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 24 

Abstract 25 

Time is perceived to be unidirectional and continuous in the philosophy of science. This 26 

continuity can play a crucial role in time series analysis as events are generally seen as an 27 

outcome of the past, or subject to events that occurred previously in time. In this study, we 28 

describe an ordinal approach to perceiving ecological time series – one that relies on pattern 29 

formation with both antecedent and future events. Our approach defines a limited set of 30 

structural shapes that can occur for past, present, and future time points. Such a library of all 31 

possible shapes can then be used for novel approaches to data visualization and time series 32 

analysis. We applied this method to simple ecological models and then to natural time series data 33 

for measles cases in London and the phytoplankter Pseudo-nitzschia spp. in Narragansett Bay, 34 

Rhode Island. Alternative perspectives on time series representation can strengthen our ability to 35 

identify important patterns in dynamics and effectively discriminate between similar time series. 36 

When used in conjunction with conventional line-plots, barcodes can be tailored to demonstrate 37 

the presence or absence of specific structural patterns or features. Our results show that data 38 

exploration without the assumption of time series continuity can yield important and novel 39 

insight into the behavior of ecological systems.   40 

 41 

Keywords: data visualization; time series analysis; pattern recognition; ordinal patterns; 42 

dynamical barcoding 43 

 44 

 45 
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Introduction 47 

 The ability to perceive quantitative information is an important component of scientific 48 

analysis. Graphical methods are typically used to visually encode and present information 49 

(Cleveland and McGill 1985) and the method of choice can impact inference on the underlying 50 

data. In ecology and other fields, time series representation relies on graphical approaches that 51 

present time in a continuous sense. The continuous perception of time has provided an 52 

abundance of techniques that can graphically represent time series data (Javed et al. 2010); 53 

however, modern frameworks present many alternative approaches to visual time series 54 

representation (Aigner et al. 2007; Weiß 2008).  55 

One approach is to describe time in an ordinal sense – every time point is considered 56 

independent and has exactly one previous time point and one future time point. Ordinal pattern 57 

analysis has been previously used to compute the permutation entropy of time series (Bandt and 58 

Pompe 2002; Unakafova and Keller 2013) and has found utility in the analysis of EEG data (Cao 59 

et al. 2004; Ouyang et al. 2010), heart rate variability (Parlitz et al. 2012; Graff et al. 2013) and 60 

more recently, understanding stock market dynamics (Peng and Shang 2022). Visualization 61 

techniques for representing ordinal patterns have introduced rate evolution graphs and Iterated 62 

Function System (IFS) circle transformations (Weiß 2008).  63 

Despite recent development and endorsement of ordinal pattern analysis (Bandt 2019), 64 

the use of such approaches has been limited in exploring ecological change. Conventional time 65 

series analysis in ecology relies on identifying correlations (Carr et al. 2019), statistical modeling 66 

(Tredennick et al. 2021) and, the visual identification of patterns across line graphs (Friedman 67 

2021). Graphical alternatives that can allow for effective discrimination across multiple time 68 

series and quickly identify patterns in complex data are in high demand. Novel techniques of 69 
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data exploration could allow for a deeper understanding of ecological systems (Fox and Hendler 70 

2011).  71 

In this paper, we apply modified ordinal patterns to define a set of shapes that can form in 72 

model and natural ecological time series. We visualize these modified ordinal patterns with a 73 

novel technique called ‘barcoding’ to represent change across time and aid in ecological data 74 

exploration. Broadly, we ask the questions, (1) Do the structural features of time series reflect 75 

underlying dynamics? and (2) Can we identify patterns of ecological change with dynamical 76 

barcoding? Our goal is to evaluate the feasibility of ordinal pattern analysis in ecological studies 77 

and describe some potential methods of data exploration that could identify previously 78 

unrecognized dynamics, as well as inspire the creation of new hypotheses.  79 

 80 

Materials and Methods 81 

Ecological time series are typically seen as curves on a time-axis (Figure 1), where changes in 82 

the value of dependent variables (such as abundance or similar proxies) serve to demonstrate 83 

changes in population dynamics. This approach can then allow for the creation of mathematical 84 

functions that fully describe the system (in an ideal scenario) and thus, be used to forecast 85 

beyond the existing dataset to future time-points.  86 

 87 
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 88 
Figure 1: Illustrative example of a typical time series curve 89 

 90 

 91 

We propose an alternative approach that relies on viewing time series as an ordered set of 92 

system-states (i.e. known values of a variable such as abundance).  In this view, each time point 93 

is independent, with an associated time point preceding and following it in the time axis (Figure 94 

2). The key difference in this perspective is that values in the past are not assumed to affect the 95 

values in the present or the future. As such, the time series can be divided up into ordinal sets 96 

with no presumed connection between them.  97 
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 98 
Figure 2: Illustrative example of our perception of time series 99 

 100 

Connecting shapes through time 101 

As each time series can be divided into disconnected sets of values, moving across time from 102 

past values to future values can be achieved by taking a stepwise approach. Starting from the 103 

beginning of the time series, we can move one time-point at a time. For example, for a time 104 

series of 10 sequential measurements of , we can define the sets as  105 

 Within each set, we can use defined 106 

relations (such as >,= and <) between the elements to categorize each set. The categories of these 107 

ordinal sets are hereafter termed as “shapes”.   108 

For any time series of a variable, this means that there can be a limited number of all 109 

possible dynamical shapes in time. In the simple case, where each set only contains two elements 110 

with three possible relations (>,=  and <), the total number of shapes is  (Figure 3).  111 

 112 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 10, 2022. ; https://doi.org/10.1101/2022.04.07.487508doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.07.487508
http://creativecommons.org/licenses/by-nc-nd/4.0/


7 
 

 113 

Figure 3: For a series of two points in time, there are only 3 possible shapes that can arise. Here, 114 

 refers the value of a variable in time and can stay the same or change with successive time 115 

points. 116 

 117 
 118 

Similarly, in the case where each set can contain three elements with three possible relations, the 119 

total number of possible shapes is  (Figure 4). Ordinal patterns of order  have 120 

been shown to have 13 possibilities (Unakafova and Keller 2013); however, our relationship-121 

based definitions allows us to condense the library to 9 shapes. In our library, the magnitude of 122 

change does not feature as heavily as the direction of change.  123 
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 124 
Figure 4: For a series of three points in time, there are only 9 possible shapes that can arise. 125 
Here,  refers the value of a variable in time and can stay the same or change with successive 126 

time points. 127 

 128 

Any time series that can be described as a sequence of ordinal sets can be visually represented 129 

using a library of shapes (such as Figure 4). For each structural shape, we can “color” or code the 130 

time series to represent the presence or absence of a particular shape. It is also possible to assign 131 

a single color to a group of shapes or create a coloration scheme based on the dynamics of 132 

interest. Here, we assigned a unique color to every shape and left white the shapes where any of 133 

the data points are missing. All the barcodes were created using the R package “ggplot2” (R 134 

Core Team 2021; Wickham 2016; R version 4.1.2). Although we used a simple plotting package 135 

combined with high resolution data, effective visualization will depend on the magnification of 136 

the plot and the size of the screen. In some cases, it might be appropriate to divide the time series 137 

into shorter segments or to aggregate data for plotting. 138 

 139 
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 140 
Figure 5: Demonstration of a barcode based on typical 3-point dynamical shapes. Here, the time 141 

axis moves from left to right and each line is indicative of the presence or absence of a shape. As 142 
we move through time, we see that some shapes appear more frequently than others. White 143 

spaces indicate missing data points. Each color represents a unique dynamical shape. 144 
 145 

Temporal patterns 146 

The reconstruction of a time series allows for the identification of ecological change through 147 

time. We first created model systems based on (a) a simple sine curve (Equation 1), (b) Lotka-148 

Volterra dynamics (Lotka 1920; Equations 2 and 3) and (c) a Lorenz system of equations 149 

(Lorenz 1963; Equations 4, 5 and 6). For each of these systems, we created barcodes to visualize 150 

temporal patterns. Table 1 lists all the parameters and their values for the model systems.  151 

 152 

   (1) 153 

where  is the abundance of a population  at time  and  is the frequency of oscillation of the 154 

population dynamics. 155 

 156 
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  (2) 157 

  (3) 158 

where  is the abundance of the prey species and  is the abundance of a predator,  is the 159 

growth rate of the prey,  is the grazing rate of the predator,  is the natural mortality rate of the 160 

predator and  is the growth rate of the predator.  161 

 162 

 (4) 163 

 (5) 164 

  (6) 165 

Where ,  and  are the log abundance of three different interacting species and ,  and  are 166 

the cumulative interaction coefficients for each population.  167 

 168 

 169 

 170 

 171 

 172 

 173 

 174 

 175 

 176 

 177 

 178 
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Table 1: List of model parameters, units and values used in the model systems 179 

Symbol Parameter Units Value 

 time step  1 

 abundance of species at time t  -  

 frequency of oscillation  
 

 

 Lotka-Volterra prey abundance - 20 

 Lotka-Volterra predator abundance - 2 

 Growth rate for prey   

 Grazing rate on prey by the predator   

 Mortality rate for predator   

 Growth rate for predator   

 Population change rate for species 1  10 

 Population change rate for species 2  28 

 Population change rate for species 3  
 

 Log abundance of species 1 - 15 

 Log abundance of species 2 - 10 

 Log abundance of species 3 - -8 

 180 

Noise and stochasticity 181 

As there can be varying amounts of noise and stochasticity in natural time series, we 182 

created thresholds to allow for keying into dynamics of interest. For every relation (>,=  and <) 183 

between two time points, we defined a minimum level of change  required for the relation to be 184 

considered significant (Figure 6). For real life applications, thresholds can be set to identify 185 

specific changes in a time series, or systematically tuned to account for expected noise and 186 

measurement error during sampling. 187 
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 188 

Figure 6: For a series of two points in time, there are only 3 possible shapes that can arise. Here, 189 

 refers the value of a variable in time and can stay the same or change with successive time 190 

points. A change is considered only if it is higher than a threshold  which can be varied based 191 

on the expected level of noise in a time series. 192 

 193 

Natural time series data - Measles 194 

 Childhood infectious diseases such as measles have provided an excellent testbed for the 195 

testing and study of dynamical systems. As a classic natural example of oscillatory dynamics 196 

(Olsen et al. 1988), the prevalence of measles in London’s population has been documented to be 197 

nonlinear and subject to external perturbations (Becker et al. 2019). Measles epidemics have 198 

pronounced seasonality (Mantilla-Beniers et al. 2010), sensitivity to chaos (Dalziel et al. 2016) 199 

and travel in waves across both time and space (Grenfell et al. 2001). To illustrate the utility of 200 

our approach on real time series data, we used an aggregated monthly time series of measles 201 

cases in London from 1940 – 1994 (Becker et al. 2019). First, we utilized the entire 9-shape 202 

color scheme without thresholds to understand which features in the time series were most 203 

abundant. Second, we set a threshold for a specific shape (  meant to identify 204 
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sudden outbreaks in cases. The threshold was determined using the median of the entire time 205 

series (~80 cases per month). Third, we used the same threshold to look for the points in the time 206 

series where new cases dropped within a month (  By applying our approach for 207 

the identification of specific features, we wanted to assess the possibility of using ordinal 208 

patterns in natural data exploration.  209 

 210 

Natural time series data - Phytoplankton 211 

Natural phytoplankton populations exhibit chaotic dynamics (Benincá et al. 2008). 212 

Understanding the changes in phytoplankton populations is crucial for the prediction of harmful 213 

algal blooms (McGillicuddy, 2010), even though finding patterns and trends in a phytoplankton 214 

time series can be difficult for taxa that are not always present.  Current approaches rely on 215 

statistical or process-based modeling (Ralston and Moore 2020), which are sensitive to time 216 

series stationarity and require large amounts of data to return meaningful results. We wanted to 217 

test the ability of barcoding in finding broad-scale patterns for a natural phytoplankton time 218 

series.  219 

To test our approach, we used a daily time series of a harmful-algal-bloom forming taxa 220 

(Pseudo-nitzschia spp.) in Narragansett Bay, Rhode Island (https://ifcb-dashboard.gso.uri.edu). 221 

The phytoplankton time series was created by training an automatic classifier on data from an 222 

Imaging FlowCytobot (IFCB). Pseudo-nitzschia spp. was accurately identified in about 89.6% of 223 

all classified images. In the first case, we created a barcode for this time series based on our 224 

library of dynamical shapes (Figures 4 and 5). Second, we set a threshold of 3 images per mL 225 

(i.e. about the 25% quantile of the time series) to find the prevalence of specific shape 226 

( . For the third case, we repeated the analysis for shape (  with a 227 
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threshold of 11 images per mL (around the median of the time series). Both the second and third 228 

cases were meant to identify the days of sampling where there was little change in the day-to-day 229 

numbers of Pseudo-nitzschia spp. in Narragansett Bay. 230 

 231 

Results and Discussion 232 

Model systems 233 

 Sine curve 234 

For a simplistic function such as a sine curve, both time series and barcodes have periodicity in 235 

dynamics (Figure 7). Based on the same color-coding scheme we defined for Figure 5, we found 236 

that the majority of the curve is smoothly increasing/decreasing (purple/pink) through time. This 237 

agrees with the continuous time series representation as similar stepwise changes are categorized 238 

within the same class of dynamical shape. Similarly, maxima or minima in the sine curve are 239 

marked as abrupt color boundaries on the barcode. For practical applications, a barcode 240 

representation of dynamics for a simple model could be used to identify specific shapes through 241 

time by tailoring color schemes to key in on dynamical patterns of interest.   242 

 243 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 10, 2022. ; https://doi.org/10.1101/2022.04.07.487508doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.07.487508
http://creativecommons.org/licenses/by-nc-nd/4.0/


15 
 

 244 

Figure 7: (a) A simple sine curve model of abundance and (b) its associated barcode based on 245 

typical 3-point dynamical shapes. The color scheme follows the legend in Figure 5. The time 246 
axis moves from left to right and each line is indicative of the presence or absence of a shape.  247 
 248 

Lotka-Volterra dynamics 249 

Ecological cycles in nature often have more than one interacting variable and Lotka-Volterra 250 

predator-prey dynamics represent a well-recognized ecological system (Lotka 1920) with two 251 

interacting populations (Eq. 2 and 3). When graphed as a continuous curve (Figure 8; top row), 252 

both variables show peaks in abundance followed by slow increases or decreases over time. 253 
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Dynamical barcodes for the system capture these repeating cycles and the periodic colors 254 

indicate smooth and consistent changes over time (Figure 8; bottom row). The barcodes also 255 

highlighted some important differences and the timescales of change for both the variables. The 256 

prey abundance  had a slow rise to the population peak (purple) whereas predator abundance  257 

had a slow decrease after the population peak (pink). The slow decrease in predator abundance 258 

had longer timescales than the increases in prey population numbers. Dynamical barcodes might 259 

be an effective technique for drawing comparisons between two similar time series that appear to 260 

share common features and dynamics.  261 

 262 

 263 
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 264 

Figure 8: A Lotka-Volterra model with populations of (a) prey species and (b) predator species 265 

through time.  The populations can be represented as barcodes based on typical 3-point 266 
dynamical shapes. (c) is the barcode for the prey species and (d) is the barcode for the predator 267 
species. The color scheme follows the legend in Figure 5. The time axis moves from left to right 268 
and each line is indicative of the presence or absence of a shape. 269 

 270 
  271 

Lorenz attractor 272 

The Lorenz equations represent a chaotic system with little to no long-term predictability in 273 

dynamics (Lorenz 1963). For the time series of the three interacting variables of this attractor, 274 

both the continuous time curves and the barcodes show smooth changes through time (Figure 9). 275 

Similar to the sine curve and Lotka-Volterra model, smooth changes for each variable are 276 
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indicated by the solid blocks of color on the barcode. Even though time series for variables  and 277 

 show highly similar dynamics, the barcodes capture some key changes between the time series. 278 

There are additional periods of smooth increase (purple) or decrease (pink) for variable  when 279 

compared to variable . This suggests that the use of barcoding could be a potential asset in 280 

situations where crucial small differences might be missed between time series that look nearly 281 

identical. The barcode for variable  captures some level of periodicity for the changes within the 282 

time series, even though the magnitude of change might differ through time. In such cases, 283 

barcodes may be used to broadly classify periods of similar change and provide insight into the 284 

behavior of time series that might not be apparent in a continuous time perspective.  285 

 286 
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 287 

Figure 9: A Lorenz model of three interacting populations. (a) is the time series of species  and 288 

and (b) is its associated barcode based on typical 3-point dynamical shapes. Similarly, (c) and (d) 289 

refer to species  and (e) and (f) refer to the species . The color scheme follows the legend in 290 

Figure 5. The time axis moves from left to right and each line is indicative of the presence or 291 
absence of a shape. 292 
 293 
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Application to natural time series 294 

 Measles in London 295 

We tested the utility of a dynamical barcode for the time series of measles cases in 296 

London and tried to understand how natural systems with missing data, measurement error and 297 

stochasticity could be represented as a barcode. We found that barcodes in highly dynamic 298 

natural systems can be limited in explaining large-scale patterns due to the sheer diversity of 299 

possible shapes that are observed (Figure 10B). However, in such cases, keying in on one or two 300 

shapes might provide interesting observations on the overall character of the time series. Figure 301 

10C shows the same barcode as in Figure 10B except the color scheme has been changed to 302 

show only one specific shape ( . When evaluated with a threshold (>80 cases per 303 

month), it seems that the vast majority of sudden outbreaks occurred prior to 1975. This is an 304 

interesting result as the measles vaccination program in London started in the mid-1960s (Becker 305 

et al. 2019), which suggests that the vaccination program was successful in curbing future 306 

measles outbreaks. Figure 10D highlights the presence of a month-to-month decrease of >80 307 

cases for the same time series ( .  It seems that the prevalence of this feature 308 

lingered for far longer than the feature tracking measles outbreaks (Figure 10C). The lack of this 309 

feature beyond the 1980s also indicates that the dynamics of the measles epidemic fundamentally 310 

changed after this period, possibly due to lower overall caseloads across London.   311 

For a natural time series like the measles epidemic in London, we found that our method 312 

could identify interesting features in the dynamics that would have been unavailable in a 313 

continuous time perspective. Barcoding could be an effective tool for exploring the dynamics of 314 

a range of deterministic systems and motivate new hypotheses based on the presence or absence 315 

of specific features.  316 
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 317 

  318 

Figure 10: (a) Time series of measles cases in London and (b) its associated barcode based on 319 
typical 3-point dynamical shapes. The color scheme follows the legend in Figure 5. The time 320 
axis moves from left to right and each line is indicative of the presence or absence of a shape. (c) 321 
and (d) are from the same barcode as (b) with different color schemes to highlight dynamics of 322 

interest. (  is shown in red and  is shown in gold. 323 

 324 
 325 
 326 
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Phytoplankton population dynamics  327 

We applied a dynamical barcoding approach to a daily resolution time series of images of 328 

Pseudo-nitzschia spp. in Narragansett Bay, Rhode Island to check if we could make ecological 329 

inference that is not immediately accessible from a continuous time perspective. First, we created 330 

a barcode for all the possible shapes (Figure 5) to try and identify broad-scale patterns. We found 331 

that the time series Pseudo-nitzschia spp. has many missing data points and show no clear trends 332 

over time (Figure 11B). If we were to consider all change to be significant, the barcode of 333 

Pseudo-nitzschia spp. showed dynamics that rapidly change over timescales of days (Figure 334 

11B). To further evaluate this hypothesis, we created additional barcodes with different 335 

thresholds for significant change in an attempt to understand the frequency and timing of only 336 

one specific feature .  337 

After altering the color scheme to show only one feature, we found there are clear 338 

differences in the frequency of change over time (Figures 11C and 11D). It would appear that the 339 

time series of Pseudo-nitzschia spp. rarely has major shifts in detection numbers and most day-340 

to-day changes are <11 (Figure 11D). Interestingly, when the threshold is <3, we found that the 341 

feature still has a high rate of prevalence throughout the time series (Figure 11C). These results 342 

suggest that most of the time series of Pseudo-nitzschia spp. has very low numbers of detected 343 

images mL-1, even though the continuous time series might indicate high volatility and a 344 

maximum abundance of ~2000 images mL-1.   345 

A visual approach for time series analysis, such as dynamical barcoding, could highlight 346 

structural differences in phytoplankton dynamics through time. By tailoring thresholds to search 347 

for specific shapes, the use of dynamical barcoding could be a potential asset for ecological data 348 

exploration and analysis with minimal assumptions. 349 
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 350 

 351 

Figure 11: (a) Time series of Pseudo-nitzschia spp. images per mL in Narragansett Bay and (b) 352 

its associated barcode based on typical 3-point dynamical shapes. The color scheme follows the 353 
legend in Figure 5. The time axis moves from left to right and each line is indicative of the 354 
presence or absence of a shape. (c) and (d) are from the same barcode as (b) but show only one 355 

feature  in orange with different definitions of change (<3 and <11).    356 

 357 

 358 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 10, 2022. ; https://doi.org/10.1101/2022.04.07.487508doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.07.487508
http://creativecommons.org/licenses/by-nc-nd/4.0/


24 
 

 359 

Conclusions 360 

 Time series can be presented in many graphical forms and most current approaches rely 361 

on a continuous perception of time to describe ecological dynamics. We developed a novel 362 

technique that treats every measurement for a time series as independent and uses a library of 3-363 

point dynamical shapes to describe ecological change through time. Such a method provides a 364 

unique perspective on time series behavior and can be used to tailor analyses to identify specific 365 

features in ecological dynamics. A graphical approach termed dynamical barcoding can then be 366 

used for a new form of data visualization and time series representation.  367 

 We tested this approach for simple model systems such as a sine curve, Lotka-Volterra 368 

predator-prey dynamics and a Lorenz system of equations. Barcodes can be used to identify 369 

periods of time where change is uniform and draw out differences in nearly identical time series. 370 

Similarly, it is easier to identify periodicity in dynamical shapes than it is for continuous time 371 

series curves. Dynamical barcodes of natural time series data, such as the number of measles 372 

cases in London or Pseudo-nitzschia spp. detection numbers in Narragansett Bay, are affected by 373 

noise and stochasticity in dynamics; however, our approach is useful for identifying the 374 

frequency and timing of specific features in the historical record. In such cases, dynamical 375 

barcodes can be an effective tool in describing ecological change through time and be used to 376 

find patterns that might be missed with conventional line plots. The structural features of time 377 

series, when viewed from an ordinal perspective, could lead to the creation of novel tools for 378 

ecological prediction and pattern recognition. 379 

 380 

 381 
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