2011

Detection of Diffuse Sea Floor Venting Using Structured Light Imaging

Gabrielle Inglis
University of Rhode Island, gabrielle.inglis@gmail.com

Clara Smart
University of Rhode Island, csmart@my.uri.edu

See next page for additional authors

Follow this and additional works at: https://digitalcommons.uri.edu/gsofacpubs

Part of the [Ocean Engineering Commons](https://digitalcommons.uri.edu/gsofacpubs), [Oceanography Commons](https://digitalcommons.uri.edu/gsofacpubs), and the [Robotics Commons](https://digitalcommons.uri.edu/gsofacpubs)

Terms of Use

All rights reserved under copyright.

Citation/Publisher Attribution

This Article is brought to you for free and open access by the Graduate School of Oceanography at DigitalCommons@URI. It has been accepted for inclusion in Graduate School of Oceanography Faculty Publications by an authorized administrator of DigitalCommons@URI. For more information, please contact digitalcommons@etal.uri.edu.
Authors
Gabrielle Inglis, Clara Smart, Christopher Roman, and Steven Carey
Detection of diffuse sea floor venting using structured light imaging

Clara Smart, Gabrielle Inglis, Chris Roman, Steven Carey

Ocean Engineering, Graduate School of Oceanography, University of Rhode Island, Narragansett, RI, United States

Structured Light Overview

Identifying and localizing active diffuse low temperature sea floor venting at hydrothermal sites is difficult and inefficient. Typically, such sites are identified by a temperature induced optical shimmering visible during direct visual inspections by a remotely operated vehicle (ROV) working within meters of the sea floor. Such an approach prevents efficient surveys over broad areas and complicates establishing spatial relations between areas of float activity.

Our recent work with a structured light laser system indicates that venting can be detected in survey images in an automated and systematic fashion. During the summers of 2010 and 2011 the E/V Nautilus and ROV Hercules surveyed several active vent sites which provide examples of vent detection.

Kolumbo Vent Field, 2010

During the 2010 E/V Nautilus expedition active vents were surveyed within the Kolumbo crater, located about 7km from the coast of Santorini, Greece. As a depth of 500m there are numerous chimney vents with temperatures up to 230°C surrounded by larger areas of lower temperature diffuse venting (30°C-60°C). The background water temperature in the crater is 16°C. A laser survey was completed over large sections of the vent field, which created dramatic diffraction (Fig 3b). Bathymetry and the second moment of the laser line were then computed and plotted for comparison.

Kolumbo Vent Field, Poet’s Candle 2011

Within the Kolumbo crater, the around the Poet’s Candle vent, there is a region of diffuse venting and associated coverage by a white bacteria mat (Fig. 7). A 2011 laser survey over the area was able to capture lower temperature venting, measured 25°C-45°C above ambient.

Palinuro Seamount, Tyrrhenian Sea, 2011

Small active vents discharging shimmering water were discovered on the eastern flank of the large Palinuro seamount in the Tyrrhenian Sea at depths of 600m. Maximum fluid temperatures were 68°C in two rocky areas where tubeworm colonies were growing (Fig 12).

Acknowledgements

Institute for Exploration, Nautilus Exploration Program, Ocean Exploration Trust Edward Baker, NOAA/PMEL, for the use of MAPR
Office of Naval Research

Further Work: Additional work will seek to relate the laser image statistic to the vent intensity in a more quantitative way.