Seabed AUV Offers New Platform for High-Resolution Imaging

Hanumant Singh
Woods Hole Oceanographic Institution, hsingh@whoi.edu

Ali Can

See next page for additional authors

Follow this and additional works at: https://digitalcommons.uri.edu/gsofacpubs
Part of the Oceanography Commons

Citation/Publisher Attribution
Available at: http://dx.doi.org/10.1029/2004EO310002

This Article is brought to you for free and open access by the Graduate School of Oceanography at DigitalCommons@URI. It has been accepted for inclusion in Graduate School of Oceanography Faculty Publications by an authorized administrator of DigitalCommons@URI. For more information, please contact digitalcommons@etal.uri.edu.
Authors

This article is available at DigitalCommons@URI: https://digitalcommons.uri.edu/gsopacpubs/6
Eos, Vol. 85, No. 31, 3 August 2004

was in chaparral or grassland. Whereas healthy forests in southern California can sustain a low-intensity fire regime with regular surface fires in the absence of fire suppression, chaparral always experiences canopy fires that consume much of the vegetation. Not only does chaparral regenerate quickly, but a relatively small proportion of the areas with homes proximate to wildland vegetation actually burned—only about 5% of southern California’s wildland-urban interface in total (S. Stewart, pers. comm.). Consequently, the risk of large regional-scale fires remains high.

Acknowledgments

Support for this research came from the U.S. National Oceanographic and Atmospheric Administration’s Office of Global Programs. We thank E. Baino for assistance with the graphics and C. Allen and M. Moritz for their comments.

References


Predictive Services (2003), Monthly Fire Weather/Fire Danger Outlook, Southern California Geographic Area Coordination Center, Vallejo, Calif., November.


Author information

Anthony L. Westerling and Daniel R. Cayan, Scripps Institution of Oceanography, La Jolla, Calif., Timothy J. Brown and Beth L. Hall, Desert Research Institute, Reno, Nevada; and Laurence G. Riddle, Scripps Institution of Oceanography, La Jolla, Calif.

Seabed AUV Offers New Platform for High-Resolution Imaging

A number of marine biological, geological, and archaeological applications share the need for high-resolution optical and acoustic imaging of the sea floor (Ballard et al., 2002; Greene et al., 2000; Shank et al., 2002). In particular, there is a compelling need to conduct studies in depths beyond those considered reasonable for divers (~50 m) down to depths at the shelf edge and continental slope (~1000–2000 m). Some of the constraints associated with such work include the requirement to work off of small coastal vessels or fishing boats of opportunity, and the requirement for the vehicle components to be air-shippable to enable inexpensive deployments at far-flung oceanographic sites of interest.

Over the last 2 and a half years, the Seabed Autonomous Underwater Vehicle (AUV) has been designed and deployed in support of such tasks off of Puerto Rico, Bermuda, Stellwagen Bank off Massachusetts, and the U.S. Virgin Islands.

Components and Capabilities

In designing the Seabed AUV (see http://www.whoi.edu/DSL/haru/seabed), a decision was made to incorporate standard oceanographic sensors as far as possible to minimize costs and allow for easy maintenance. It currently supports a 300-kHz side-scan sonar, a 1200-kHz Acoustic Doppler Current Profiler, a Seabird pumped Conductivity, Temperature and Depth sensor, a 675-kHz mechanically scanned pencil beam sonar, and a 12-bit (high dynamic range) camera system. A 24Whr lithium-ion battery pack provides an 8-hour endurance for Seabed running at speeds between 0.3 m/s to 1 m/s. Its size—each of its two torpedoshaped hulls is 1.5 m in length—and weight of 250 kg permit easy deployment off small coastal or fishing vessels of opportunity, and it can be shipped by air at a very reasonable cost to most departure ports.

Optical Imaging and Navigation and Control

Seabed has been designed specifically to further the growing interests in the area of sea floor optical imaging; specifically, high-resolution color imaging and the processes of photomosaicking and three-dimensional image reconstruction. In addition to high-quality sensors, this imposes additional constraints on the ability of the AUV to carry out structured surveys, while closely following the sea floor. The distribution of the four thrusters, coupled with the passive stability inherent in a two-hulled vehicle with a large meta-centric height, allows the Seabed AUV to survey close to the sea floor, even in very rough terrain.

Figure 1 illustrates vehicle performance in such challenging applications. The vehicle (top left) can follow steep gradients at constant altitude; in this case, on a coral reef off the U.S. Virgin Islands, and follow a greater than 45° slope at 3 m (top center) while obtaining high-resolution imagery with good color fidelity.

Figure 2 shows an image obtained from the vehicle using its camera and lighting system at night in 65 m depth, in the absence of ambient light. The nonlinear preferential attenuation of different parts of the visible spectrum underwater led to images that are not color-balanced. However, the 12-bits of dynamic range provided by the camera allow us to compensate and color balance the imagery as shown in Figure 2 (bottom) by using methods including frame averaging and parametric surface fitting in the homomorphic domain.

To accomplish high-resolution, large-area surveys, the AUV is run under closed loop control (Whitcomb et al., 2000). Navigation in shallow water (down to a few hundred meters) is accomplished by using a doppler velocity log in combination with Global Positioning System data before and after the dive. Algorithms for bottom-following in rugged terrain also allow the AUV to carry out autonomous surveys in regions of high relief while running precise track lines. The results of such a task are illustrated in Figure 3. Here, the AUV was imaging a boulder pile with a series of closely spaced track lines, while maintaining a constant 3 m altitude off the bottom in an area where the relief was also of that order.

Photomosaicking Underwater Imagery

Photomosaicking underwater is a challenging task (Pizarro et al., 2003). The nonlinear attenuation of color underwater, the absence of uniform ambient lighting, an unstructured
Eos, Vol. 85, No. 31, 3 August 2004

Fig. 1. The Seabed AUV (top left) has been designed for high-resolution imaging close to the sea floor. It is capable of working very close to the sea floor, as illustrated by the mission depth profile (top center) at a coral reef in the U.S. Virgin Islands. During this mission, it followed the sea floor bathymetry at a height of 3 m across a steep cliff in varied terrain. Even in such challenging environs, the Seabed AUV can obtain high-resolution, high-quality color imagery (bottom row). Original color image appears at back of this volume.

terrain, and backscatter from the water column all combine to make image registration underwater a difficult task. Our systems-level solution to the problem (as described above) has been to use a combination of technologies to collect color-balanced images that can be coupled with precision navigation and closed loop control associated with the vehicle, to allow automatically constructed photomosaics, such as the 27-image mosaic shown in Figure 3.

Typically, overlapping imagery with a structured survey is collected, and after color compensation of each image, features based on the Harris corner detector are extracted, and they are encoded individually using Zernike basis functions. Features in Zernike space can then be compared across an overlapping image pair to estimate the transformation for that pair of images. In a sequential manner, image topologies can thus be generated, and in a final step, combined into a single photomosaic [Shank et al., 2002].

These efforts highlight the possibilities associated with such work for underwater imaging platforms in general. Small AUVs, such as Seabed, are necessarily constrained in the amount of light available for optical imaging. They are also constrained by their size, to having a limited camera-to-light separation. Our ability to provide high-color fidelity and resolution for imagery obtained from a small AUV highlights the possibilities associated with optical imaging from other platforms such as the Jason ROV and the DSV Alvin. A number of these imaging technologies have been successfully transitioned to other assets within the academic community, including the Jason ROV and the Abe AUV. Efforts are also currently underway to make these photomosaicking technologies widely available for academic users.

Further details about the Seabed AUV can be found at Web site: http://www.whoi.edu/DSL/hanu/seabed. Our efforts with regard to the use of this asset are continuing through funded work on the engineering aspects as well as through scientific research cruises. The low costs associated with using this AUV make
Fig. 2. A typical raw (top) and color-compensated (bottom) image obtained by using the Seabed AUV off Stellwagen Bank in 65 m of water. The image footprint covers an area of approximately 3 m x 3 m. Original color image appears at back of this volume.
Fig. 3. A 27-image photomosaic of a rock pile in Stellwagen Bank, off of the Massachusetts coast, along with two of the original color-equalized images that went into constructing it. Each image encompasses an area of 3 m x 3 m, with the total mosaic spanning 35 m in length. Original color image appears at back of this volume.

it an ideal platform for conducting long-term, repeatable time series surveys at sites of interest. Collaboration with those interested in using this asset is encouraged.

Acknowledgments

This work was funded in part by the Office of Naval Research under grant #N00014-01-10510, in part by the Censsis Engineering Research Center of the U.S. National Science Foundation under grant EEC-9986821, and in part by the Woods Hole Oceanographic Institution through a grant from the Penzance Foundation. We thank D. Fornari and R. D. Ballard for their invaluable suggestions and comments regarding this manuscript. We also thank Rob Reves-Sohn, Page Valentine, James Lindholm, Ken Foote, Roy Armstrong, and Rick Nemeth for their support during our initial cruises.

References

Shank, T. et al. (2002), Time-series exploration and biological, geological, and geochemical characterization of the Rosebud and Calyfield Hydrothermal Vent Fields at 86°W and 89.5°W on the Galapagos Rift (abs.), Eos, Trans. AGU, 83(47), Fall Meet. Suppl.

Author Information

For additional information, contact Hanumant Singh, Deep Submergence Laboratory, Woods Hole Oceanographic Institution, Woods Hole, Mass.; Email: hSingh@whoi.edu.
Fig. 1. The Seabed AUV (top left) has been designed for high-resolution imaging close to the sea floor. It is capable of working very close to the sea floor, as illustrated by the mission depth profile (top center) at a coral reef in the U.S. Virgin Islands. During this mission, it followed the sea floor bathymetry at a height of 3 m across a steep cliff in varied terrain. Even in such challenging environs, the Seabed AUV can obtain high-resolution, high-quality color imagery (bottom row).
Fig. 2. A typical raw (top) and color-compensated (bottom) image obtained by using the Seabed AUV off Stellwagen Bank in 65 m of water. The image footprint covers an area of approximately 3 m x 3 m.
Fig. 3. A 27-image photomosaic of a rock pile in Stellwagen Bank, off of the Massachusetts coast, along with two of the original color-equalized images that went into constructing it. Each image encompasses an area of 3 m x 3 m, with the total mosaic spanning 35 m in length.