitals were more likely to be prescribed an inappropriate medication than those admitted from a private home, nursing home or other facility.

It was also observed that patients who had severe dementia were less likely to be taking an inappropriate medication as compared to those who had no cognitive impairment (odds ratio OR, 0.7; 95% CI, 0.6-0.8). Age was also an important predictor of inappropriate medication. The likelihood of receiving an inappropriate medication increased as the age increased from 65 years to 85 years. Residents with 85 or more years of age were 1.4 times more likely to be receiving an inappropriate medication than those who were 65-74 years of age (95% confidence interval [CI], 1.3-1.5). Resident dependencies in the activities of daily living were not found to be an important predictor of the use of inappropriate medication.
Thus, the risk of receiving an inappropriate medication were higher for those people who were 85+ years of age, white, female, admitted from the hospital, having good cognitive ability and had received a higher number of medications.
DISCUSSION

Using a population-based sample of nursing home residents in five states for a one-year period, we found that prescribing of inappropriate medication had been significantly higher during the first 90 days of residence in a long term care facility than prior to admission. Inappropriate prescribing of long acting benzodiazepines, analgesics and cardiovascular agents was of particular concern. Several studies involving the elderly population have also obtained similar results [9, 10, 15]. We used data of long term care facilities in five different states: New York, Kansas, Maine, Mississippi, and South Dakota. Due to heterogeneity of the group, it seems appropriate to generalize the results of the study to the older population residing in nursing homes.

Many factors contribute to prescribing of inappropriate drugs in nursing homes. Infrequent physician visits and lack of formal training for health care professionals in long term care are contributing factors [10]. Low discontinuation rates of inappropriate medication show that nursing facilities need to focus on a careful patient medication regimen assessment and medication prescribing upon long term care admission. The pattern of discontinuation and initiation of inappropriate drugs suggests that a regular review of prescribed therapy is essential, allowing the unnecessary drugs to be reevaluated and potentially discontinued.

We found most of the people admitted from the hospital were receiving inappropriate medications. One reason for this might be that these residents were already on the drugs when they were admitted and drug therapy was not changed during their hospitalization. Polypharmacy has been shown in various studies to
influence patient susceptibility to adverse drug reactions [31]. Our study was consistent with this finding. The number of drugs prescribed served as a surrogate for polypharmacy. We also found that the very old population took a large number of inappropriate drugs. It may be that older residents had more illness and more severe conditions but it can also indicate that physicians tend to be less cautious in prescribing to the older persons.

Some of the limitations of our study included the possibility of an incomplete listing of drugs for residents receiving more than 18 drugs and the possibility of inaccurate reporting of drug use. For example, people with atrial fibrillation needing higher doses (>0.125mg) of digoxin could be reported as inappropriately prescribed although higher doses of 0.25 mg might be required to maintain a therapeutic drug concentration and rate lowering cardiac effect. Another possibility of inaccurate reporting might be that drug data were collected along with the Minimum Data Set (MDS) assessments 14 days after patient admission, after 30 day and quarterly thereafter. Therefore, information on short-term use medications may not be collected if the prescription was ordered beyond 7-15 days from the MDS administration.

The MDS data has been questioned as far as clinical measures and functional outcomes are concerned [32, 33]. However, we used clinical measures previously validated to be reliable and accurate [21, 29, 30, 34-36]. In addition to the issue of accuracy and validity, there are methodological problems inherent in the use of a cross sectional design. For example, we do not have patient data preceding the initial MDS assessment but we do know the reason for nursing home admission, and whether the
patient was previously living at home, in another nursing facility, or discharged from the hospital.

The Beers criteria have been widely used by researchers as well as regulatory accreditation groups and clinicians, as an indicator of quality prescribing in the elderly population. However, it must be realized that in a limited number of patient specific cases, some of the medications on this list may be appropriately prescribed. We used the new updated criteria for the study. Infact, this is one of the first studies using the new updated criteria. Most of the studies have used the original criteria that were developed in 1991 [3, 10, 14, 15, 17]. Some medications on the list of inappropriate drugs developed as part of the old criteria may pose a greater risk and cause more harm than others. The new criteria aided in classifying inappropriate drugs into high severity and low severity depending on the problems that might arise because of its use. Beers high severity drugs have now been included in the recent HCFA interpretive guidelines for nursing facilities effective July 1, 1999. Future research into the validation of the criteria is also essential with the advent of new drugs, therapies and treatments.

Although this study was cross sectional, it should aid health care providers and policy makers in understanding some of the contributory factors for inappropriate prescribing. The SAGE (Systematic Assessment of Geriatric Drug Use via Epidemiology) database offers an excellent tool for conducting research on the nursing home population. Further studies are needed to explore the patient diagnoses and outcomes associated with inappropriate prescribing to better understand the nature of the problem. Some studies have shown that geographic variation and the type of
doctor are also important determinants of prescribing inappropriate drugs [10]. These factors were beyond the scope of our study.

The nursing home industry is often blamed for not providing optimum care to its residents. Thus, it becomes essential to provide sufficient knowledge to the health care providers about the inappropriate drugs and their adverse effects and efficient mechanisms for reviewing medication use and offering advice to reduce risk.
Table 1. The use of inappropriate medication for individuals aged 65 years and older on admission to a long term care facility during Oct 1995 to June 1996, using the Beers criteria.*

<table>
<thead>
<tr>
<th>Therapeutic Categories</th>
<th>Inappropriate medication*</th>
<th>High Severity Medication*</th>
<th>% receiving medication* at admission (n=44,562)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analgesics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propoxyphene</td>
<td>No</td>
<td>10.1</td>
<td></td>
</tr>
<tr>
<td>Indomethacin</td>
<td>No</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>Phenytoin</td>
<td>No</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>Pentazocine</td>
<td>Yes</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>Meperidine</td>
<td>Yes</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>Gastrointestinal agents</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dicyclomine</td>
<td>Yes</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>Hyoscyamine</td>
<td>Yes</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>Propantheline</td>
<td>Yes</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>Belladona alkaloids</td>
<td>Yes</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>Antiemetics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trimethobenzamide</td>
<td>No</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>Muscle Relaxants</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methocarbamol</td>
<td>No</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>Carisoprodol</td>
<td>No</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>Chlorzoxazone</td>
<td>No</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>Metaxalone</td>
<td>No</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>Cyclobenzaprine</td>
<td>No</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>Urinary Antispasmodics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oxybutynin</td>
<td>No</td>
<td>1.4</td>
<td></td>
</tr>
<tr>
<td>Central Nervous System Drugs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antianxiety agents</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lorazepam†</td>
<td>No</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>Oxazepam†</td>
<td>No</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Alprazolam†</td>
<td>No</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>Diazepam</td>
<td>Yes</td>
<td>1.9</td>
<td></td>
</tr>
<tr>
<td>Chlordiazepoxide and comb.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meprobamate</td>
<td>Yes</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>Antidepressants</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amitryptyline and comb.</td>
<td>Yes</td>
<td>2.5</td>
<td></td>
</tr>
<tr>
<td>Doxepine</td>
<td>Yes</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>Hypnotics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flurazepam</td>
<td>Yes</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>Triazolam†</td>
<td>No</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>Temazepam†</td>
<td>No</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>Zolpidem†</td>
<td>No</td>
<td>1.0</td>
<td></td>
</tr>
</tbody>
</table>

(Contd..)
Table 1. The use of inappropriate medication for individuals aged 65 years and older on admission to a long term care facility during Oct 1995 to June 1996, using the Beers criteria.

<table>
<thead>
<tr>
<th>Therapeutic Categories</th>
<th>Inappropriate medication*</th>
<th>High Severity Medication*</th>
<th>% receiving medication* at admission (n=44,562)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cardiovascular agents</td>
<td>Disopyramide</td>
<td>Yes</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td>Digoxin</td>
<td>Yes</td>
<td>5.2</td>
</tr>
<tr>
<td></td>
<td>Dipyridamole</td>
<td>No</td>
<td>1.1</td>
</tr>
<tr>
<td>Antihypertensive agents</td>
<td>Methyldopa</td>
<td>Yes</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>Reserpine</td>
<td>No</td>
<td>0.6</td>
</tr>
<tr>
<td>Antidiabetic agent</td>
<td>Chlorpropamide</td>
<td>Yes</td>
<td>0.2</td>
</tr>
<tr>
<td>Antihistaminic agents</td>
<td>Chlorpheniramine</td>
<td>No</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td>Diphenhydramine</td>
<td>No</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>Hydroxyzine</td>
<td>No</td>
<td>1.7</td>
</tr>
<tr>
<td></td>
<td>Cyproheptadine</td>
<td>No</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td>Promethazine</td>
<td>No</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>Triptilennamine</td>
<td>No</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>Dextrothyphrin</td>
<td>No</td>
<td>0.0</td>
</tr>
<tr>
<td>Hematological agents</td>
<td>Iron Supplements†</td>
<td>No</td>
<td>5.1</td>
</tr>
<tr>
<td>Anti Platelet Agents</td>
<td>Ticlopidine</td>
<td>Yes</td>
<td>0.0</td>
</tr>
</tbody>
</table>

†Dose limits apply
Table 2. Demographic and clinical characteristics of residents aged 65 years and older residing in the nursing facility for 90 days during Oct 1995 to June 1996

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>% of residents</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n=29082</td>
</tr>
<tr>
<td>Gender:</td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>68.7</td>
</tr>
<tr>
<td>Male</td>
<td>31.2</td>
</tr>
<tr>
<td>Age:</td>
<td></td>
</tr>
<tr>
<td>65-74</td>
<td>17.7</td>
</tr>
<tr>
<td>75-84</td>
<td>40.9</td>
</tr>
<tr>
<td>85+</td>
<td>41.2</td>
</tr>
<tr>
<td>Race:</td>
<td></td>
</tr>
<tr>
<td>American Indian/ Alaska Native</td>
<td>2.0</td>
</tr>
<tr>
<td>Asian/Pacific Islander</td>
<td>0.8</td>
</tr>
<tr>
<td>Black, not of Hispanic origin</td>
<td>6.3</td>
</tr>
<tr>
<td>Hispanic</td>
<td>1.6</td>
</tr>
<tr>
<td>White, not of Hispanic origin</td>
<td>84.1</td>
</tr>
<tr>
<td>Admitted from:</td>
<td></td>
</tr>
<tr>
<td>Home</td>
<td>13.4</td>
</tr>
<tr>
<td>Nursing Home</td>
<td>3.8</td>
</tr>
<tr>
<td>Hospital</td>
<td>77.0</td>
</tr>
<tr>
<td>Other</td>
<td>5.6</td>
</tr>
<tr>
<td>Activities of daily living scale‡:</td>
<td></td>
</tr>
<tr>
<td>0 – 1 (Mild)</td>
<td>7.5</td>
</tr>
<tr>
<td>2 – 3 (Moderate)</td>
<td>51.5</td>
</tr>
<tr>
<td>4 – 5 (Severe)</td>
<td>33.9</td>
</tr>
<tr>
<td>Cognitive Performance Scale §:</td>
<td></td>
</tr>
<tr>
<td>0 – 1 (Minimal)</td>
<td>41.6</td>
</tr>
<tr>
<td>2 – 4 (Moderate)</td>
<td>46.3</td>
</tr>
<tr>
<td>4 – 6 (Severe)</td>
<td>11.5</td>
</tr>
</tbody>
</table>

‡ Summary score for the Activities of Daily living as measured on the ADL scale
§ Cognitive Performance Scale (CPS) as measured on the Fries and Morris CPS Index
Table 3 - Incidence of Discontinuation and Initiation of inappropriate drugs during transition from ambulatory to LTC (long term care) facility during the first 90 days of stay in LTC facility for patients aged 65 years or older.

<table>
<thead>
<tr>
<th>Therapeutic Categories</th>
<th>Beers Drugs*</th>
<th>DISCONTINUATION ‡</th>
<th>INITIATION §</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Users at admission(n)</td>
<td>% Users who discontinued</td>
</tr>
<tr>
<td>Analgesics</td>
<td>Propoxyphene</td>
<td>2701</td>
<td>23.6</td>
</tr>
<tr>
<td></td>
<td>Indomethacin</td>
<td>157</td>
<td>39.5</td>
</tr>
<tr>
<td></td>
<td>Phenylbutazone</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Pentazocine</td>
<td>19</td>
<td>31.6</td>
</tr>
<tr>
<td></td>
<td>Meperidine</td>
<td>104</td>
<td>54.8</td>
</tr>
<tr>
<td>Gastrointestinal agents</td>
<td>Dicyclomine</td>
<td>50</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>Hyoscyamine</td>
<td>58</td>
<td>18.9</td>
</tr>
<tr>
<td></td>
<td>Propantheline</td>
<td>12</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>Belladona alkaloids</td>
<td>32</td>
<td>28.1</td>
</tr>
<tr>
<td>Antiemetics</td>
<td>Trimethobenzamide</td>
<td>58</td>
<td>46.6</td>
</tr>
<tr>
<td>Muscle Relaxants</td>
<td>Methocarbamol</td>
<td>59</td>
<td>35.6</td>
</tr>
<tr>
<td></td>
<td>Carisoprodol</td>
<td>25</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>Chlorzoxazone</td>
<td>13</td>
<td>38.5</td>
</tr>
<tr>
<td></td>
<td>Metaxalone</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Cyclobenzaprine</td>
<td>68</td>
<td>36.8</td>
</tr>
<tr>
<td>Urinary Antispasmodics</td>
<td>Oxybutynin</td>
<td>442</td>
<td>14.3</td>
</tr>
</tbody>
</table>

(Contd...)
Table 3 - Incidence of Discontinuation and Initiation of Inappropriate Drugs during Transition from Ambulatory to LTC (Long Term Care) Facility during the First 90 Days of Stay in LTC Facility for Patients Aged 65 Years or Older.

<table>
<thead>
<tr>
<th>Therapeutic Categories</th>
<th>Beers Drugs*</th>
<th>DISCONTINUATION ‡</th>
<th>INITIATION §</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Users at admission(n)</td>
<td>% Users who discontinued</td>
</tr>
<tr>
<td>Central Nervous System Drugs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antianxiety agents</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lorazepam</td>
<td>31</td>
<td>29</td>
<td>29051</td>
</tr>
<tr>
<td>Oxazepam</td>
<td>2</td>
<td>100</td>
<td>29080</td>
</tr>
<tr>
<td>Alprazolam</td>
<td>28</td>
<td>35.7</td>
<td>29054</td>
</tr>
<tr>
<td>Diazepam</td>
<td>243</td>
<td>22.2</td>
<td>28839</td>
</tr>
<tr>
<td>Chlordiazepoxide and comb.</td>
<td>73</td>
<td>31.5</td>
<td>29009</td>
</tr>
<tr>
<td>Meprobamate</td>
<td>62</td>
<td>46.8</td>
<td>29020</td>
</tr>
<tr>
<td>Antidepressants</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amitriptyline and comb.</td>
<td>725</td>
<td>21.2</td>
<td>28357</td>
</tr>
<tr>
<td>Doxepin</td>
<td>218</td>
<td>15.14</td>
<td>28864</td>
</tr>
<tr>
<td>Hypnotics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flurazepam</td>
<td>46</td>
<td>43.5</td>
<td>29036</td>
</tr>
<tr>
<td>Temazepam</td>
<td>307</td>
<td>29.9</td>
<td>28775</td>
</tr>
<tr>
<td>Zolpidem</td>
<td>220</td>
<td>30.9</td>
<td>28862</td>
</tr>
<tr>
<td>Triazolam</td>
<td>34</td>
<td>35.3</td>
<td>29048</td>
</tr>
</tbody>
</table>

(Contd...)
<table>
<thead>
<tr>
<th>Therapeutic Categories</th>
<th>Beers Drugs*</th>
<th>DISCONTINUATION (\dagger)</th>
<th>INITIATION (\ddagger)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Users at admission(n)</td>
<td>% Users who discontinued</td>
</tr>
<tr>
<td>Cardiovascular agents</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disopyramide</td>
<td>60</td>
<td>13.3</td>
<td>29022</td>
</tr>
<tr>
<td>Digoxin</td>
<td>1487</td>
<td>13.7</td>
<td>27595</td>
</tr>
<tr>
<td>Dipyridamole</td>
<td>312</td>
<td>14.4</td>
<td>28770</td>
</tr>
<tr>
<td>Antihypertensive agents</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metyldopa</td>
<td>158</td>
<td>17.1</td>
<td>28924</td>
</tr>
<tr>
<td>Reserpine</td>
<td>169</td>
<td>31.4</td>
<td>28913</td>
</tr>
<tr>
<td>Antidiabetic agent</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorpropamide</td>
<td>68</td>
<td>22.1</td>
<td>29014</td>
</tr>
<tr>
<td>Antihistaminic agents</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorpheniramine</td>
<td>131</td>
<td>51.2</td>
<td>28951</td>
</tr>
<tr>
<td>Diphenhydramine</td>
<td>678</td>
<td>39.4</td>
<td>28404</td>
</tr>
<tr>
<td>Hydroxyzine</td>
<td>492</td>
<td>33.54</td>
<td>28590</td>
</tr>
<tr>
<td>Cyproheptadine</td>
<td>98</td>
<td>36.7</td>
<td>28984</td>
</tr>
<tr>
<td>Promethazine</td>
<td>178</td>
<td>56.2</td>
<td>28904</td>
</tr>
<tr>
<td>Triplennamine</td>
<td>1</td>
<td>0</td>
<td>29081</td>
</tr>
<tr>
<td>Dextchlorpheniramine</td>
<td>11</td>
<td>54.6</td>
<td>29071</td>
</tr>
<tr>
<td>Hematological agents</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iron Supplements</td>
<td>1521</td>
<td>12</td>
<td>27561</td>
</tr>
<tr>
<td>Anti Platelet Agents</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ticlopidine</td>
<td>0</td>
<td>0</td>
<td>29082</td>
</tr>
</tbody>
</table>

\(\dagger\) Discontinuation - refers to those who took the drug at baseline but discontinued the drug during first 90 days of stay in LTC facility

\(\ddagger\) Initiation - refers to those who did not take the drug at baseline but initiated the drug during first 90 days of stay in LTC facility.
Table 4 - Logistic Regression Model for determining predictors of inappropriate medication prescribing, using Beers criteria* for residents aged 65 years or older after 90 days of stay in nursing home

<table>
<thead>
<tr>
<th>Predictor Variables</th>
<th>Crude Odds Ratio</th>
<th>Adjusted Odds Ratio (95% C.I.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td></td>
<td></td>
</tr>
<tr>
<td>65 - 74 (referent)</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>75 - 84</td>
<td>1.0</td>
<td>(0.9-1.0)</td>
</tr>
<tr>
<td>85 +</td>
<td>0.9</td>
<td>(0.9-1.0)</td>
</tr>
<tr>
<td>Race</td>
<td></td>
<td></td>
</tr>
<tr>
<td>White (referent)</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Black</td>
<td>0.6</td>
<td>(0.6-0.8)</td>
</tr>
<tr>
<td>Other</td>
<td>0.7</td>
<td>(0.7-0.9)</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male (referent)</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>1.2</td>
<td>(1.1-1.2)</td>
</tr>
<tr>
<td>Admitted from</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hospital</td>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td>Other (referent)</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>No. of Total Medications Taken</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-3 (referent)</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>4-5</td>
<td>1.4</td>
<td>(1.6-1.9)</td>
</tr>
<tr>
<td>6-8</td>
<td>2.2</td>
<td>(2.2-2.8)</td>
</tr>
<tr>
<td>9+</td>
<td>2.1</td>
<td>(3.2-3.8)</td>
</tr>
<tr>
<td>Cognitive Performance Scale</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intact/Mild (referent)</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Moderate</td>
<td>0.6</td>
<td>(0.6-0.7)</td>
</tr>
<tr>
<td>Severe</td>
<td>0.5</td>
<td>(0.5-0.6)</td>
</tr>
<tr>
<td>Activities of daily living scale</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mild limitations (referent)</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Moderate limitations</td>
<td>1.4</td>
<td>(1.1-1.4)</td>
</tr>
<tr>
<td>Dependent</td>
<td>1.1</td>
<td>(1.1-1.3)</td>
</tr>
</tbody>
</table>

† Summary score for the Activities of Daily living as measured on the ADL scale

§ Cognitive Performance Scale (CPS) as measured on the Fries and Morris CPS Index
REFERENCES

APPENDIX

PROGRAM 1

PURPOSE: This program lists the drugs corresponding to the Medispan drug coding.

options obs=max fmtsearch=(work library std_anal.hcfafmts std_anal.mrh_fmts
std_anal.mmarfcmx);
%let alllist = dmpers dmdate nd: ;
data tmplsd;
set sagea.sd (in=a keep=&alllist);
if '01-Jan-1996'd<=dmdate<='31-dec-1996'd;
data tmplny;
set sagea.ny (in=a keep=&alllist);
if '01-Jan-1996'd<=dmdate<='31-dec-1996'd;
data tmp1ms;
set sagea.ms (in=a keep=&alllist);
if '01-Jan-1996'd<=dmdate<='31-dec-1996'd;
data tmplme;
set sagea.me(in=a keep=&alllist);
if '01-Jan-1996'd<=dmdate<='31-dec-1996'd;
data tmplks;
set sagea.ks(in=a keep=&alllist);
if '01-Jan-1996'd<=dmdate<='31-dec-1996'd;
data tmp1;
set tmplsd tmplnytmplms tmplme tmplks;
* Preparation for using MEDISPAN codes;

%let mdsa = nd01mds nd02mds nd03mds nd04mds nd05mds nd06mds
 nd07mds nd08mds nd09mds nd10mds nd11mds nd12mds
 nd13mds nd14mds nd15mds nd16mds nd17mds nd18mds;

%let dsc=nd01dsc nd02dsc nd03dsc nd04dsc nd05dsc nd06dsc
 nd07dsc nd08dsc nd09dsc nd10dsc nd11dsc nd12dsc
 nd13dsc nd14dsc nd15dsc nd16dsc nd17dsc nd18dsc;

array ndmds {18} &mdsa;
array ndsc {18} &dsc;

array ndtwo {18} ndtwo01-ndtwo18;
array ndfour {18} ndfour01-ndfour18;
array ndsix {18} ndsix01-ndsix18;
array ndeig {18} ndeig01-ndeig18;

do i=1 to 18;
 ndtwo{i} = int(ndmds{i}/10000000);
 ndfour{i} = int(ndmds{i}/1000000);
 ndsix{i} = int(ndmds{i}/1000);
 end;

acode=0; bcode=0; ccode=0; dcode=0;
ecode=0; fcode=0; gcode=0; hcode=0; icode=0;
jcode=0; kcode=0; lcode=0; mcode=0; ncode=0;
ocode=0; pcode=0; qcode=0;
DO i = 1 TO 18;
 desc=ndsc{i};
 if ndtwo{i} = 65 or ndtwo{i} = 66 or ndtwo{i} = 49 or
 ndtwo{i} = 75 or ndtwo{i} = 50 or ndtwo{i} = 54 or ndtwo{i} = 60 or
 ndtwo{i} = 57 or ndtwo{i} = 58 or ndtwo{i} = 35 or ndtwo{i} = 31 or
 ndtwo{i} = 32 or ndtwo{i} = 36 or ndtwo{i} = 27 or ndtwo{i} = 41 or
 ndtwo{i} = 82 or ndtwo{i} = 85 then output;
end;

PROC SORT DATA = tmpl NODUPKEYS; BY desc;
PROC PRINT DATA = tmpl;
ID;
VAR vartmp desc;
RUN;
Endsas;
PROGRAM 2

PURPOSE: This program gives the list of inappropriate drugs, with dosage considerations according to Beers criteria.

options obs=max fmtsearch=(work library std_anal.hcfafmats std_anal.mrh_fmts std_anal.mmarfcnx);

%let alllist = dmpers dmdate nd: IDFROM MXID0 MXID1 MXDATE0 MXDATE1 IDGENDR IDRACE IDAGE NCXXCNT DX: PHADLA MDMSCA CTBLADR CTCTHIN PHCPS BKASSRB DMTYPE;

data tmp1sd;
set sagea.sd (in=a keep=&alllist);
if '01-Oct-1995'd<=dmdate<='31-dec-1996'd;
state="SD";

data tmp1sd; set tmp1sd;
if idage>=65;

data tmp1ny;
set sagea.ny (in=a keep=&alllist);
if '01-Oct-1995'd<=dmdate<='31-dec-1996'd;

data tmp1ny; set tmp1ny;
if idage>=65;
state="NY";

data tmp1ms;
set sagea.ms (in=a keep=&alllist);
if '01-Oct-1995'd<=dmdate<='31-dec-1996'd;
state="MS";

data tmplms; set tmplms;
if idage>=65;

data tmplme;
set sagea.me(in=a keep=&alllist);
if '01-Oct-1995'd<=dmdate<='31-dec-1996'd;

data tmplme; set tmplme;
if idage>=65;
state="ME";

data tmplks;
set sagea.ks(in=a keep=&alllist);
if '01-Oct-1995'd<=dmdate<='31-dec-1996'd;

data tmplks; set tmplks;
if idage>=65;
state="KS";

data local.anal; set tmplsd tmplny tmplms tmplme tmplks;
*** define the drug groups;

data tmp; set local.anal;
* Preparation for using MEDISPAN codes;
%let dsc=nd01dsc nd02dsc nd03dsc nd04dsc nd05dsc nd06dsc
 nd07dsc nd08dsc nd09dsc nd10dsc nd11dsc nd12dsc
 nd13dsc nd14dsc nd15dsc nd16dsc nd17dsc nd18dsc;
%let prn=nd01prn nd02prn nd03prn nd04prn nd05prn nd06prn

35
%let frq=nd01frq nd02frq nd03frq nd04frq nd05frq nd06frq
 nd07frq nd08frq nd09frq nd10frq nd11frq nd12frq
 nd13frq nd14frq nd15frq nd16frq nd17frq nd18frq;

array ndsc {18} &dsc;
array ndpm {18} ±
array ndfrq {18} &frq;

DO i = 1 TO 18;
 desc=substr(ndsc {i}, 1, 35);
 pm=ndpm {i};
 frq=ndfrq {i};
 if desc="" then output;
end;

keep dmpers dmdate desc frq pm;
PROC SORT DATA = tmp; BY desc;

filename ina 'be_dr.txt';
data drrecode; infile ina;
input @1 drugcod 2. @3 maxdose 7.3 @10 dose 7.3 @17 unit $1. @18 desc $35.;
proc sort data=drrecode; by desc;
data LOCAL.DRUGS; merge tmp(in=in1) drrecode(in=in2); by desc;
if in1 & in2;
array drug propo indom phenyb penta meper dicyc
hyoscy propa bella trimet metho cariso oxybut
chlor meta cyclo flura lora oxaze alpraz
temaz zolpi tria diaz chlord mepro amitry
doxe diphen diso digo dipyr methyd rese chlpro
chlphen diphy hydro cypro prom trip dexch iron ticlo;
do over drug;
drug=0; end;
if drugcod=01 then propo=1; if drugcod=02 then indom=1;
if drugcod=03 then phenyb=1; if drugcod=04 then penta=1;
if drugcod=05 then meper=1; if drugcod=06 then dicyc=1;
if drugcod=07 then hyoscy=1; if drugcod=08 then propa=1;
if drugcod=09 then bella=1; if drugcod=10 then trimet=1;
if drugcod=11 then metho=1; if drugcod=12 then cariso=1;
if drugcod=13 then oxybut=1; if drugcod=14 then chlor=1;
if drugcod=15 then meta=1; if drugcod=16 then cyclo=1;
if drugcod=17 then flura=1; if drugcod=18 then lora=1;
if drugcod=19 then oxaze=1; if drugcod=20 then alpraz=1;
if drugcod=21 then temaz=1; if drugcod=22 then zolpi=1;
if drugcod=23 then tria=1; if drugcod=24 then diaz=1;
if drugcod=25 then chlord=1; if drugcod=26 then mepro=1;
if drugcod=27 then amitry=1; if drugcod=28 then doxe=1;
if drugcod=29 then diphen=1; if drugcod=31 then diso=1;
if drugcod=32 then digo=1; if drugcod=33 then dipyr=1;
if drugcod=34 then methyd=1; if drugcod=35 then resc=1;
if drugcod=36 then chlopro=1; if drugcod=37 then chlphen=1;
if drugcod=38 then diphy=1; if drugcod=39 then hydro=1;
if drugcod=40 then cypro=1; if drugcod=41 then prom=1;
if drugcod=42 then trip=1; if drugcod=43 then dexch=1;
if drugcod=44 then iron=1; if drugcod=45 then ticlo=1;
newfrq=;
if frq='1D' or frq='6W' then newfrq=1;
if frq='2D' then newfrq=2;
if frq='3D' or frq='8H' then newfrq=3;
if frq='4D' or frq='6H' then newfrq=4;
if frq='5D' then newfrq=5;
if frq='6D' or frq='4H' then newfrq=6;
if frq='QO' then newfrq=1/2;
if frq='1W' then newfrq=1/7;
if frq='2W' then newfrq=2/7;
if frq='3W' then newfrq=3/7;
if frq='4W' then newfrq=4/7;
if frq='5W' then newfrq=5/7;
if frq='1M' then newfrq=1/30;
if frq='2M' then newfrq=2/30;
if frq='1H' or frq='C' then newfrq=24;
if frq='2H' then newfrq=12;
if frq='3H' then newfrq=8;
if frq='PR' and pm=99 then newfrq=.;
if frq='PR' then do;
 newfrq=pm/7; end;
daily=newfrq*dose;
if drugcod=18 and daily>=maxdose then lora=1;
if drugcod=19 and daily>=maxdose then oxaze=1;
if drugcod=20 and daily>=maxdose then alpraz=1;
if drugcod=21 and daily>=maxdose then temaz=1;
if drugcod=22 and daily>=maxdose then zolpi=1;
if drugcod=23 and daily>=maxdose then tria=1;
if drugcod=32 and daily>maxdose then digo=1;
if drugcod=44 and daily>=maxdose then iron=1;
proc freq data=local.drugs;
tables frq pm dose daily;
where drugcod=18;
proc freq data=local.drugs;
tables frq pm dose daily;
where drugcod=19;
proc freq data=local.drugs;
tables frq pm dose daily;
where drugcod=20;
proc freq data=local.drugs;

tables frq pm dose daily;
where drugcod=21;
proc freq data=local.drugs;
tables frq pm dose daily;
where drugcod=22;
proc freq data=local.drugs;
tables frq pm dose daily;
where drugcod=23;
proc freq data=local.drugs;
tables frq pm dose daily;
where drugcod=32;
proc freq data=local.drugs;
tables frq pm dose daily;
where drugcod=44;
proc freq data=local.drugs;
tables propo indom phenyb penta meper dicyc
 hyoscy propa bella trimet metho cariso oxybut
 chlor meta cyclo flura lora oxaze alpraz
 temaz zolpi tria diaz chlord mepro amitry
 doxe diphen diso digo dipyr methyd rese chlopro
 chlpHen diphy hydro cypro prom trip dexch iron ticlo ;
Endsas;
PROGRAM 3

PURPOSE: This program tabulates the inappropriate drugs taken at baseline and at 90 days.

options obs=max fmtsearch=(work library std_anal.hcfafmts std_anal.mrh_fmts std_anal.mmarfcmx);
** run crefile1.sas first;

** create a file that contains the date of the admitting assessment;

proc sort data=local.anal; by dmpers dmdate;

** define the first assessment;

data first second;
 set local.anal; by dmpers;
 if first.dmpers then output first;
 else output second;

** limit it to the first assessment in this window;

** to allow for follow-up;

data first; set first;
if '01-Oct-1995'd<=dmdate<='30-Sep-1996'd;
if dmtyp=2;
if state="NY" and (ncxncnt=. or ncxncnt=0) then delete;

data second; set second;
keep dmpers dmdate state ncxncnt;

data tmpfirst; set first;
frstdat=dmdate; keep dmpers frstdat dmdate;
proc sort data=tmpfirst; by dmpers;
proc sort data=second; by dmpers;
** need to define no follow-up assessment in 30days;
data fu nofu; merge tmpfirst(in=in1) second(in=in2); by dmpers;
if in1 & in2 then output fu;
if in1 & ~in2 then output nofu;
data fu; set fu;
fu30=0; ** no followup in first 30 days;
fu90=0; ** no followup in first 90 days;
ckdays=intck('days',frstdat,dmdate);
if 1<=ckdays<=30 then fu30=1;
if 1<=ckdays<=90 then fu90=1;
nofu=0; badny=0;
if state="NY" and dmdate='01-OCT-1995'd and (ncxxcnt=. or ncxxcnt=0)
then badny=1;
proc sort data=fu; by dmpers;
proc contents data=fu;
proc means noprint data=fu; by dmpers;
var nofu fu30 fu90 badny;
output out=xfu sum=nofu fu30 fu90 badny;
proc contents data=xfu;
data nofu; set nofu; nofu=1; fu30=0; fu90=0;
data xfu; set xfu nofu;
if fu30>1 then fu30=1;
if fu90>1 then fu90=1;
if badny>1 then badny=1;
keep fu30 fu90 nofu badny dmpers;
proc freq; tables nofu fu30*badny fu90*badny;
proc sort data=xfu; by dmpers;
proc sort data=first; by dmpers;
data first; merge first(in=in1) xfu(in=in2); by dmpers; if in1;
proc freq data=first; tables nofu fu30*badny fu90*badny;
** need to attach drugs at admit to "first" dataset;
proc sort data=local.drugs; by dmpers dmdate;
data tmp; set local.drugs;
proc print data=tmp(obs=15);
id dmpers dmdate;

var propo indom phenyb penta meper dicyc hyoscy propa bella trimet metho cariso
oxbyt chlor meta cyclo fiura lora oxaze alpraz zolpi tria diaz chlord mepro
amitry
doxe diphen diso digo dipyr methyd rese chio pro chlphen diphy hydro cypro prom trip
dexch iron ticlo ;
proc means noprint data=local.drugs; by dmpers dmdate;
var propo indom phenyb penta meper dicyc hyoscy propa bella trimet metho cariso oxybut chlor meta cyclo flura lora oxaze alpraz temaz zolpi tria diaz chlord mepro amitry
doxe diphen diso digo dipyr methyd rese chlopro chlphen diphy hydro cypro prom trip
dexch iron ticlo;
output out=dr sum= var propo indom phenyb penta meper dicyc hyoscy propa bella trimet metho cariso oxybut chlor meta cyclo flura lora oxaze alpraz temaz zolpi tria diaz chlord mepro amitry doxe diphen diso digo dipyr methyd rese chlopro chlphen diphy hydro cypro prom trip dexch iron ticlo;
proc print data=dr(obs=15);
 id dmpers dmdate;
var var propo indom phenyb penta meper dicyc hyoscy propa bella trimet metho cariso oxybut chlor meta cyclo flura lora oxaze alpraz temaz zolpi tria diaz chlord mepro amitry
doxe diphen diso digo dipyr methyd rese chlopro chlphen diphy hydro cypro prom trip
dexch iron ticlo;
data dr; set dr;
array fix var propo indom phenyb penta meper dicyc hyoscy propa bella trimet metho cariso oxybut chlor meta cyclo flura lora oxaze alpraz temaz zolpi tria diaz chlord mepro amitry doxe diphen diso digo dipyr methyd rese chlopro chlphen diphy hydro cypro prom trip dexch iron ticlo;
do over fix; if fix>=1 then fix=1; end;
keep dmpers dmdate var propo indom phenyb penta meper dicyc hyoscy propa bella trimet metho cariso oxybut chlor meta cyclo flura lora oxaze alpraz temaz zolpi tria diaz chlord mepro amitry doxe diphen diso digo dipyr methyd rese chlopro chlphen diphy hydro cypro prom trip dexch iron ticlo;

proc sort data=dr; by dmpers dmdate;
proc sort data=first; by dmpers dmdate;
data first; merge first(in=inl) dr(in=in2); by dmpers dmdate;
if in1;
array fix var propo indom phenyb penta meper dicyc hyoscy propa bella trimet metho cariso oxybut chlor meta cyclo flura lora oxaze alpraz temaz zolpi tria diaz chlord mepro amitry doxe diphen diso digo dipyr methyd rese chlopro chlphen diphy hydro cypro prom trip dexch iron ticlo;
if in1 & in2 then do;
do over fix; if fix=, then fix=0; end;
end;
** need to attach drugs at 30 day to "first" dataset;
data sdr; merge tmpfirst(in=in1) dr(in=in2); by dmpers;
if in1 & in2;
ckdays=intck('days',frstdat,dmdate);
if 1<=ckdays<=30;
proc sort data=sdr; by dmpers;
proc means noprint data=sdr; by dmpers;
proc print data=edr(obs=15);

data edr; set edr;

array drugd propo3 indom3 phenyb3 penta3 meper3 dicyc3
 hyoscy3 propa3 bella3 trimet3 metho3 cariso3 oxybut3
 chlor3 meta3 cyclo3 flura3 lora3 oxaze3 alpraz3
 temaz3 zolpi3 tria3 diaz3 chlord3 mepro3 amitry3
 doxe3 diphen3 diso3 digo3 dipyr3 methyd3 rese3 chlpro3
 chlphen3 diphy3 hydro3 cypro3 prom3 trip3 dexch3 iron3 ticlo3;

do over drugd; if drugd>=1 then drugd=1; end;

keep dmpers propo3 indom3 phenyb3 penta3 meper3 dicyc3
 hyoscy3 propa3 bella3 trimet3 metho3 cariso3 oxybut3
 chlor3 meta3 cyclo3 flura3 lora3 oxaze3 alpraz3

46
temaz3 zolpi3 tria3 diaz3 chlord3 mepro3 amitry3
doxe3 diphen3 diso3 digo3 dipyr3 methyd3 rese3 chlopro3
chiplen3 diphy3 hydro3 cypro3 prom3 trip3 dexch3 iron3 ticlo3;
proc sort data=edr; by dmpers;
proc sort data=first; by dmpers;
data first; merge first(in=in1) edr(in=in2); by dmpers; if in1;
array drugd propo3 indom3 phenyb3 penta3 meper3 dicyc3
hyoscy3 propa3 bella3 trime3 metho3 cariso3 oxybut3
chlor3 meta3 cyclo3 flura3 lora3 oxaze3 alpraz3
temaz3 zolpi3 tria3 diaz3 chlord3 mepro3 amitry3
doxe3 diphen3 diso3 digo3 dipyr3 methyd3 rese3 chlopro3
chiplen3 diphy3 hydro3 cypro3 prom3 trip3 dexch3 iron3 ticlo3;
if in1 & ^in2 & fu30=1 then do;
 do over drugd; if drugd=.; then drugd=0; end;
end;
** do it again for 90 days;
proc sort data=dr; by dmpers;
data sdr; merge tmpfirst(in=in1) dr(in=in2); by dmpers;
if in1 & in2;
 ckdays=intck('days',frstdat,dmdate);
if 1<=ckdays<=90;
proc sort data=sdr; by dmpers;
proc means noprint data=sdr; by dmpers;
var propo indom phenyb penta meper dicyc

hyoscy propa bella trimet metho cariso oxybut
chlor meta cyclo flura lora oxaze alpraz
temaz zolpi tria diaz chlord mepro amitry
doxe diphen diso digo dipyr methyd rese chlopro
chlphen diphy hydro cypro prom trip dexch iron ticlo;

output out=mdr sum=propo indom phenyb penta meper dicyc
hyoscy9 propa9 bella9 trimet9 metho9 cariso9 oxybut9
chlor9 meta9 cyclo9 flura9 lora9 oxaze9 alpraz9
temaz9 zolpi9 tria9 diaz9 chlord9 mepro9 amitry9
doxe9 diphen9 diso9 digo9 dipyr9 methyd9 rese9 chlopro9
chlphen9 diphy9 hydro9 cypro9 prom9 trip9 dexch9 iron9 ticlo9;

data mdr; set mdr;
array drugd propo indom phenyb penta meper dicyc
hyoscy propa bella trimet metho cariso oxybut
chlor meta cyclo flura lora oxaze alpraz
temaz zolpi tria diaz chlord mepro amitry
doxe diphen diso digo dipyr methyd rese chlopro
chlphen diphy hydro cypro prom trip dexch iron ticlo;

do over drugd; if drugd>=1 then drugd=1; end;
keep dmpers propo indom phenyb penta meper dicyc
hyoscy propa bella trimet metho cariso oxybut
chlor meta cyclo flura lora oxaze alpraz9
temaz9 zolpi9 tria9 diaz9 chlord9 mepro9 amitry9
doxe9 diphen9 diso9 digo9 dipyr9 methyd9 rese9 chlopro9
cchlphen9 diphy9 hydro9 cypro9 prom9 trip9 dexc9 iron9 ticlo9;

proc sort data=mdr; by dmpers;
proc sort data=first; by dmpers;
data local.sample; merge first(in=in1) mdr(in=in2); by dmpers;
if in1;
array drugd propo9 indom9 phenyb9 penta9 meper9 dicyc9
hyoscy9 propa9 bella9 trimet9 metho9 cariso9 oxybut9
chlor9 meta9 cyclo9 flura9 lora9 oxaze9 alpraz9
temaz9 zolpi9 tria9 diaz9 chlord9 mepro9 amitry9
doxe9 diphen9 diso9 digo9 dipyr9 methyd9 rese9 chlopro9
cchlphen9 diphy9 hydro9 cypro9 prom9 trip9 dexc9 iron9 ticlo9;
if in1 & ~in2 & fu90=1 then do;
do over drugd; if drugd=. then drugd=0; end;
end;
** fix for NEW YORK;
do over drugd; if badny=1 then drugd=.; end;
** new variable for anybeers;
anybeer9=0;
do over drugd; if drugd>=1 then anybeer9=1; end;
if badny=1 or nofu=1 or fu90=0 then anybeer9=.;
array druge propo3 indom3 phenyb3 penta3 meper3 dicyc3
** fix for NEW YORK;

do over druge; if badny=1 then druge=.; end;

*** new variable for anybeers;

anybeer3=0;

do over druge; if druge>=1 then anybeer3=1; end;

if badny=1 or nofu=1 or fu30=0 then anybeer3=.;

anybeer=0;

array drugf propo indom phenyb penta meper dicyc

hyoscy propa bella trimet metho cariso oxybut

chlor meta cyclo flura lora oxaze alpraz

temaz zolpi tria diaz chlord mepro amitry

doxe diphen diso digo dipyr methyd rese chlopro

chlfhen diphy hydro cypro prom trip dextr iron ticlo ;

** fix for NEW YORK;

** new variable for anybeers;

anybeer=0;

do over drugf; if drugf>=1 then anybeer=1; end;
do over drugf;

if state="NY" and dmdate>='01-OCT-1995'd and (ncxxcnt=. or ncxxcnt=0)
 then drugf=.;
end;

proc contents data=local.sample;
proc freq data=local.sample;

tables nofu fu30 fu90 propo indom phenyb penta meper dicyc
 hyoscy propa bella trimet metho cariso oxybut
 chlor meta cyclo flura lora oxaze alpraz
 temaz zolpi tria diaz chlold mepro amitry
 doxe diphen diso digo dipyr methyd rese chlopro
 chlphen diphy hydro cypro prom trip dexch iron ticlo
 propo3 indom3 phenyb3 penta3 meper3 dicyc3
 hyoscy3 propa3 bella3 trimet3 metho3 cariso3 oxybut3
 chlor3 meta3 cyclo3 flura3 lora3 oxaze3 alpraz3
 temaz3 zolpi3 tria3 diaz3 chlold3 mepro3 amitry3
 doxe3 diphen3 diso3 digo3 dipyr3 methyd3 rese3 chlopro3
 chlphen3 diphy3 hydro3 cypro3 prom3 trip3 dexch3 iron3 ticlo3
 propo9 indom9 phenyb9 penta9 meper9 dicyc9
 hyoscy9 propa9 bella9 trimet9 metho9 cariso9 oxybut9
 chlor9 meta9 cyclo9 flura9 lora9 oxaze9 alpraz9
 temaz9 zolpi9 tria9 diaz9 chlold9 mepro9 amitry9
 doxe9 diphen9 diso9 digo9 dipyr9 methyd9 rese9 chlopro9
proc freq data=local.sample;
tables (propo indom phenyb penta meper dicyc hyoscy propa bella trimet metho cariso oxybut chlor meta cyclo flura lora oxaze alpraz temaz zolpi tria diaz chlord mepro amitry doxe diphen diso digo dipyr methyd rese chlopro chlphen diphy hydro cypro prom trip dexch iron ticlo)*fu30;

proc freq data=local.sample;
tables propo*propo3 indom*indom3 phenyb*phenyb3 penta*penta3 meper*meper3 dicyc*dicyc3 hyoscy*hyoscy3 propa*propa3 bella*bella3 trimet*trimet3 metho*metho3 cariso*cariso3 oxybut*oxybut3 chlor*chlor3 meta*meta3 cyclo*cyclo3 flura*flura3 lora*lora3 oxaze*oxaze3 alpraz*alpraz3 temaz*temaz3 zolpi*zolpi3 tria*tria3 diaz*diaz3 chlord*chlord3 mepro*mepro3 amitry*amitry3 doxe*doxe3 diphen*diphen3 diso*diso3 digo*digo3 dipyr*dipyr3 methyd*methyd3 rese*rese3 chlopro*chlopro3 chlphen*chlphen3 diphy*diphy3 hydro*hydro3 cypro*cypro3 prom*prom3 trip*trip3 dexch*dexch3 iron*iron3
ticlo*ticlo3 anybeer*anybeer3
propo*propo9 indom*indom9 phenyb*phenyb9 penta*penta9
meper*meper9 dicyc*dicyc9
hyoscy*hyoscy9 propa*propa9 bella*bella9 trimet*trimet9
metho*metho9 cariso*cariso9 oxybut*oxybut9
chlor*chlor9 meta*meta9 cyclo*cyclo9 flura*flura9
lora*lora9 oxaze*oxaze9 alpraz*alpraz9
temaz*temaz9 zoipi*zoipi9 tria*tria9 diaz*diaz9 chlord*chlord9
mepro*mepro9 amitry*amitry9
doxe*doxe9 diphen*diphen9 diso*diso9 digo*digo9
dipyr*dipyr9 methyd*methyd9 rese*rese9 chlopro*chlopro9
chlpben*chlpben9 diphy*diphy9 hydro*hydro9
cypro*cypro9 prom*prom9 trip*trip9 dexch*dexch9 iron*iron9
ticlo*ticlo9 anybeer*anybeer9/ missprint;

Endsas;
PROGRAM 4

PURPOSE: This program creates variables for sociodemographic characteristics and tabulates them.

options obs=max fmtsearch=(work library std_anal.hcfafmts std_anal.mrh_fmts std_anal.mmarfcmx);

** run crefile1.sas first;

** create a file that contains the date of the admitting assessment;

data new; set local.sample;

if anybeer9=. then delete;

numinapp=0;

array summit propo9 indom9 phenyb9 penta9 meper9 dicyc9 hyoscy9 propa9 bella9 trimet9 metho9 cariso9 oxybut9
 chlor9 meta9 cyclo9 flura9 lora9 oxaze9 alpraz9 temaz9 zolpi9 tria9 diaz9 chlord9 mepro9 amitry9
doxe9 diphen9 diso9 digo9 dipyr9 methyd9 rese9 chlopro9 chlphen9 diphy9 hydro9 cypro9 prom9 trip9 dexch9 iron9 ticlo9;

do over summit;

numinapp=summit+numinapp;

end;

highsev9=0;

array high penta9 meper9 dicyc9 hyoscy9 propa9 bella9 flura9 diaz9 chlord9 mepro9 amitry9 doxe9 diso9 digo9 methyd9 chlopro9 ticlo9;

do over high;
if high>=1 then highsev9=1; end;

** prepare data for models;

female=0; misssex=0;

if idgendr=2 then female=1;
if idgendr=. then misssex=1;

agecat=.;
if .<idage<=64 then agecat=0;
if 65<=idage<=74 then agecat=1;
if 75<=idage<=84 then agecat=2;
if idage>=85 then agecat=3;

age7584=0; age85=0;
if 75<=idage<=84 then age7584=1;
if idage>=85 then age85=1;
black=0; white=0; othrace=0; missrace=0;
if idrace=5 then white=1;
if idrace=3 then black=1;
if idrace=1 or idrace=2 or idrace=4 then othrace=1;
if idrace=. then missrace=1;

** recoding cognitive function;

 if 0<=phcps<=1 then cogfncat = 1;
 if 2<=phcps<=4 then cogfncat = 2;
 if 5<=phcps<=6 then cogfncat = 3;
*recoding physical function;
 if 0<=phadla<=1 then phfuncat = 1;
 if 2<=phadla<=3 then phfuncat = 2;
 if 4<=phadla<=5 then phfuncat = 3;

 cps24=0; cps56=0; misscps=0;
 if cogfncat=2 then cps24=1;
 if cogfncat=3 then cps56=1;
 if phcps.= then misscps=1;

*recoding physical function;
 adl23=0; adl45=0; missadl=0;
 if phfuncat=2 then adl23=1;
 if phfuncat=3 then adl45=1;
 if phadla.= then missadl=1;

 home=0; hosp=0; oth=0; missfrom=0;
 if idfrom=1 then home=1;
 if idfrom=3 then hosp=1;
 if idfrom=2 or idfrom=4 then oth=1;
 if idfrom.= then missfrom=1;

 proc freq data=new;
 tables (idgendr agecat idrace numinapp idfrom phfuncat cogfncat)*
 (anybeer9 highsev9) / chisq;

 Endsas;
SECTION III
Minimum Data Set (MDS)
APPENDIX

MINIMUM DATA SET FOR NURSING FACILITY RESIDENT ASSESSMENT AND CARE SCREENING (MDS)

<table>
<thead>
<tr>
<th>Status at last 7 days, unless otherwise indicated</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. COGNITIVE PATTERNS</td>
</tr>
<tr>
<td>2. MEMORY</td>
</tr>
<tr>
<td>3. MENTAL FUNCTION</td>
</tr>
</tbody>
</table>

SECTION A: IDENTIFICATION AND BACKGROUND INFORMATION

<table>
<thead>
<tr>
<th>Name</th>
<th>Social Security Number</th>
<th>Date of Birth</th>
<th>Sex</th>
<th>Race</th>
<th>Marital Status</th>
<th># of Children</th>
<th># of Siblings</th>
<th>Education</th>
<th>Occupation</th>
<th>Religion</th>
</tr>
</thead>
</table>

SECTION B: PHYSICAL INFORMATION

<table>
<thead>
<tr>
<th>Height</th>
<th>Weight</th>
<th>Blood Pressure</th>
</tr>
</thead>
</table>

SECTION C: COMPLICATIONS/MEDICATION PATTERNS

<table>
<thead>
<tr>
<th>Type of Medication</th>
</tr>
</thead>
</table>

SECTION D: ENVIRONMENTAL INFORMATION

<table>
<thead>
<tr>
<th>Type of Environment</th>
</tr>
</thead>
</table>

SECTION E: ENVIRONMENTAL PATTERNS

<table>
<thead>
<tr>
<th>Type of Paterns</th>
</tr>
</thead>
</table>

SECTION F: VISION INFORMATION

<table>
<thead>
<tr>
<th>Type of Vision</th>
</tr>
</thead>
</table>

SECTION G: VISION PATTERNS

<table>
<thead>
<tr>
<th>Type of Patterns</th>
</tr>
</thead>
</table>
SECTION 1: PHYSICAL FUNCTIONING AND STRIUCTURAL PROBLEMS

1. ADL PERFORMANCE
 - Guide or Patient's PERFORMANCE rating (1-7 days)
 - No Independent self-care
 - Partial Dependency
 - Complete Dependency
 - Supportive Care

2. MOBILITY
 - Reduction in ability to walk, stand, or sit
 - Use of assistive devices
 - No mobility

3. AUTONOMIC FUNCTION
 - Cardiac dysrhythmias
 - Hypertension
 - Hypotension

4. UROCUTANEOUS
 - Urinary retention
 - Incontinence
 - Nocturnal enuresis

SECTION 2: CONTINUITY IN LAST 12 MONTHS

1. CONTINUITY SELF-CARE
 - Patient's ability to perform self-care
 - Independent or limited dependence

2. ALLOPATHY UTILIZATION
 - Use of prescription medications
 - Use of over-the-counter medications

3. PSYCHOLOGICAL WELL-BEING
 - Mood disturbances
 - Cognitive impairments
 - Suicidal ideation

4. MOBILITY AVALIACTION SERVICES
 - Availability of transportation
 - Home health services
 - Rehabilitation services

5. UNMET NEEDS/ASSESSMENT POTENTIAL
 - Unmet needs identified through assessment
 - Plan of care developed

6. CHANGE IN ADL FUNCTION
 - Change in ADL function
 - Improved
 - Stabilized
 - Declined

7. ADL SUPPORT PROVISIONS
 - Inpatient or outpatient services
 - Home health services
 - Social support

SECTION 3: CONTINUITY IN LAST 30 DAYS

1. CONTINUITY SELF-CARE ACTIVITIES
 - Patient's ability to perform self-care activities
 - Independent or limited dependence

2. ALLOPATHY UTILIZATION
 - Use of prescription medications
 - Use of over-the-counter medications

3. PSYCHOLOGICAL WELL-BEING
 - Mood disturbances
 - Cognitive impairments
 - Suicidal ideation

4. MOBILITY AVALIACTION SERVICES
 - Availability of transportation
 - Home health services
 - Rehabilitation services

5. UNMET NEEDS/ASSESSMENT POTENTIAL
 - Unmet needs identified through assessment
 - Plan of care developed

6. CHANGE IN ADL FUNCTION
 - Change in ADL function
 - Improved
 - Stabilized
 - Declined

7. ADL SUPPORT PROVISIONS
 - Inpatient or outpatient services
 - Home health services
 - Social support
Activity Pursuit Patterns

<table>
<thead>
<tr>
<th>Time of Day</th>
<th>Activity Pursuit Patterns</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morning</td>
<td>Reading, writing, cooking, outdoor activities</td>
</tr>
<tr>
<td>Afternoon</td>
<td>Walking, gardening, watching TV, reading</td>
</tr>
<tr>
<td>Evening</td>
<td>Watching TV, reading, doing puzzles</td>
</tr>
</tbody>
</table>

Mood and Behavior Patterns

Sad or Anxious Mood
- Changes in mood and behavior during last 3 days
- Expression of sadness or anxiety
- Changes in appetite or weight
- Changes in sleep patterns
- Changes in energy levels
- Changes in social behavior

Mood and Behavior Patterns

Mood Swings
- Mood changes
- Changes in activity level
- Changes in appetite
- Changes in sleep

Activity Settings

Outdoor Activities
- Changes in outdoor activities
- Changes in social behavior
- Changes in appetite
- Changes in energy levels

Change in Mood

Depression
- Changes in mood
- Changes in activity level
- Changes in appetite
- Changes in sleep

Change in Behavior

Agitation
- Changes in behavior
- Changes in appetite
- Changes in sleep
- Changes in energy levels

Change in Behavior

Agitation
- Changes in behavior
- Changes in appetite
- Changes in sleep
- Changes in energy levels

Other Conditions

ADL Assistance
- Changes in ADL assistance
- Changes in appetite
- Changes in sleep
- Changes in energy levels

Other Conditions

ADL Assistance
- Changes in ADL assistance
- Changes in appetite
- Changes in sleep
- Changes in energy levels

Health Conditions

Illness
- Changes in illness
- Changes in appetite
- Changes in sleep
- Changes in energy levels

Health Conditions

Illness
- Changes in illness
- Changes in appetite
- Changes in sleep
- Changes in energy levels

Health Conditions

Illness
- Changes in illness
- Changes in appetite
- Changes in sleep
- Changes in energy levels

Health Conditions

Illness
- Changes in illness
- Changes in appetite
- Changes in sleep
- Changes in energy levels

Other Conditions

ADL Assistance
- Changes in ADL assistance
- Changes in appetite
- Changes in sleep
- Changes in energy levels

Other Conditions

ADL Assistance
- Changes in ADL assistance
- Changes in appetite
- Changes in sleep
- Changes in energy levels

Other Conditions

ADL Assistance
- Changes in ADL assistance
- Changes in appetite
- Changes in sleep
- Changes in energy levels

Other Conditions

ADL Assistance
- Changes in ADL assistance
- Changes in appetite
- Changes in sleep
- Changes in energy levels
BIBLIOGRAPHY

