Mechanism and Uses of a Membrane Peptide that Targets Tumors and Other Acidic Tissues In Vivo

Oleg A. Andreev
University of Rhode Island, andreev@uri.edu

Alison D. Dupuy

Michael Segala
University of Rhode Island

Srikanth Sandugu
University of Rhode Island

David A. Serra

See next page for additional authors

Follow this and additional works at: https://digitalcommons.uri.edu/phys_facpubs

Terms of Use

All rights reserved under copyright.

Citation/Publisher Attribution

Available at: http://dx.doi.org/10.1073/pnas.0702439104

This Article is brought to you for free and open access by the Physics at DigitalCommons@URI. It has been accepted for inclusion in Physics Faculty Publications by an authorized administrator of DigitalCommons@URI. For more information, please contact digitalcommons@etal.uri.edu.
Mechanism and uses of a membrane peptide that targets tumors and other acidic tissues in vivo

Oleg A. Andreev*, Allison D. Dupuy†, Michael Segala*, Srikanth Sandugu*, David A. Serra†, Clinton O. Chichester‡, Donald M. Engelman§, and Yana K. Reshetnyak*†‡

*Physics Department, University of Rhode Island, 2 Lippitt Road, Kingston, RI 02881; †Department of Molecular Biophysics and Biochemistry, Yale University, P.O. Box 208114, New Haven, CT 06520; ‡Research Office, University of Rhode Island, 70 Lower College Road, Kingston, RI 02881; and §Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Fogarty Hall, 41 Lower College Road, Kingston, RI 02881

Contributed by Donald M. Engelman, March 17, 2007 (sent for review December 19, 2006)

The pH-selective insertion and folding of a membrane peptide, pHLIP [pH (low) insertion peptide], can be used to target acidic tissue in vivo, including acidic foci in tumors, kidneys, and inflammatory sites. In a mouse breast adenocarcinoma model, fluoroscenently labeled pHLIP finds solid acidic tumors with high accuracy and accumulates in them even at a very early stage of tumor development. The fluorescence signal is stable for >4 days and is approximately five times higher in tumors than in healthy counterpart tissue. In a rat antigen-induced arthritis model, pHLIP preferentially accumulates in inflammatory foci. pHLIP also maps the renal cortical interstitium; however, kidney accumulation can be reduced significantly by providing mice with bicarbonate-containing drinking water. The peptide has three states: soluble in water, bound to the surface of a membrane, and inserted across the membrane as an α-helix. At physiological pH, the equilibrium is toward water, which explains its low affinity for cells in healthy tissue; at acidic pH, titration of Asp residues shifts the equilibrium toward membrane insertion and tissue accumulation. The replacement of two key Asp residues located in the transmembrane part of pHLIP by Lys or Asn led to the loss of pH-sensitive insertion into membranes of liposomes, red blood cells, and cancer cells in vivo, as well as to the loss of specific accumulation in tumors. pHLIP nanotechnology introduces a new method of detecting, targeting, and possibly treating acidic diseased tissue by using the selective insertion and folding of membrane peptides.

Cancer targeting | Imaging | Peptide insertion

Many pathological conditions such as cancer, ischemic stroke, inflammation, atherosclerotic plaques, and others are associated with increased metabolic activity and hypoxia resulting in an elevated extracellular acidity (1–6). Hypoxia and acidity have emerged as important factors in tumor biology and responses to cancer treatment. Imaging of hypoxic and acidic regions could provide new information about disease localization and progression and might enhance diagnosis and therapy. Here we describe the use of a peptide, pHLIP [pH (low) insertion peptide], to selectively accumulate in and label acidic tissues. We previously reported that the pHLIP biomanosyringe, a 36-aa peptide derived from the bacteriorhodopsin C helix, has three states: soluble in water, bound to the surface of a membrane, and inserted across the membrane as an α-helix. At physiological pH the water-soluble form is favored, whereas at acidic pH the transmembrane α-helix predominates (Fig. 1a) (7). We show that at low pH, pHLIP can translocate cell-impermeable cargo molecules that are disulfide-linked to the C terminus across a cell membrane, where they are released in the cytoplasm by reduction of the disulfide bond (8, 9). Among the successfully translocated molecules are organic dyes, phalloidin (a polar, cyclic peptide), and a 12-mer peptide nucleic acid.

Results

We applied the technique of near-infrared (NIR) fluorescence imaging to follow the ability of fluorescently labeled pHLIP and its variants to accumulate in tissue with low extracellular pH by using
In N-pHLIP and K-pHLIP, Asn and Lys replaced Asp residues, one of which is protonated at low pH and drives pHLIP insertion (7–9). The interactions of pHLIP and its variants with lipid bilayers were studied by using liposomes, human red blood cells (RBCs), and cancer cells in a mouse model. Fluorescence of two Trp residues located in the transmembrane part of the peptides is sensitive to the insertion process (7) and can be used to monitor it. Insertion is accompanied by the translocation of Trp fluorophores from the hydrophilic aqueous solution into the hydrophobic environment of a lipid bilayer, resulting in enhancement of emission and a shift of the fluorophore (16) (Fig. 2a). Formation of α-helical secondary structure is monitored by using changes in the circular dichroism (CD) signal (Fig. 2b). It was previously demonstrated by polarized FTIR that the orientation of pHLIP is perpendicular to the lipid bilayer at low pH (7), which is part of the evidence for a transmembrane α-helix.

Unlike pHLIP, K-pHLIP does not show secondary structure changes between normal and low pH in the presence of liposomes. However, K-pHLIP is more aggregated in solution (the position of maximum of the fluorescence spectrum is shifted to short wavelengths) than pHLIP and exhibits partial α-helical structure at normal pH in the absence of liposomes. In contrast to the other peptides, N-pHLIP forms α-helical structure in the presence of liposomes over a wide pH range (4.0–8.0). Trp fluorescence and CD spectra indicate that K-pHLIP remains outside of the membrane at all pH levels studied, whereas N-pHLIP is mostly in the membrane.

To further study the interaction of the peptides with a membrane, we performed experiments on human RBCs. As an important experimental measure, it was essential to test whether pHLIP damages RBCs when it is injected into the bloodstream. The lytic response of pHLIP was measured spectrophotometrically by the amount of released hemoglobin from human RBCs. Human RBCs incubated in isotonic buffers at pH 6.0 and 7.4 at room temperature served as negative controls. As a positive control of 100% lysis, human RBCs were opened by incubation with 10% Triton X-100 for 1 h at room temperature. The results indicate that pHLIP does not lyse RBCs at concentrations up to 10 μM.

Next, we characterized the effect of pHLIP on RBC membrane morphology. The RBC has a very flexible membrane, consisting of a plasma membrane attached to an intricate membrane skeleton. It is well known that various agents interacting with RBCs can modify the biconcave discoid shape (discocyte; Fig. 2c) of these cells (17, 18). Selective insertion of molecules into the outer leaflet of RBCs leads to an increase in the relaxed area difference between the two leaflets of the plasma membrane bilayer, resulting in the formation of convex structures on the cell surface (e.g., echinocytic spicules; Fig. 2c) (19–21). The interaction of pHLIP with RBCs at normal pH (7.4; when the peptide attaches to the cell surface without the formation of any elements of secondary structure) results in the appearance of spicules on the surface of 67% of the cells (Fig. 2c and Table 1), showing extra area occupied by pHLIP on the outer leaflet of the lipid bilayer. However, a significantly reduced number of spikes were seen (87% of cells have a smooth, biconcave discoid shape) when pHLIP was inserted into the membrane at low pH (6.0), consistent with insertion across both halves of the bilayer.

K-pHLIP induces formation of echinocytes at both normal and low pH (57% and 55% of cells, respectively), suggesting that the peptide weakly binds to the membrane surface at both pH levels. N-pHLIP does not induce significant shape changes in RBCs at normal or low pH (74% and 83% of the cells, respectively, are discocytes).
Fluorescence and CD data indicate that N-pHLIP interacts with lipid vesicles and forms α-helical structure at both pHs. The RBC data support the idea that N-pHLIP inserts in lipid bilayers as a transmembrane α-helix, whereas the positively charged Lys residues prevent insertion of K-pHLIP into the hydrophobic core of the lipid bilayer at both normal and low pH levels. The dramatic RBC shape changes induced by pHLIP at normal pH and their absence at low pH are in agreement with the mechanism seen in lipid vesicles.

The ability of pHLIP and its variants to find a tumor and accumulate in it at very early stages of tumor development was evaluated in vivo. To create slow-growing tumors, 5 × 10^3 JC mouse breast adenocarcinoma cells were injected s.c. in the right flanks of mice. Tumors became visible in 16–18 days (1–3 mm in diameter). pHLIP was able to detect such slow-growing tumors on day 6. Fig. 2e shows NIR images of mice with early tumors 1 day after the i.p. injection of Cy5.5 alone, pHLIP-Cy5.5, K-pHLIP-Cy5.5, and N-pHLIP-Cy5.5. Two weeks later, tumors of similar size and shape in the right flanks became visible in all mice. The accumulation of dye alone or of the pHLIP variants in tumors was insignificant in comparison with pHLIP. It is interesting to note that the background signal from K-pHLIP was very weak, and the peptide was cleared rapidly from the mouse. The fluorescence signal from N-pHLIP was significant at the injection site and its vicinity, and it remained there for a long time, consistent with its local insertion in membranes. The imaging data in vivo confirm the proposed molecular mechanism of pHLIP action and show the ability of pHLIP to target tumors at very early stages of their development.

We examined the level of pHLIP accumulation in tumors. Fig. 3a shows 3D NIR emission intensity presentations of images of a tumor (4 × 5 mm in size) site taken during the 8 days after pHLIP-Cy5.5 injection. The height (z axes) and intensity of red color indicate the strength of the NIR signal in the right flank of a mouse in which the tumor was implanted. The fluorescent signal was very strong and stable for 4 days, approximately five times higher in tumors in comparison with the healthy counterpart tissue [see values of the contrast index (CI) in Fig. 3c]. In previous studies, accumulation in a tumor was considered substantial if the CI values were in the range of 2.5–3.5 (for 100 μl of 60 μM of peptide-dye injection) (22). Our data show that pHLIP is stable enough to persist in tumors. Insertion in the cell membrane may protect the peptide from attack by proteases, allowing it to accumulate in tumor tissue in significant amounts.

Where else does pHLIP accumulate besides the tumor? We collected organs and tissues on the second day after injection of the pHLIP-NIR dye (Fig. 3b and d). Whole-body fluorescence images, as well as fluorescence of individual organs, indicate that pHLIP accumulates in tumors and the kidney, the latter being a major site in the catabolism of low-molecular-weight proteins and having acidic regions. Buffering the feed water to pH 8.2 results in an elevation of the renal tubular and cortical interstitial pH (23). Indeed, we observed a significant reduction (~50%) of the fluorescence signal in the kidneys of mice fed with water at pH 8.2 (Fig. 3e), supporting the idea that low pH causes the observed imaging. pHLIP allowed us to map the acidic areas in the kidney.

Experiments with pHLIP consisting of L-amino acids and D-amino acids gave similar results: accumulation in tumor, inflammatory foci, and kidney. The results confirm that the mechanism of peptide insertion is the formation of a transmembrane α-helix, a process that does not depend on amino acid chirality. Interestingly,
the distribution of pHLIP consisting of D-amino acids differs from the distribution of L-pHLIP, with more accumulation in tumors and/or less renal uptake, possibly as a result of better stability of the D-peptide in blood and/or less uptake by kidney. We also observed pHLIP accumulation in the skin, perhaps from the irritation caused by shaving the mice before imaging experiments to remove the background from hair fluorescence. We assume that skin uptake will be significantly less in nonshaved animals, which could lead to increased values in the CI. We did not observe strong accumulation of fluorescently labeled pHLIP in the liver.

A preliminary toxicity study was carried out on 4-week-old female and male mice. L-pHLIP and D-pHLIP were injected intravenously at the maximum concentration of 4 mg/kg, and animals were monitored for 2 months. No physiological or behavioral changes were detected.

Discussion

Acidity characterizes the environment of cells that are partially starved for oxygen, such as highly proliferative cancer cells or macrophages at sites of inflammation and infection. Almost all solid tumors develop an acidic environment, known as the Warburg effect (Nobel Prize, 1931). The pHLIP bionanosyringe technology allows us to target and map acidity in vivo, which provides an opportunity for selective delivery of diagnostic or therapeutic agents to the sites of diseases. At physiological pH, the soluble form of pHLIP is favored, whereas at acidic pH the transmembrane α-helix predominates. The pHLIP affinity for membranes at low pH (5.0) is 20 times higher than that at high pH (8.0) (Y.K.R., M.S., O.A.A., and D.M.E., unpublished data). We have shown that, at low pH, pHLIP can translocate cell-impermeable cargo molecules that are disulfide-linked to the C terminus across a cell membrane, where they are released in the cytoplasm by reduction of the disulfide bond. Of the successfully translocated molecules are organic dyes, phalloidin (a polar, cyclic peptide), and 12-mer peptide nucleic acids. Neither the entry of pHLIP into the membrane nor the translocation of molecules into cells is mediated by endocytosis, binding to cell receptors, or formation of pores in cell membranes. Rather, entry and translocation result from the formation of a helix across the lipid bilayer because of the increase of peptide hydrophobicity associated with the protonation of an Asp residue at low pH. The replacement of two key Asp residues located in the transmembrane part of pHLIP by Lys or Asn led to the loss of pH-sensitive membrane insertion into liposomes and RBCs in vitro and cancer cells in vivo and, consequently, to the loss of specific accumulation in tumors. We show that in a mouse breast adenocarcinoma model, fluorescently labeled pHLIP finds solid acidic tumors with high accuracy and accumulates at very early as well as advanced stages of tumor development. The fluorescence signal is stable for days and is approximately five times higher in tumors than in the healthy counterpart tissue. The pHLIP persistence stands in contrast to low-molecular-weight compounds, which typically wash out of the body in minutes. This property of pHLIP would allow hours of data collection from positron emission tomography (PET) or MRI agents to obtain excellent contrast ratios. Recently, we tested the distribution of a PET-imaging probe 1,4,7,10-tetraazacyclododecan-1,4,7,10-tetraacetic acid (DOTA) covalently attached to the N terminus of pHLIP in male athymic mice bearing LNCaP tumors. DOTA-pHLIP afforded excellent tumor visualization in LNCaP tumor-bearing mice when using small-animal PET. Tumor/muscle ratios (standardized uptake value) were >6 at 24 h. pHLIP also accumulates in comparable amounts in the kidney, which is not surprising because the kidney is a major site in the catabolism of low-molecular-weight proteins and has acidic regions. However, the uptake can be reduced significantly by providing mice with bicarbonate-buffered drinking water at pH 8.0 and perhaps by using the D-amino acid peptide. We did not observe a significant accumulation of pHLIP in the liver or other organs. pHLIP is not toxic for cells, and preliminary studies suggest that it is not toxic for mice.

Recent developments have allowed the study of gene signatures of many cancer cells. The data indicate that a number of genes are up- and down-regulated in cancer, making it problematic to rely on any single tumor biomarker even for one type of cancer, whereas the physiological properties of the microenvironment of a majority (90%) of tumors, such as hypoxia, acidity, and changes in temperature, are considered promising environmental markers for tumor targeting (25, 26). Hypoxia and acidosis are hallmarks of tumors at both very early and advanced stages of tumor development.
labeled peptides were stored at PAGE followed by scanning gels on an IR scanner (Odyssey). The resuspended in cold isotonic buffer containing 145 mM NaCl, 5 mM KCl, and 5 mM Hepes at pH 6.0 and pH 7.4. pHLIP, purified separately in isotonic buffer at pH 6.0 and pH 7.4, was added to the human RBC suspensions at 1%, 5%, and 10% hemocrits at final concentrations of 1, 5, and 10 μM. All RBC samples were incubated at the various pHLIP concentrations for 1 h at room temperature. The samples were centrifuged at 2,000 × g for 10 min at t = 1 min, 10 min, 30 min, and 1 h, and aliquots of the supernatant were collected. Absorption of the supernatant was recorded at 414 nm. Measurement of the absorption at 414 nm in comparison to 540 nm results in a 10-fold increase in the sensitivity of the assay (31). Human RBCs incubated in isotonic buffers at pH 6.0 and pH 7.4 at room temperature served as negative controls. As a positive control of 100% lysis, human RBCs were lysed with 10% Triton X-100 for 1 h at room temperature. Percent hemolysis at 1%, 5%, and 10% hemocrits and pHLIP concentrations of 1, 5, and 10 μM was calculated as

\[
100 - \frac{A_{100\%} - A_{100\%} - A_{0\%}}{A_{100\%} - A_{0\%}}, \tag{1}
\]

where A is the absorption measured at 414 nm.

Tumor Mouse Model. Female C3D2F1 mice ranging in age from 4 to 6 weeks and weighing from 14 to 16 g were obtained from Charles River Laboratories. The mice weighed ~20 g at the time of peptide injection. Murine breast adenocarcinoma (CRL-2116) cell lines from the American Type Culture Collection were cultured in DMEM supplemented with 10% FBS, 100 units/ml penicillin, 0.1 mg/ml streptomycin, and 2 mM glutamine in a humidified atmosphere of 5% CO\(_2\) and 95% air at 37°C. Cancer cells were grown to 70% confluence and then harvested and resuspended in L-15 medium. Mouse tumors were established by s.c. injection of breast cancer cells (10\(^6\) to 10\(^7\) cells per flank per 0.1 ml) in the right flank of adult female C3D2F1 mice.

Arthritis Rat Model. Male Lewis rats that ranged in age from 7 to 8 weeks and weighing from 180 to 200 g were obtained from Harlan Labs (Indianapolis, IN). The rats weighed ~300 g at the time of peptide injection. Arthritis was induced in the right femorotibial joint of rats as described previously (12, 13). Briefly, on two occasions 2 weeks apart, the joint was injected s.c. with an emulsion (1.0 ml) of an equal mixture of BSA (methylated BSA) (0.5 mg; Sigma–Aldrich) and Freund’s complete adjuvant (0.25 mg of Mycobacterium tuberculosis; Sigma–Aldrich). Six days after the second injection, 50 μg of methylated BSA was injected into the right joint. The left knee joints of the rats received a sham injection of saline and were used as controls. The progression of inflammation was monitored by measuring the diameters of the right and left knee joints by using a micrometer. Beginning 1 week and lasting for the duration of 1 month after the induction of arthritis, the mean diameter of the right joints was significantly (P < 0.001) higher than that of the left joints, highlighting the inflammatory process in the right leg. Student’s unpaired 2-sample t test was used to test for differences in measurements between the right and left knee joints. P values of <0.02 were considered significant. After whole-body
imaging, the animals were killed, skin and muscle were removed from their legs, and fluorescence imaging was performed.

Fluorescence and CD Measurements. Trp fluorescence and CD measurements were carried out on a PCi ISS spectrophotofluorometer and a Jasco (Easton, MD) 810 spectropolarimeter at 25°C, in phosphate buffer with adjusted pH. The concentrations of peptides and lipids used in this study were 5 and 600 μM, respectively. The excitation wavelength was 295 nm to limit the excitation to only Trp fluorophores in the peptides. The fluorescence spectra were recorded from 310 to 400 nm with the spectral widths of excitation and emission slits set at 4 and 2 nm, respectively. The polarizers in the excitation and emission paths were set at the “magic” angle (54.7° from the vertical orientation) and vertically (0°), respectively, to reduce Wood’s anomalies from the reflecting holographic grating. The emission spectrum of an aqueous solution of L-Trp was used as a standard for the correction of protein spectra for the instrument spectral sensitivity. The intensities of the corrected spectra are proportional to the number of photons emitted per unit of time of indicated wavelength interval.

Light Microscopy of RBCs. Washed RBCs were prepared from whole human blood within 48 h of withdrawal from human donors (described above). A series of 1%, 5%, and 10% suspensions of washed human RBCs were made at pH 7.4 and 6.0 in isotonic buffers containing 145 mM NaCl, 5 mM KCl, and 5 mM Heps. The RBC suspensions were then incubated in Eppendorf tubes for 15 min with 5 μM pHLIP, K-pHLIP, and N-pHLIP at pH 7.4 and 6.0. Control RBC samples at pH 7.4 and 6.0 were then monitored for shape changes via light microscopy in addition to the RBC/peptide samples at pH 7.4 and 6.0. Samples were placed in Grace Bio-Labs CoverWell imaging chambers on glass slides that were treated with 2% dimethyldichlorosilane in 1:1,1-trichloromethane for 10 min and rinsed with methanol, ethanol, and water and allowed to dry before use in experiments to prevent the glass effect from inducing artificial echinoctyosis. All samples were monitored via phase-contrast microscopy by using an Olympus IX71 inverted-fluorescence microscope with an ×100 objective and via differential interference contrast microscopy by using a Leitz Diaplan light microscope with Nomarski optics and an ×100 objective (data not shown).

NIR Fluorescence Imaging of Whole Body, Tissue, and Organs. Mice were injected with fluorescent pHLIP and imaged 4–21 days after cancer-cell implantation to mimic various stages of tumor development from early to advanced. When possible, tumor size was measured with a caliper. In some cases, at earlier stages, tumors were not visible by eye but were detectable by fluorescence imaging and later became visible. The inflammation sites in rats were imaged 20–30 days after induction of arthritis. The various amounts (100–200 μl of 5–50 μM) of different types of pHLIP labeled with Cy5.5 or Alexa750 were given as a single i.v. or i.p. injection to animals. Before imaging of mice or rats, their hair was removed with Nair (Carter-Wallace, New York). As a control, the free dyes were incubated for several days in L-15 medium were injected at the same concentrations into mice carrying tumors. Incubation in L-15 was necessary to decrease the chemical reactivity of maleimide or NHS-ester moieties of dyes by their covalent binding to Cys or Lys amino acids, respectively, which are present in the L-15 solution. To increase the pH in the renal system, some mice were exposed to drinking water containing 80 mM NaHCO3 (pH 8.2) for 7–14 days. The imaging was performed while the animal was under anesthesia with a mixture of ketamine (90 mg/kg) and xylazine (9 mg/kg). Three imaging systems were used as our studies progressed: a homemade system with a light source (150-W xenon lamp) and double fiber-optic gooseneck [Dolan-Jenner Industries (Boxborough, MA) illuminator], an NIR-CCD camera (Hitachi, Tokyo), and appropriate filters (Omega Optical, Brattleboro, VT); an IR scanner (Odyssey); and a Kodak imaging station. To evaluate the signal/noise ratio of fluorescence images we calculated CI values according to that described by Jiang et al. (22). For the determination of tumor contrast, fluorescence mean, maximum, and minimum values of internal and external area of tumor and corresponding healthy tissue area were calculated by using NIH Image software and the area-of-interest function. The CI was measured according to the formula CI = [Fltumor−Flauto]/[Flnorm−Flauto], where Fltumor and Flnorm are the fluorescence mean intensities of tumor and normal contralateral region of the same area, respectively, and Flauto is the autofluorescence from the corresponding region measured before injection. To evaluate the uptake of fluorescent peptides by internal organs and tissues, mice were dissected at various times after the injection of peptides. Organs and tissues were collected and their fluorescence was measured by using the homemade imager (each sample was measured separately by using the same set of optical parameters) or the IR Odyssey scanner (all samples were scanned at the same time).

All animal studies were conducted in accordance with the principles and procedures outlined in the National Institutes of Health Guide for the Care and Use of Animals. Approvals from the Institutional Animal Care and Use Committee at the University of Rhode Island were obtained before initiation of the study.

We thank Dr. W. Barry Pickos, Dr. Aftab Ahmed, and Gail Golomb Mello for technical assistance, the W. M. Keck Foundation Biotechnology Resource Laboratory at Yale University for peptide synthesis and purification; the Molecular Cellular and Developmental Biology’s electron microscopy facility at Yale University for use of its microscopes; and the Rhode Island IDEAS Network of Biomedical Research Excellence core facility at University of Rhode Island (Grant P20RR16457 from the National Center for Research Resources, a component of the National Institutes of Health) for use of its IR imager. This work was supported in part by Department of Defense Grant PCRP CDMRP PC050531 (to Y.K.R.) and National Institutes of Health Grants GM70895 and GM703857 (to D.M.E.).