2015

T Cell Epitope Redundancy: Cross-conservation of the TCR face between Pathogens and Self and its Implications for Vaccines and Auto-immunity

Leonard Moise
University of Rhode Island

Sarah Beseme

See next page for additional authors

Follow this and additional works at: https://digitalcommons.uri.edu/immunology_facpubs

The University of Rhode Island Faculty have made this article openly available. Please let us know how Open Access to this research benefits you.

This is a pre-publication author manuscript of the final, published article.

Terms of Use
This article is made available under the terms and conditions applicable towards Open Access Policy Articles, as set forth in our Terms of Use.

Citation/Publisher Attribution
Available at: http://dx.doi.org/10.1586/14760584.2016.1123098
T Cell Epitope Redundancy: Cross-conservation of the TCR face between Pathogens and Self and its Implications for Vaccines and Auto-immunity

Leonard Moise, Sarah Beseme, Ryan Tassone, Rui Liu, Farzana Kibria, Frances Terry, William Martin & Anne S. De Groot

To cite this article: Leonard Moise, Sarah Beseme, Ryan Tassone, Rui Liu, Farzana Kibria, Frances Terry, William Martin & Anne S. De Groot (2015): T Cell Epitope Redundancy: Cross-conservation of the TCR face between Pathogens and Self and its Implications for Vaccines and Auto-immunity, Expert Review of Vaccines, DOI: 10.1586/14760584.2016.1123098

To link to this article: http://dx.doi.org/10.1586/14760584.2016.1123098

Accepted author version posted online: 20 Nov 2015.

Submit your article to this journal

Article views: 2

View related articles

View Crossmark data
T Cell Epitope Redundancy: Cross-conservation of the TCR face between Pathogens and Self and its Implications for Vaccines and Autoimmunity

Leonard Moise1,2, Sarah Beseme1, Ryan Tassone2, Rui Liu2, Farzana Kibria1, Frances Terry1, William Martin1, Anne S. De Groot1,2*

1 EpiVax, Inc., 146 Clifford St., Providence, RI 02903 USA
2 Institute for Immunology and Informatics, University of Rhode Island, 80 Washington St., Providence, RI 02903 USA

*Corresponding author

Anne S. De Groot, MD, CEO/CSO, EpiVax Inc., 146 Clifford St., Providence, RI 02903; Director, Institute of Immunology and Informatics and Professor (Research) University of Rhode Island, 80 Washington St., Providence, RI 02903. Telephone: 401-272-2123. Fax: 401-272-7562. Email: annied@epivax.com
Summary

T cells are extensively trained on ‘self’ in the thymus and then move to the periphery, where they seek out and destroy infections and regulate immune response to self-antigens. T cell receptors (TCR) on T cells’ surface recognize T cell epitopes, short linear strings of amino acids presented by antigen-presenting cells. Some of these epitopes activate T effectors, while others activate regulatory T cells. It was recently discovered that T cell epitopes that are highly conserved on their TCR face with human genome sequences are often associated with T cells that regulate immune response. These TCR-cross-conserved or ‘redundant epitopes’ are more common in proteins found in pathogens that have co-evolved with humans than in other non-commensal pathogens. Epitope redundancy might be the link between pathogens and autoimmune disease. This article reviews recently published data and addresses epitope redundancy, the “elephant in the room” for vaccine developers and T cell immunologists.

Keywords

T cell epitope, Regulatory T cell, Cross-conservation, T cell receptor, TCR, TCR Degeneracy, Molecular mimicry, Autoimmune disease, Immunoinformatics, Guillain Barre Syndrome, Narcolepsy, Multiple Sclerosis, Vaccine, Off Target Effects, HIV, HCV, H7N9, Influenza Vaccine, Cancer Vaccine, Virus, Bacteria, Parasite.
Introduction

Like samurai warriors, T cells undergo extensive training on self-antigens in the thymus before venturing into the periphery to fight infections. Some T cells use their T cell receptors (TCR) to search and counter pathogens, while others find T cell epitopes that seem to be more likely to trigger regulation or suppression of immune response (Figure 1). However, by definition, naïve T cells that escape deletion in the thymus to war against pathogens in the periphery have T cell receptors that are trained on ‘self’ T cell epitopes. Some of the T cells become regulatory T cells (Tregs), while others become effector T cells (Teff).

How T cells develop to perform the function of ‘killer’ T cells, despite being trained on self-epitopes in the thymus, is one of the greatest mysteries of immunology. Deregulation or abnormal activation of these functions leads to immune intolerance, such as autoimmune diseases or allergy. While vaccines are safe for the large majority of people and generate herd immunity that protects vulnerable persons who cannot be immunized, some vaccines have been associated with the induction of autoimmune responses, as observed in the recent cases of narcolepsy that were associated with H1N1 influenza vaccination [1].

Computer analysis of T cell epitopes is now uncovering patterns of amino acids that may be associated with each of these T cell types. Taking advantage of this system, pathogens have found ways to circumvent immune detection, reducing the likelihood that they will be eliminated by our humoral and cellular immune system. They do this by removing Teff epitopes (immune escape) and, as has been discovered recently, by adopting epitopes that look like human epitopes (immune camouflage). There is much that we can learn from defining and understanding these redundant epitopes - such as T cell epitopes found in pathogens - about ourselves and our microbial enemies.
The development of safer vaccines might be dependent on the identification of which T cell epitopes present in the vaccine – and by extension, the pathogen – triggers this reaction against self. Computer algorithms for predicting and analyzing T cell epitopes have made it possible to discern common patterns that are important for regulating immune responses to self. They may be applied not only to design better vaccines but may also contribute to development of new treatments for autoimmune diseases. This article reviews the concept of epitope redundancy, describes the immunoinformatics tools to identify epitope redundancy, and discusses the relevance of this approach to design better vaccines and understand pathogen-related autoimmune diseases.

TCR specificity in T cell development

As a result of the selection steps in the thymus, conventional T cells and natural regulatory T cells (nTreg) emerge with an intermediate level of self-reactivity, one that exceeds the level leading to clonal deletion and falls below the level for negative selection (Figure 2). Little is known about T cell epitope specificity of nTregs. Some studies support a “buddy” hypothesis that TCRs of conventional and nTreg cells share the same specificity, which serves to prevent autoimmunity [2]. Consistent with this concept, the TCR repertoire of thymic-derived effector T (Teff) cells and Tregs has been shown to overlap to some degree [3]. Other TCR repertoire studies have not shown overlapping repertoires [4-6]. Further studies, focusing on the exact specificities of conventional Teff cells versus nTregs, are clearly needed, so as to better understand the implications of overlapping TCR repertoires. Based on current understanding of the maturation of T cell subsets, there appears to be a swords-edge balance between protective immune response to pathogens and regulation of autoimmunity in the periphery.
TCR degeneracy, Epitope Redundancy, Mimicry and Camouflage

T cells are activated when T cell epitopes, short linear strings of amino acids, are presented at surface of APCs in the context of human leukocyte antigen (HLA) molecules. The peptide-HLA complex presents a unique surface that is recognized by the TCR. The topic of T cell epitope cross-reactivity, believed to be due to TCR degeneracy or lack of fine specificity, is a concept that is familiar to infectious disease and autoimmune disease researchers. Conservation between T cell epitopes from different strains of a given pathogen is well known (e.g., influenza [7] and Dengue [8]).

In the realm of autoimmunity, similarity between self and pathogen has also been called molecular mimicry [9]; however this terminology does not allow for differentiation between different types of mimicry - structural (as in cross-reactive B cell epitopes), or mechanism-related (as in Epstein - Barr virus (EBV)’s adoption of IL-10 as a mediator of immune regulation [10]). In this article, we will specifically focus on T cell epitope redundancy, as defined below, which is one of the direct results of the TCR training on self in the thymus [11] and education of these T cells in the periphery [12]. Our focus on cross-reactivity of T cell epitopes is enabled by the development of accurate computational tools for the identification of these epitopes [13,14] and enlivened by reports associating autoimmune diseases to exposure to pathogens, such as the recent report linking narcolepsy to influenza exposure or vaccination [15].

Cross-reactivity occurs because TCRs are somewhat ‘promiscuous’ in that they can recognize remarkably similar (but not necessarily identical) epitopes that are defined by binding to the same HLA and presentation of similar TCR-facing residues to the TCR. Complex relationships between T cell epitopes have been described by Welsh and Selin [16], in which different epitopes (different in sequence) may be recognized by the same T cell. They have called this cross-conservation between pathogens heterologous immunity, as previous exposure to the conserved epitope can pre-define immune response to a novel pathogen. We define ‘redundant’
epitopes as non-self linear sequences that bind to the same HLA and may be recognized by the same TCR as a self-epitope despite differences at HLA binding positions. Human commensal pathogens that have established a pattern of ‘hit and stay’ (such as herpes simplex virus) have more redundant sequences than pathogens that ‘hit and run’ (such as Ebola and Marburg) [17,18]. To what degree this redundancy may contribute to autoimmunity, is as yet unknown [19].

Heterologous immunity [20-24] may also involve TCR recognition of similar HLA-binding epitopes that exhibit variability at TCR-facing positions. However, existing methods for the identification of heterologous epitopes, in which the epitopes may not be similar in sequence but trigger cross-reactive T cell responses, are cumbersome. Redundant epitopes comprise linear sequences that are identifiable using computational methods [13]. These computational methods enable large-scale comparisons to peptides across genomes (the human genome, a cancer genome, the intestinal microbiome, viral pathogens, and parasite genomes, to name just a few). A limitation of the computational approach at this time is the ability to identify cross-reactive TCR specificities, such as those found in heterologous immunity that are defined only by identical TCR-face sequence. Thus, unlike the category of cross-reactive epitopes that may be defined by intensive studies of heterologous immunity [25], T cell epitope redundancy is defined by the ability to examine it using in silico methods. Once the epitopes are defined, methods such as TCR clonotyping [26], high-resolution tetramer staining [27,28], and x-ray crystal structural determination may help to further elucidate the nature of the TCR-cross-reactive immune responses.

We have postulated that epitope redundancy might enable pathogens to camouflage themselves from immune response. Other means of immune escape by pathogens have been well described [29]. For example, Gram-negative bacteria can escape innate immunity through structural modifications of their PAMPs, thus escaping recognition by phagocytes [30]. Plasmodium
falciparum, the parasite responsible for malaria, can also escape the human immune system by mutually exclusive gene expression of the var gene family, leading to antigenic variation [31]. Survival within macrophages may be an immune evasion and persistence strategy of C. glabrata [32]. Viruses have also developed sophisticated means of escaping immune response. They can escape the first round of innate immunity by impairing monocyte differentiation into functional DCs [33,34] or develop “shape change” strategies, such as impairing non-self RNA recognition by replicating the self cap structures [35]. EBV produces a regulatory cytokine that is nearly indistinguishable from human IL-10 [36,37]. In response to attack by T cells, pathogens such as human immunodeficiency virus (HIV) and hepatitis C virus (HCV) have been demonstrated to avoid T-cell mediated response by the deletion of Teff epitopes [38-40].

Adding to this repertoire of escape mechanisms, we recently described “self-like” or redundant epitopes in certain viruses that exhibit on the TCR face patterns that are conserved with human Treg epitope sequences, potentially reducing immune response against the pathogen. We proposed a novel means of immune escape - immune camouflage – that can be discovered using immunoinformatics tools that compare T cell epitopes [17]. Further evidence is emerging that HIV [41], HCV [42], EBV, HSV, and avian influenza (H7N9) [43] have built themselves a very successful niche using bits and pieces of the human genome, which allow them to create an immune signature that is indistinguishable from self.

The impact of Immune camouflage through epitope redundancy in immune responses to pathogens may be difficult to discern at the population level, since the net effect of these influences may vary in different individuals due to previous exposures, vaccinations, and the HLA-restriction of cross-reactive immune responses. The identification of redundant epitopes that are restricted by multiple HLA, as described in the next section, has enabled our group to evaluate these epitopes in vitro and define patterns that may be associated with regulatory or auto-reactive immune response.
Redundancy and regulation of T cell response

It should be noted that cross-conservation of T cell epitopes from pathogens and autoantigens, and studies that show that these epitopes can be either immune-regulatory and/or immunostimulatory, is not a new discovery. For example, heat shock proteins have been the focus of intense research, as they are conserved in bacterial species and humans. Van Herwijnen et al. found a mycobacterial (Mtb) HSP70 peptide (B29) that is highly conserved with human to be an immunodominant peptide in BALB/c mice [44]. They adoptively transferred the Mtb B29-specific Tregs and were able to show that these mycobacterial epitope-specific Tregs suppressed ongoing experimentally induced arthritis in mice. In a separate study, peptides H161 and H167, derived from the most conserved region of HSP70 (both among species and among human HSP70 variants), showed strong recognition by PBMCs of healthy humans; T cell proliferation, gamma-interferon production and IL-10 secretion were reported [45]. More recently, peptides derived from HSP “BiP” were shown to include T cell proliferation, IL-10 expression, and to reduce inflammation in a murine model [46]. In a separate study, stress-induced presentation of HSP-derived peptides in mouse APC resulted in activation of CD4+ hybridoma T cells specific for the identified peptide [47]. The current explanation for this observation is that stress-induced augmented expression of inducible HSP70 leads to enhanced presentation of HSP70 peptides on MHC class II, leading to recognition by HSP70-specific T cells, which may subsequently dampen inflammation [48]. It is not clear whether these HSP-specific T cells are iTreg or nTreg, or even T eff, and how they evolve to adapt a particular phenotype. We have examined these epitopes for epitope redundancy, and did find that the epitopes are not only promiscuous, but they are also highly conserved (across HSP proteins) and that many HSP peptides are found in the thymic and lymph ‘peptidomes’ [49,50,51].
Epitope Mapping using Computational Tools

The process of identifying which pathogen sequences trigger T effector immune responses and which trigger regulatory T cell responses may have been simplified by the development of epitope-mapping tools. Most T cell epitope mapping tools evaluate the amino acid sequence of each input 9-mer peptide (derived from the set of overlapping 9-mer sequences in any protein antigen) to a set of binding coefficients that define the propensity of the sequence to bind to HLA. On an overall scale, proteins carrying more putative epitopes would expected to be more immunogenic while proteins carrying fewer putative epitopes would tend to be less immunogenic [14]. On a local scale, T-cell epitopes (class II-restricted in particular) are not randomly distributed throughout protein sequences but instead tend to “cluster” in specific regions, and are known as promiscuous T cell epitopes [52]. Promiscuous class II restricted T-cell epitope “clusters” can range from 9 to roughly 25 amino acids in length and, considering their affinity to multiple alleles and across multiple binding registers, can contain anywhere from 4 to 40 binding motifs. Many of the most reactive T-cell epitope clusters present a feature we have described as an “EpiBar” (Epitope Bar). An EpiBar is a single 9-mer frame containing binding motifs for at least four different HLA alleles (Figure 3). In retrospective evaluations of published promiscuous epitopes, we have found this pattern to be a signature feature of highly immunogenic, promiscuous class II epitopes [53,54].

Some promiscuous epitopes that have this feature and are highly redundant (either found in very prevalent proteins, or highly cross-conserved with the human genome) have been shown to trigger Tregs to respond and expand. This discovery has been true for epitopes discovered by our group (IgG T cell epitopes known as Tregitopes [12], HCV [42], H7N9 [43]) as well as for Treg epitopes discovered by other groups such as Edratide [55] and epitopes found in heat shock proteins: HSP60 [56,57,58], HSP 70 [48] and BiP [46].
Improving computational tools to identify epitope redundancy

To investigate further this newly discovered TCR-facing epitope redundancy on a very large scale, we built an algorithm called JanusMatrix that can identify peptides with similar MHC-binding propensities that are TCR-face homologous, in any genome, as compared to a reference epitope [13]. After the binding prediction analysis described above has been run on an antigen, JanusMatrix compares the 9-mer’s TCR-facing residues to the proteins of the human genome and the human microbiome. Significant differences between the degree of cross-reactivity with protein databases of human genome, human microbiome, and human pathogen sequences when comparing known T effector and T regulatory epitopes are identified by ratios [13]. JanusMatrix “Homology” score is calculated by determining the average depth of coverage in the target database for each epitope identified in the source sequence. Homology to non-binding peptides is assumed to be irrelevant.

JanusMatrix is now used by our group and our collaborators to identify significant cross-conservation with proteins contained within the human genome and the human microbiome. We found that immune response to T cell epitopes was inversely correlated with their degree of cross-reactivity with the human genome in a subsequent study of H7N9 peptides [43]. Examining more than 4,000 published human T cell epitopes (from the Immune Epitope Database, IEDB, http://www.iedb.org/), we recently determined that the JanusMatrix “homology” score is significantly higher (p<0.0001) for T cell epitopes shown to induce regulatory cytokine (IL-10) response (N=3,780 epitopes), and significantly lower (p<0.01) for T cell epitopes shown to induce effector cytokine (IL-4) response (N=1,433 epitopes) [14]. Thus large-scale analysis of published T cell epitopes in public databases has provided additional confirmation for the hypothesis that epitope-redundancy deviate the phenotype of T cell-mediated immune responses.
From redundant epitopes to Treg epitopes

Using JanusMatrix, we identified human-like T cell epitopes in the genomes of viruses and bacteria. Analyzing pathogens that co-evolved with humans (e.g. EBV, CMV, HIV), we identified a disproportionately large number of linear epitopes that possess TCR-facing amino acid sequences that are highly conserved with self [17]. In the following paragraphs, we provide a summary of Treg epitopes that were identified using JanusMatrix, in H7N9, HCV, and HIV.

- **Treg epitopes in H7N9 influenza**

Avian-origin H7N9 influenza is a novel influenza A virus that emerged in humans in China in 2013. Using JanusMatrix, we identified several H7N9 T cell epitopes with TCR-facing residues identical to those of multiple epitopes from human proteins [59]. These H7N9 human-like T cell epitopes possess low immunogenicity; in PBMCs derived from healthy donors, human Teff responses to individual H7N9 peptides was inversely correlated with the degree of the peptide's resemblance to self [43]. The human-like H7N9 version of an immunodominant hemagglutinin T cell epitope suppressed IFN-gamma responses when co-administered with peptides having less cross-reactivity with the human genome. T cells that respond to this epitope demonstrated a Treg phenotype [43]. In further as yet unpublished work, we have demonstrated that the Treg-activating epitopes may contribute to lower antibody responses in humanized mice, and modification of these epitopes may improve H7N9 vaccine efficacy.

- **HCV Treg epitopes**

Using JanusMatrix, we discovered a promiscuous class II epitope in HCV that is conserved with hundreds of human homologs. The epitope induces CD4+CD25+FoxP3+ Treg proliferation and function in peripheral blood leukocyte cultures from an HLA-diverse cohort of HCV-infected patients, but not in patients who spontaneously cleared HCV nor in non-infected individuals [42]. Human homologs of the HCV epitope stimulate Tregs in both HCV- and non-infected people,
suggesting that tolerance of this particular protein is promoted by activation of Tregs that recognize a common TCR-face. It is well known that HCV epitopes mutate over the course of infection to decrease MHC binding. This has been well-defined for CTL epitopes, but is less well defined for CD4+ T cell epitopes [60-62]. However, in the case of the HCV epitope described by Losikoff et al. [42], the HCV genomic sequences appears to contain the same TCR-facing residues as highly prevalent autologous T cell epitopes, so as to acquire the potential to drive Treg responses in an HLA-diverse population.

- **HIV Treg epitopes**

HIV also exhibits curious patterns of cross-reactivity by JanusMatrix analysis. In searching HIV envelope sequences for cross-conservation with the human genome, we recently uncovered a high frequency of human MHC molecule sequences that share a TCR-face with a highly conserved human epitope in the envelope protein (orange highlight, Figure 4). This protein is present on the cell surface of nearly every living cell, and the conserved epitope is a highly conserved motif, despite allelic variation. An IEDB search shows a closely related epitope has been described as capable of stimulating T cell proliferation [63] (the phenotype of the proliferating cells was not defined). If these CD4+ T cells are regulatory in nature, activation of the T cells by the HIV homolog epitope could promote HIV expansion [64], which may promote HIV viral persistence and increase HIV ‘fitness’, instead.

These three case studies are consistent with our previously published observation that that ‘hit and stay’ viruses like HCV and HIV escape protective immune responses by cross-reacting with Tregs [17] and suggests that Treg-activating HCV and HIV sequences may affect HIV and HCV vaccine efficacy.
Patterns may be common to Treg epitopes

In our retrospective evaluations of the computational signature of these promiscuous, Treg-inducing epitopes, we find several common characteristics that may be useful for future studies. First, as suggested above, the T cell epitopes that induce Treg responses tend to be promiscuous epitopes (presented by multiple class II HLA DR alleles), and second, they tend to be found in extremely prevalent proteins (such as Immunoglobulin G for Tregitopes and Edratide (hCDR1), and heat shock proteins such as HSP 60 (Diapep277, [57]) and HSP 70 [65]. A third feature that is common to such epitopes, when found in pathogens, is that their sequence of amino acids that face the TCR face may be identical, or redundant, with many human genome sequences that are predicted to bind to the same MHC alleles [17]. This suggests that the prevalence of peptides (or the frequency with which circulating T cells may encounter peptides) that bind to the same MHC and present the same TCR face to the T cell may be important in terms of determining the phenotype of the immune responses.

Redundant epitopes in autoimmune diseases

Epitope redundancy may also cause the immune response to go awry, where cross-reactivity between pathogen and self triggers effector T cell response against self. Due to TCR cross-recognition between self and pathogen, exposure to a pathogen may trigger anti-self responses, leading to the initiation of an auto-immune condition. A number of examples have been published, such as conservation between certain EBV and autologous epitopes in nerve-associated proteins, potentially contributing to the development of Multiple Sclerosis (MS) [66] (Figure 5). Vaccination has also been reported to be associated with immune diseases [15,67,68]. Genes involved in TCR recognition of epitopes such as HLA-DRB1, CD4 and INF-gamma or TGFbeta1 have been involved in autoimmune diseases known to be associated with vaccination [69]. In the next section, we will focus on recent advances on selected autoimmune diseases that are
believed to be related to infection with pathogens, and explore whether epitope redundancy could explain many of these autoimmune-infectious disease linkages.

- **Guillain-Barré Syndrome**

Guillain-Barré syndrome (GBS) is the main cause of acute flaccid paralysis, characterized by a weakness in muscle contraction. In about 60% of the cases, an upper respiratory or gastrointestinal infection precedes the onset of the disease. Among the pathogens that trigger GBS, *Campylobacter jejuni* (*C. jejuni*) is the most frequent (in 13% to 39% of cases), followed by cytomegalovirus (5% to 22%), EBV (1% to 13%), and Mycoplasma pneumoniae (5%) [70]. One of the most documented mechanisms for GBS is the presence of anti-gangliosides antibodies (anti-GM1 and anti-GD1), induced by similarity of these self-proteins with lipo-oligosaccharides present on *C. jejuni*’s LPS [71]. There is also evidence of an association between influenza virus and GBS. In 1976 and 2009 in the US, seasonal influenza strains were of swine origin and an increased relative risk of developing GBS was observed in both cases, whether the vaccine was adjuvanted or not [72,73]. Although these results were not confirmed in Europe [74], several studies have established a link between GBS and infection by the 2009 pH1N1 [75,76].

How the swine influenza virus and the associated vaccines may have triggered GBS is not currently known. Although anti-ganglioside antibodies can recognize the influenza virus (probably due to glycosylation), no such antibodies were found in sera of vaccinated patients [77]. Although no studies have identified specific T cell epitopes involved, it is clear that their formation is T cell-dependent. Several populations of T-helper cells have been identified in cases of *C. Jejuni*-induced GBS [78], and immunoglobulin class-switching has been observed in transgenic mice that lack complex ganglioside when immunized with *C. Jejuni* LPS [79]. Evaluation of potential cross-reactivity between GBS-associated antigens in pathogens and self is both feasible and actionable using JanusMatrix.
Narcolepsy

Narcolepsy is a neurological disorder characterized by a selective loss of hypocretin-secreting neurons that results in excessive daytime sleepiness [80]. Strong genetic associations with selected HLA alleles in narcolepsy provides support for an autoimmune basis of hypocretin-secreting neuron loss. Narcolepsy occurs almost exclusively in patients whose HLA is DQA1*01:02 and DQB1*06:02 [81,82]. Strong correlations between the onset of narcolepsy with Streptococcus pyogenes [83] and influenza A virus infections have been reported, with epitope redundancy suspected to play a major role in triggering the autoimmune reaction. A 6-9 fold increase in the risk of developing narcolepsy was observed following 2009-2010 H1N1 influenza pandemics in Europe [84,85] and China [86]. In these regions, the onset of narcolepsy was observed following vaccination with Pandemrix, an adjuvanted pH1N1 vaccine. A recent report has identified the presence of autoantibodies against ganglioside GM3 in Pandemrix-vaccinated children who developed narcolepsy with cataplexy [87], providing additional support for the theory that influenza-associated narcolepsy is autoimmune, and suggesting an underlying mechanism similar to GBS. Markers of inflammation (interferon gamma, CCL11, IL12) identified by Luminex assay have been associated with onset of narcolepsy [88].

In addition, a peptide from the surface-exposed region of influenza nucleoprotein A shared protein residues with a fragment of the extracellular domain of hypocretin receptor 2 in the host. Antibodies against these epitopes were present in the sera of individuals that previously received the Pandemrix vaccine [15], suggesting that the nucleoprotein A epitope is a redundant epitope. The presence of the adjuvant may have served as a catalyst to establish the autoimmune in this particular case. The extent to which the relevant epitope is recognized by patients who do not have narcolepsy remains to be determined.
Multiple sclerosis

Multiple sclerosis (MS) is the most common autoimmune disease, affecting more than 2 million people over the world. Demyelination of axons in the central nervous system contributes to the neurological disability associated with MS. Th1 and Th17 effector cells have been shown to play a major role in the pathogenesis of the disease [89], along with a deficit in Treg cells [90,91]. Viral or bacterial infections [92,93], commensal microbiota [94] have been associated to MS. Cross-conserved or redundant T cell epitopes may be involved in MS pathogenesis [95]. For example, a number of stimulatory, cross-reactive peptide sequences from environmental and human antigens were found in MS patient-derived anti-myelin TCR [96]. Furthermore, a peptide from H. influenzae mimicking a PLP-peptide has been shown to induce CNS disease in a mouse model [97].

Autoimmune Disease and the Gut Microbiome

Links between bacterial infections and autoimmune diseases of the gut have been found [98,99]. However, the complexity of the human microbiome may make it difficult to deconvolute the many cross-reactive peptides that could be driving this link. Associations between specific gut microbes and disease [100] may make it possible to narrow down the possibilities, although it seems unlikely that a single gut microbe will be the culprit.

In conclusion, the impact of epitope redundancy on autoimmunity and infectious diseases may be difficult to decipher, since many factors can influence the outcome of infection and immune response. Focusing only on the T cell epitope component of the complex interaction between host and pathogen, T cell-related determinants of immune response include the breadth of T cell epitopes in the pathogen that can be presented to the immune system, and the individual HLA molecules that present these epitopes to the host. In addition, differences in immune responses to specific epitopes may be defined in advance due to previous exposure to the same pathogen (memory T cell response) and/or due to exposure to other pathogens that have simi-
lar, cross-reactive epitopes (heterologous immunity). Rather than view these factors as impediments in the search for linkages between infectious diseases, autoimmunity, and tolerance, we view them as new frontiers that can be explored, applying recently developed computational tools such as JanusMatrix and T cell phenotyping techniques.

Expert Commentary

The development of new immunoinformatics tools have allowed to better define and understand the concept of T cell epitope redundancy between self and pathogens. Not only is epitope-redundancy relevant to host-pathogen immune responses, as it is involved in immune camouflage, but it is also relevant to autoimmunity. One of the major challenges to understanding mechanisms of immune tolerance and its evil twin, autoimmunity, is to identify the T cell epitopes that are recognized by regulatory and effector (inflammatory) T cell populations. Dissecting proteins for these linear determinants of T cell activation is essential to designing therapies that will reverse the course of autoimmune diseases and explain long-established linkages between autoimmunity and infections. Tools for pathogen-TCR-facing-self-wise analysis are now available, making it possible to investigate these important topics. Further studies are necessary to answer these two important questions: (1) do highly TCR cross-conserved epitopes play a key role in tolerance to self; and (2) if epitope redundancy is also relevant to T effector epitopes, are epitopes with lower TCR-face cross-conservation associated with post-infection autoimmune diseases, such as Narcolepsy and Guillain-Barré syndrome? These are truly fundamental questions that are directly relevant to improving vaccines and safeguarding human health.
Five-year view

Biomaterial scientists have been adopting lessons learned from pathogens to evade immune responses to their products for decades. Can vaccinologists and immunologists, rheumatologists and maybe also biologics developers learn about the immunopathogenesis of disease through explorations of epitope redundancy? To be more precise, perhaps we should learn from viruses, bacteria and parasites, by examining which host epitopes they choose to imitate. Why do they camouflage themselves with one epitope (sometimes multiple pathogens use the same 'self' epitope) and not the other? Do those [human] epitopes play a key role in the regulation of human immune response? Putting those special epitopes into biologics, may reduce immune responses to the drugs, improving patient outcomes. And taking them out of vaccines, may result in better vaccines. What has proven to be a weakness in host defense, may be the hope that emerges, leading to solutions for unmet medical needs.

It is time that we explore host-pathogen cross-reactivity at the molecular level, expanding the application of immunoinformatics analysis to new pathogens, and to pursue interdisciplinary studies of the immunopathogenesis of autoimmune disease and tolerance, with the goal of understanding the accelerating epidemic of autoimmune disease, and improving vaccine efficacy and global health for the 21st century.
Key issues

- T cell epitope cross-conservation, or ‘epitope redundancy’, is a consequence feature of TCR training on self antigens in the thymus.
- Epitope redundancy can be uncovered using computational tools that define epitopes, and new tools that allow exploration of TCR-conserved, similar MHC-binding epitopes in large sets of peptides (such as the human genome).
- Numerous studies point to epitope redundancy as a contributor to the development of auto-immune disease.
- New studies are revealing epitope-redundancy as a trigger for tolerance, potentially explaining the immunomodulatory effect of certain epitopes derived from Heat Shock Proteins, and other as-yet unexplained immunological observations.
- Applying computational tools to the human genome, to human pathogens, and to the human microbiome may uncover new relationships between infectious diseases, autoimmunity, and tolerance.
Financial and competing interests disclosure

A De Groot and W Martin are founders and majority owners of EpiVax, Inc. a biotechnology company that provides access to immunoinformatics tools and designs vaccines for commercial clients. L Moise holds options at EpiVax, Inc. Authors S Beseme, F Kibria, and F Terry are employees of EpiVax, Inc. Due to this relationship with EpiVax, the six authors acknowledge that there is a potential conflict of interest inherent in the publication of this manuscript, and assert that they made an effort to reduce or eliminate that conflict where possible. The authors thank Guilhem Richard and Genevieve De Groot for their contribution to the illustrations. The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed.
One of several recent publications seeking to explain the relationship between the uptick in narcolepsy cases following the emergence of H1N1 2009 swine-origin influenza and observed differences between H1N1 vaccine-associated narcolepsy and selected vaccines. This publication identifies cross-reactivity between the hypocretin receptor, and cross-reactivity with M1 protein, as the likely link, and shows a plausible association with HLA DQ, as described previously.

In vivo (murine) validation of the concept that T cell epitopes can protect against severe influenza. This observation was also validated by Richard Webby, who performed an analogous study in ferrets and showed that both CD4+ T helper and CD8+ T effector T cells were critically important to protection against emerging H1N1 influenza

An important mechanism of viral immune escape; it suggests that IL-10-like self proteins, is actively engaged in the modulation of the immune response to viral infection.

The first publication to describe the discovery of Tregitopes, which are promiscuous Class II restricted T cell epitopes that are found in IgG and shown to modulate immunogenicity.

Describes a new algorithm for the identification of Treg epitopes, called JanusMatrix.

15. Ahmed SS, Schur PH, MacDonald NE, Steinman L. Narcolepsy, 2009 A(H1N1) pandemic influenza, and pandemic influenza vaccinations: what is known and unknown about the neurological disorder, the role for autoimmunity, and vaccine adjuvants. J Autoimmun 2014;50:11

An article demonstrating the application of JanusMatrix to cross-reactivity between viral pathogens and self.

Observations that begin to uncover the links between shared T cell receptor sequences, pathogen T cell epitopes, and self epitopes.

Description and validation of a Treg epitope that is highly conserved in the HCV genome.

Description and validation of Treg epitopes located in highly conserved sequences in the H7N9 genome.

Heat-shock protein (HSP) -specific T cells appear to recognize highly promiscuous T cell epitopes in the ubiquitous HSP protein; these T cells may represent HSP-Tregitopes.

Similar observation to #45 above: Heat-shock protein (HSP)-specific T cells appear to recognize highly promiscuous T cell epitopes in another ubiquitous HSP protein; these T cells may represent BiP-Tregitopes.

An IgG-derived Tregitope, found in the ubiquitous Immunoglobulin G protein, showing evidence of tolerance induction in murine and human SLE. This peptide is highly homologous to Tregitope 029 (unpublished, De Groot and Martin EpiVax Inc).

This study shows T cell cross-reactivity between self and a common human virus and the razor thin edge between tolerance and autoimmunity.

An early and important contribution to the field, linking HLA (and hence T cells, and TCR redundancy) to narcolepsy.

This study links self/pathogen T cell cross-reactivity to B cell responses with implications for pathogenicity.

101. Greidinger EL, Zang YJ, Jaimes K, et al. CD4+ T cells target epitopes residing within the RNA-binding domain of the U1-70-kDa small nuclear ribonucleoprotein autoantigen and have restricted TCR diversity in an HLA-DR4-transgenic murine model of mixed connective tissue disease. J Immunol 2008;180(12):8444-54

Pathogens are taken by APCs which will present epitopes on their MHC molecules to initiate the activation of T cells. Trained in the thymus, T cells can recognize epitopes that are conserved on the TCR face between pathogens and autologous (self) proteins, resulting in the activation of potentially regulatory pathways (A). Some of these epitopes can also be unique to this pathogen, activating T cells that engage the immune response (B). This response may be limited due to lack of previous exposure. Pathogen epitopes can also be conserved in the human microbiome (C). The subsequent response can be either regulatory or effector, depending on the exposure.
In the thymus, CD4+ T cells are exposed to self-antigens. TCR interaction with MHC II/self antigen complexes will determine the fate of these T-cells. Those that express a TCR that binds with a strong interaction with self will be removed by apoptosis (negative selection), as well as those with no interaction with MHC II/antigen complex (death by neglect). T cells with the weakest interaction with self-antigens will become conventional T cells (Tconv). Natural regulatory T cell (nTreg) arise from a population that interact with self moderately and express FoxP3. A population of T cells that interact more strongly with self but lack FoxP3 expression is called potential Treg. Conversely, a population of Tconv with a stronger affinity for self will have the potential to express FoxP3, thus they are called unstable/Treg-like Tconv. These cells are likely to become induced Tregs (iTreg).
Figure 3. T cell epitope mapping and immunogenicity scoring

<table>
<thead>
<tr>
<th>Frame Start</th>
<th>AA Sequence</th>
<th>Frame Stop</th>
<th>Hydrophobicity</th>
<th>Z-Score</th>
<th>Z-Score</th>
<th>Z-Score</th>
<th>Z-Score</th>
<th>Z-Score</th>
<th>Z-Score</th>
<th>Hits</th>
<th>Cluster Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1234</td>
<td>IFLYKMEA</td>
<td>1242</td>
<td>-0.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.37</td>
<td></td>
</tr>
<tr>
<td>1235</td>
<td>FLYKMEA</td>
<td>1243</td>
<td>-0.06</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1236</td>
<td>LYKMEAV</td>
<td>1244</td>
<td>-0.11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1237</td>
<td>YKKMEAVKL</td>
<td>1246</td>
<td>3.68</td>
<td>3.57</td>
<td>2.74</td>
<td>3.14</td>
<td>2.34</td>
<td>2.37</td>
<td>1.98</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>1238</td>
<td>KMEAVKL</td>
<td>1247</td>
<td>-0.89</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1239</td>
<td>MEAVKL</td>
<td>1248</td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.45</td>
<td></td>
</tr>
<tr>
<td>1240</td>
<td>MEAVKLRL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Representation of a Typical EpiBar for the Tetanus toxin peptide AA 1234-1248. Z score indicates potential of a 9-mer frame to bind to a given HLA allele. Scores ≥ 1.64 are considered "hits" because they fall in the 95th percentile of binding likelihood, following a normal distribution (intermediate blue). Peptides with scores in the 99th percentile are even more likely to bind to the given allele, and are shaded dark blue. Scores ranked in the 90th percentile (shown but not highlighted) are considered elevated; all other scores are masked for simplicity. 9-mer frames containing four or more alleles scoring above 1.64 are referred to colloquially as an “EpiBars” and are highlighted in yellow (see frame 1237: YKKMEAVKL). This band-like pattern is characteristic of promiscuous epitopes. The Cluster Score represents the deviation in aggregate epitope content relative to the random expectation for a peptide of similar length; Cluster Scores above +10 are considered significant.
Figure 4. JanusMatrix analysis of HIV-1 Env

Epitope network depicting the degree of similarity between the Treg-inducing 'human-like' HIV-1 Env peptide (green diamond). From this peptide, three 9-mer frames were predicted to bind HLA (grey squares). JanusMatrix identified cross-conserved 9-mers in the human genome (dark blue triangles), that were linked to their source human proteins (circles). Some of these human sequences were found in multiple human source proteins (orange highlights), indicating that this epitope is highly redundant.
Epitopes identified in autoantigens involved in various autoimmune diseases were tested in JanusMatrix:

A. Ribonucleoprotein in Mixed Connective Tissue Disease (MCTD) [101];
B. Topoisomerase in Systemic Scleroderma [102];
C. NY-ESO-1 in cancer [103];
D. Glutamic acid decarboxylase 65 (GAD) in type 1 diabetes [103];
E. Desmoglein 3 in Pemphigus Vulgaris [104].

The limited networks found for each of these auto-antigens indicates a high likelihood of in-
flammatory response. Green diamonds represent the original peptide analyzed in JanusMatrix; Grey squares are the 9-mer frames predicted to bind a certain HLA; Dark blue triangles are 9-mers found in the human genome that shares TCR contact residues; Blue circles represent the source protein of these human 9-mer frames.