Supporting Information for

Glacial Southern Ocean expansion recorded in foraminifera-bound nitrogen isotopes from the Agulhas Plateau during the Mid-Pleistocene Transition

B. A. Marcks¹*, T. P. Dos Santos², D. V. O. Lessa³, A. Cartagena-Sierra³, M. A. Berke³, A. Starr⁴, I. R. Hall⁴, R. P. Kelly¹, R. S. Robinson¹

¹Graduate School of Oceanography, University of Rhode Island, Narragansett, RI, USA.
²School of Arts, Sciences and Humanities, University of São Paulo, São Paulo, Brazil.
³Programa de Pós-Graduação em Geoquímica Ambiental, Universidade Federal Fluminense, Brazil
⁴Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, IN, USA.
⁵School of Earth and Environmental Sciences, Cardiff University, Cardiff, UK.

*Corresponding author: Basia Marcks (bmarcks@uri.edu)

Contents of this file

Figures S1 to S4
Supplemental Equations S1 and S2

Introduction

Here we include the supplemental figures referenced in the above manuscript. Images include complimentary data, subset records, and Rayleigh curve estimates for nutrient consumption.
Figure S1. a. Modern sea surface δ15N\textsubscript{NO3} profile measurements, colored by latitude, showing isotopic enrichment with progressive consumption of the nutrient pool as waters are advected northward (open symbol, solid lines). Red line with closed triangles indicates integrated product +3.1 ‰, species specific elevation for *G. bulloides* over bulk PON at 41°S (Smart et al., 2020; Sigman et al., 1999). Closed shapes with black outlines indicate expected δ15N\textsubscript{FB} (integrated product + 3.1‰) of *G. bulloides* growing in the surface mixed layer at each latitude. Profile data are from Smart et al. (2020).

b. Estimation for nitrate consumption at 41°S. Average δ15N\textsubscript{FB} *G. bulloides* measurements for Holocene (long dash short dash line), average MPT interglacial (dot dash line) are indicated by horizontal lines, corresponding nitrate concentrations are indicated by vertical lines. Red line with closed triangles indicates integrated product +3.1 ‰, species specific δ15N elevation for *G. bulloides* over bulk PON at 41°S (Smart et al., 2020; Sigman et al., 1999). Red dashed line with open triangles shows instantaneous product +3.1 ‰, species specific elevation for *G. bulloides* over bulk PON, at 41°S (Smart et al., 2020).
Figure S2. a. $^{137}\text{U}^{\text{K}}$ derived sea surface temperatures from Sites U1475 (Cartagena-Sierra et al., 2021) and 1090 (Martínez-García et al., 2009) (°C); b. Ice rafted debris mass accumulation rate at Site U1475 (grains/cm2/kyr) (Starr et al., 2021); c. Oxygen isotopes from benthic foraminifera *Cibicidoides wuellerstorfi* at Site U1475 (Starr et al., 2021) (‰); d. Insolation at 80°S (W/m2) (Laskar et al., 2004).
Figure S3. δ^{15}N$_{FB}$ values of *G. bulloides* in glacial periods after 900 ka. Marine isotope stages are numbered on the top axis and blue shading indicates glacial intervals.

Figure S4. Nitrogen content per milligram foraminifera cleaned in each sample (nmol N/mg).
Equation S1. Blank-corrected sample δ^{15}N values are calculated using the equation:

$$
\delta s = \frac{\delta t - \delta b}{n s}
$$

where δs is the δ^{15}N value of foram-bound N (as NO$_3^-$), n_s is the concentration of sample NO$_3^-$, δt is the measured δ^{15}NNO$_3^-$, n_t is the measured [NO$_3^-$], δb is the δ^{15}N value of total N blank, and n_b is the concentration of blank-derived [NO$_3^-$]. We estimated the δ^{15}N value of the persulfate blank using a dilution series (5, 7.5, 10, and 20 μM) of the USGS65 glycine standard and the fraction of the blank in standards. Each batch of samples had a distinct blank value, with a mean value of 5 ± 10‰. We applied the mean blank δ^{15}N value for each sample in the dataset, assuming an error of ±10‰.

Equation S2. The uncertainty of the δ^{15}N value of the blank is propagated to calculate the uncertainty in the oxidized sample δ^{15}N value using the equation:

$$
\sigma^2(\delta s) = (nb \cdot \frac{\delta b - \delta t}{n_t - n_b})^2 \cdot \sigma^2(n_t) + \left(\frac{n_t}{n_t - n_b}\right)^2 \cdot \sigma^2(\delta t) + \left(\frac{n_t \cdot \delta t - \delta b}{n_t - n_b}\right)^2 \cdot \sigma^2(n_b) + \left(\frac{n_b}{n_t - n_b}\right)^2 \cdot \sigma^2(\delta b)
$$