2010

Susceptability of *Listronotus maculicollis* (Coleoptera: Curculionidae) Adults from Southern New England Golf Courses to Chlorpyrifos

Christopher D. Clavet
University of Rhode Island

Edwin D. Requintina Jr.

See next page for additional authors

Follow this and additional works at: https://digitalcommons.uri.edu/pls_facpubs

Terms of Use
All rights reserved under copyright.

Citation/Publisher Attribution
Available at: http://dx.doi.org/10.1653/024.093.0420

This Article is brought to you for free and open access by the Plant Sciences and Entomology at DigitalCommons@URI. It has been accepted for inclusion in Plant Sciences and Entomology Faculty Publications by an authorized administrator of DigitalCommons@URI. For more information, please contact digitalcommons@etal.uri.edu.
Authors
Christopher D. Clavet, Edwin D. Requintina Jr., Darryl Ramoutar, and Steven R. Alm

This article is available at DigitalCommons@URI: https://digitalcommons.uri.edu/pls_facpubs/2
SUSCEPTABILITY OF *LISTRONOTUS MACULICOLLIS* (COLEOPTERA: CURCULIONIDAE) ADULTS FROM SOUTHERN NEW ENGLAND GOLF COURSES TO CHLORPYRIFOS

CHRISTOPHER D. CLAVET, EDWIN D. REQUINTINA, JR., DARBYL RAMOUTAR AND STEVEN R. ALM
University of Rhode Island, Department of Plant Science and Entomology, Woodward Hall, Alumni Avenue, Kingston, RI 02881

The “annual bluegrass weevil”, *Listronotus maculicollis* Kirby (Coleoptera: Curculionidae) is a serious pest of *Poa annua* L. (Poales: Poaceae) turfgrass in the Northeastern U.S. Historically, the primary control strategy has been to intercept adults with insecticide residues as they emerge from overwintering sites (Cowles et al. 2008; Potter 1998; Vittum et al. 1999). Chlorinated hydrocarbons were used to manage weevil populations until around 1969, but in the 1970s and 1980s less persistent organophosphates were utilized; today pyrethroids and chlorpyrifos are used to control adults (Cameron & Johnson 1971; Koppenhöfer & McGraw 2005; Schread 1970; Tashiro 1976).

In 2009 several adult *L. maculicollis* populations from Connecticut, Massachusetts, and Rhode Island demonstrated varying levels of resistance to pyrethroids (Ramoutar et al. 2009ab), but no data are available for *L. maculicollis* resistance to chlorpyrifos, an organophosphate. Tashiro (1976) first communicated diminished organophosphate effectiveness, but there are no further studies conducted on this topic. The objective of this study was to obtain toxicity data on the susceptibility of *L. maculicollis* populations from several golf courses in southern New England to chlorpyrifos.

In 2008 and 2009 from May-Sep adult weevils were collected from 8 golf courses in Connecticut, Massachusetts, and Rhode Island (Fig. 1). Insects were collected by hand from golf course fairways or greens and kept at 21-23°C on *P. annua* plugs until bioassays were conducted, within 48 h of collection. Chlorpyrifos (technical, 99.9% purity) was dissolved in reagent quality acetone (>95% purity) (Sigma-Aldrich, St. Louis, MO) and 1 µL of chlorpyrifos or acetone (control) was applied per insect dorsally to the intersegmental membrane between the prothorax and the elytra (Metcalf 1958; Perez-Mendoza 1999). Mortality data were estimated from 6-8 concentrations and 10-15 unsexed adults per concentration. Applications

Fig 1. Location of sampling sites in southern New England for *L. maculicollis* chlorpyrifos resistance study; New Haven (1), Farmington (2), Pawtucket (3), Westerly (4), Danbury (5), Seekonk (6), Hartford (7), and Rumford (8).
were made with a Burkhard microapplicator (Burkhard Mfg. Co., Ricksmanworth, UK) equipped with a 1-mL tuberculin syringe. Following dosing, adults were placed in Petri dishes (100 x 15 mm) and held at 25 ± 2°C for 24 h without food or water, after which mortality was recorded. Insects were counted as dead if they displayed no movement when probed. Bioassays were replicated twice for each location and results were pooled across replicates. According to (Yu 2008) the mortality range for performing dose-response experiments should fall according to (Yu 2008) the mortality range for per- resistance to chlorpyrifos is low, we feel that in order to adequately manage L. maculicollis in the future, control strategies should involve proper timing of insecticide applications, mode of action rotation, and integrated pest management techniques.

We thank each of the golf courses, their superintendents and members for allowing us the privilege of conducting research at their facilities. These courses (and superintendents) include the following: Agawam Hunt County Club, Rumford, RI (Drew Cumming), Hartford Golf Club, Hartford, CT (Jonathan Burke), Ledgemont Country Club, Seekonk, MA (William E. Sherman), Misquamicut Club, Westerly, RI (William Morton), Pawtucket Country Club, Pawtucket, RI (Mike Whitehead), Ridgewood Country Club, Danbury, CT (Dave Kerr), Tunxis Plantation Golf Course, Farmington, CT (Charles Babcock), and Yale University Golf Course, New Haven, CT (Scott Ramsey). Funding for the study was provided by grants from the USDA, the New England Regional Turf Foundation and the Tri-State Turf Research Foundation. This is contribution number 5210 of the Rhode Island Agricultural Experiment Station.

SUMMARY

The LD_{50} values for chlorpyrifos among the L. maculicollis populations studied here ranged from 0.4-1.5 µg/insect resulting in resistance ratios of 1.25-3.75. Even though L. maculicollis resistance to chlorpyrifos is low, we feel that these results provide golf course superintendents with important information concerning management of this pest.

![Table 1](image)

<table>
<thead>
<tr>
<th>Population</th>
<th>State</th>
<th>n</th>
<th>Slope (SE)</th>
<th>LD_{50} (µg/insect) I</th>
<th>χ^2 (df)</th>
<th>95% FL</th>
<th>RR</th>
</tr>
</thead>
<tbody>
<tr>
<td>New Haven</td>
<td>CT</td>
<td>140</td>
<td>2.72 (0.71)</td>
<td>0.4 a</td>
<td>6.9 (4)</td>
<td>0.2-0.5</td>
<td>—</td>
</tr>
<tr>
<td>Farmington</td>
<td>CT</td>
<td>140</td>
<td>5.64 (1.83)</td>
<td>0.5 ab</td>
<td>2.8 (4)</td>
<td>0.3-0.6</td>
<td>1.25</td>
</tr>
<tr>
<td>Pawtucket</td>
<td>RI</td>
<td>180</td>
<td>1.74 (0.25)</td>
<td>0.5 abc</td>
<td>3.4 (6)</td>
<td>0.3-0.7</td>
<td>1.25</td>
</tr>
<tr>
<td>Westerly</td>
<td>RI</td>
<td>160</td>
<td>4.28 (1.00)</td>
<td>0.8 bcd</td>
<td>4.5 (5)</td>
<td>0.6-1.0</td>
<td>2.00</td>
</tr>
<tr>
<td>Danbury</td>
<td>CT</td>
<td>180</td>
<td>3.70 (0.71)</td>
<td>1.0 de</td>
<td>6.3 (6)</td>
<td>0.8-1.2</td>
<td>2.50</td>
</tr>
<tr>
<td>Seekonk</td>
<td>MA</td>
<td>180</td>
<td>1.46 (0.29)</td>
<td>1.0 cde</td>
<td>9.2 (6)</td>
<td>0.7-1.6</td>
<td>2.50</td>
</tr>
<tr>
<td>Hartford</td>
<td>CT</td>
<td>180</td>
<td>2.87 (0.43)</td>
<td>1.2 de</td>
<td>2.5 (6)</td>
<td>0.9-1.5</td>
<td>3.00</td>
</tr>
<tr>
<td>Rumford</td>
<td>RI</td>
<td>160</td>
<td>3.50 (0.73)</td>
<td>1.5 e</td>
<td>4.2 (5)</td>
<td>1.1-1.9</td>
<td>3.75</td>
</tr>
</tbody>
</table>

1. LD_{50} values followed by the same letter are not significantly different based on overlap of their 95% fiducial limits.
2. L.R. chi-square goodness-of-fit values. Tabular values at P = 0.05 for 4 df = 9.49, 5 df = 11.07, 6 df = 12.59.
3. Resistant Ratio (RR) = LD_{50} resistant population ÷ LD_{50} most susceptible population.
REFERENCES CITED

