Draft Genome Sequence of the New Pathogen for Bivalve Larvae

Vibrio bivalvicida

Javier Dubert

Edward J. Spinard
University of Rhode Island

David R. Nelson
University of Rhode Island, dnelson@uri.edu

Marta Gomez-Chiarri
University of Rhode Island, gomezchi@uri.edu

Jesus L. Romalde

See next page for additional authors

Follow this and additional works at: https://digitalcommons.uri.edu/cmb_facpubs

Citation/Publisher Attribution

Available at: http://dx.doi.org/10.1128/genomeA.00216-16

This Article is brought to you for free and open access by the Cell and Molecular Biology at DigitalCommons@URI. It has been accepted for inclusion in Cell and Molecular Biology Faculty Publications by an authorized administrator of DigitalCommons@URI. For more information, please contact digitalcommons-group@uri.edu.
Draft Genome Sequence of the New Pathogen for Bivalve Larvae Vibrio bivalvicida

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 License.

Authors

Javier Dubert, Edward J. Spinard, David R. Nelson, Marta Gomez-Chiarri, Jesus L. Romalde, and Juan L. Barja

This article is available at DigitalCommons@URI: https://digitalcommons.uri.edu/cmb_facpubs/32
Draft Genome Sequence of the New Pathogen for Bivalve Larvae Vibrio bivalvicida

Javier Dubert, Edward J. Spinard, David R. Nelson, Marta Gomez-Chiarri, Jesús L. Romalde, Juan L. Barja

Departamento de Microbiologia y Parasitologia, CIBUS–Facultad de Biología, Universidad de Santiago de Compostela, Santiago de Compostela, Spain; Department of Cell and Molecular Biology, University of Rhode Island, Kingston, Rhode Island, USA; Department of Fisheries, Animal and Veterinary Sciences, University of Rhode Island. Kingston, Rhode Island, USA

Vibrio bivalvicida is a novel pathogen of bivalve larvae responsible for recent vibriosis outbreaks affecting shellfish hatcheries. Here, we announce the draft genome sequence of *V. bivalvicida* 605T and describe potential virulence factors.

The genus *Vibrio* is the largest member of the family *Vibrionacea* and comprises more than 126 bacterial species and 2 subspecies (http://www.bacterio.net/vibrio.html) clustered in 18 clades and 4 orphan species (1, 2). *Vibrios* are widespread in marine environments, showing high diversity at the metabolic and ecological levels, and their association with marine bivalves has regularly been reported (3). Vibriosis caused by some *Vibrio* spp. represents the main bottleneck of the production process at bivalve hatcheries due to the rapid colonization of the bivalve larvae by these pathogens, leading to high larval mortality rates and the loss of production batches (4). The Orientalis clade has a relevant significance for bivalve aquaculture since it includes some of the most well-known larval pathogens, such as *Vibrio tubiashii* subsp. *tubiashii*, *V. tubiashii* subsp. *europaeus*, and the recently described *V. bivalvicida*, whose broad range of action was reported in larvae of different bivalve species (5).

V. bivalvicida 605T (= CECT 8855T = CAIM 1904T) was originally isolated from an episode of larval mortality of carpet shell clam (*Ruditapes decussatus*) in a bivalve hatchery located in Galicia (northwest Spain). Genomic DNA was sequenced using an Illumina MiSeq sequencer by Sistemas Genómicos (Valencia, Spain) with 100× coverage. Reads were trimmed for quality, ambiguous nucleotides, and adapters and were assembled using SPAdes version 3.6 (6). QUAST (7) was used to evaluate the assembly. The assembly produced 91 contigs totaling 4,922,047 bp with an average G+C content of 43.6%. The N50 contig size is 191,755 bp, with the largest contig being 691,504 bp. The resulting draft genome sequence was annotated with the Rapid Annotations using Subsystems Technology (RAST) server, resulting in 4,619 open reading frames (8).

The genome of *V. bivalvicida* 605T encodes three putative extracellular proteins that have been characterized in other *Vibrio* spp.: a phospholipase/hemolysin that shows similarity to Plp in *V. anguillarum* M93S5m (9), a hemolysin annotated as HlyA that shows similarity to Vah1 in *V. anguillarum* M93S5m (9), and a metalloprotease that shows similarity to VtpA in *V. coralliilyticus* RE22 (10). Additional putative extracellular virulence factors identified by RAST are five hemolysins and two phospholipases. Two secretion systems (type III and type VI) used to deliver effectors directly into a host cell were identified on the *V. bivalvicida* 605T genome. The only conserved domain annotated in the type III–injected virulence protein is the YopH N-terminal domain (11). This domain is needed for translocation from the bacterium into the eukaryotic host cell.

This work constituted the first draft genome description of the novel larval pathogen of bivalves *V. bivalvicida* 605T. This genome information contributes to the study of virulence factors, the development of new accurate diagnostic methods, and the knowledge of the bivalve pathogenic *Vibrio* spp.

Nucleotide sequence accession numbers. This whole-genome shotgun project has been deposited in DDBJ/EMBL/GenBank under the accession number LLEI00000000. The version described in this paper is the second version, LLEI02000000.

ACKNOWLEDGMENTS

This study was supported by grants AGL2014–59655 and AGL2013–42628-R from the Ministry of Economy and Competitiveness of Spain.

FUNDING INFORMATION

This work, including the efforts of Juan L. Barja, was funded by Ministerio de Economía y Competitividad (MINECO) (AGL2014–59655). This work, including the efforts of Jesús L. Romalde, was funded by Ministerio de Economía y Competitividad (MINECO) (AGL2013–42628-R).

REFERENCES

