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ABSTRACT

Gerrymandering is the manipulation of electoral district borders in a way

that gives one party or group an unfair advantage over another in elections. In

recent years, the problem has received renewed attention from computer scientists

and mathematicians seeking to offer methods for the fair redistricting of electoral

maps. In this work we demonstrate how board games can be used as a tool for

conducting research in mathematical redistricting. By studying the issue on a

small scale, we can draw insights applicable to the larger, computationally difficult

problem of real world redistricting. Specifically, we develop a measurement that

quantifies the susceptibility of a party’s vote to the gerrymandering practice of

“packing”. We then assess the reliability of this measurement. Finally, we leverage

the new measurement to test a hypothesis in order to investigate the effect of low

“packability” scores on election outcomes.
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CHAPTER 1

Introduction

1.1 Political redistricting and gerrymandering

In majority vote representative democracies, gerrymandering1 refers to the

practice of redrawing electoral district boundaries in a way that gives a political

party an unfair advantage over its opponents in elections. The issue is most often

discussed in the context of the U.S. House of Representatives election, where state

voters elect representatives from their state’s congressional districts to be sent to

the lower chamber of Congress. Following the U.S. Census, which takes place every

10 years, states are mandated to redraw the borders of their districts to account for

population migration and to ensure equal representation at the federal level. It is

now widely recognized that in a “winner-takes-all” voting system, whoever controls

the redistricting process has the power to give one party or group an advantage in

future elections.

1.2 Packing and cracking

The two primary strategies in gerrymandering are “packing” and “cracking”.

They are frequently employed together.

Packing concentrates as many of the opponent’s voters as possible into as

few districts as possible. In a majority vote electoral system, a candidate (or

a party) needs to secure a simple majority to win a district. This means that

in two candidate or party elections the minimum share of the total vote that

ensures a win is 51%. Any votes above this threshold are “wasted” as they don’t

contribute to additional victories. Yet these votes can be decisive in other districts

1The term comes from a combination of the last name of Elbridge Gerry, a 19th century
American politician, and “salamander”, which was used to describe the shape of a notoriously
redrawn electoral district in Massachusetts in 1812, under Gerry’s governorship.
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where the races are tighter. Thus, by concentrating the opponent’s voters in a few

districts won by a large margin (e.g. 70%, 80%), the gerrymandering party gains

an advantage. As a result it can secure more seats than would be proportional to

its overall vote share across all districts.

In contrast cracking spreads the voters of the opponent party across multi-

ple districts, in a way that prevents them from forming a majority and securing

a victory. By strategically dispersing these voters among several districts, the

gerrymandering party dilutes the voters’ voting power and makes it challenging

for them to win seats. The tactic ensures that even if the opposition has signif-

icant support, it is not concentrated enough to translate into electoral wins. As

with packing, this allows the gerrymandering party to achieve disproportionately

greater representation.

The sequence of images in Figure 1 provides a visual representation of the

gerrymandering strategies of packing and cracking, illustrating how district bound-

aries are manipulated to influence electoral outcomes[1]. Figure 1a shows a com-

petitive map representing a state with two parties where 50% of voters favor the

Red party, and the other 50% favor the Blue party. Figure 1b illustrates how, on

the same map, Blue can win three districts by packing the Red voters into one

district where Red wins 100% of the votes. Figure 1c demonstrates how, again

on the same map, Red can prevent Blue from winning more than one district by

diluting Blue’s votes through cracking.

1.3 The Distrix board game

This research is an opportunity to explore mathematically the relationship be-

tween board games and the real-world problem of redistricting. The board game

can be considered a small-scale, laboratory version of the problem, where experi-

2



(a) A map representing
a state with two equally
popular parties.

(b) Blue wins 3 districts
by packing Red into 1 dis-
trict.

(c) Red wins 3 districts by
employing cracking to di-
lute Blue’s vote.

Figure 1: A demonstration how packing and cracking strategies can skew a bal-
anced board to favor one party[1].

ments can be conducted and hypotheses tested. The game used in this research is

the solitaire, puzzle-book version of Distrix developed by Matt Petering[2].

The Distrix puzzle-book board is a 6x6 matrix, Figure 2. Each cell in the

matrix represents a voting unit, i.e. a voting precinct. The value in each cell

represents the vote advantage that the given party holds in the unit based on

historic data. For example, a white 3 means that historically this precinct has

been dominated by party B by a margin of 3 votes. For the rest of this work the

vote advantage value will be referred to as simply “vote(s)”. The sum of all votes

for one party is 81, with the values 1-8 each occurring twice per party, and 0 and

9 each occurring once per party.

Four orthogonally connected voting units create a district. A district can take

the shape of one of the 19 fixed tetrominoes. A tetromino is a type of polyomino

composed of 4 squares. There are 5 “free” tetrominoes most of which can undergo

rotations, reflections or both. These transformations result in a total of 19 distinct

“fixed” tetrominoes, Figures 3a and 3b. There are 6×6
4

= 9 districts on the board.

A player is required to apply the gerrymandering strategies of packing and cracking

3



(a) Puzzles.

(b) Solutions.

Figure 2: An example puzzle from the Distrix puzzle-book manual[3].
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to give a winning advantage to a specific party, or to create a district plan which

causes the game to end in a tie.

(a) The 5 free tetrominoes[4].

(b) The 19 fixed tetrominoes[5].

Figure 3: Tetrominoes.

No research publications on Distrix can be found as of this writing. However,

mathematical techniques that can be applied to rectangular grid puzzles have been

studied in depth in the past. In [6] we find general information on polyominoes

and their properties, information on tiling rectangular grids, and problems and

solutions that involve polyforms. [7] gives us insight on how combinatorial puzzles

can be created by using the regular polygons as building blocks. Papers like [8]

offer novel approaches to the tiling problem.

5



CHAPTER 2

Measuring the Susceptibility to Packing

In this chapter we propose a measure for quantifying the susceptibility of a

party’s vote to the gerrymandering practice of packing.

2.1 Expected value benchmark score

A benchmark score needs to be established for the purpose of evaluating the

reliability and accuracy of the proposed packability score. This benchmark should

be based on the long-term average number of seats that each party is expected to

win on a randomly configured board. The statistical measure of an expected value

provides this average for each party[9]. From these averages, a score is calculated

to indicate the overall bias of a board towards one party over another. We term

this score the Expected Value score (EV score).

The EV score is adopted as a benchmark throughout this work. It is derived

from an exhaustive search of all possible end-game scenarios (district plans), which

is feasible on a 6x6 board but becomes computationally intractable as the board

size increases. For larger boards and real-world applications, a sample that approx-

imates the set of all possible district plans can be generated using methods such

as Markov Chain Monte Carlo algorithms. A family of such algorithms specifically

designed for the redistricting problem is described in [10]. However, because the

benchmark score is intended to be used as a definitive measure for evaluating our

proposed packability approximation score, it is more appropriate to derive it from

an exhaustive search rather than another approximation.

6



2.1.1 Recursive backtracking tiling algorithm

To calculate the expected value of seats won for each party, the set of all end-

game scenarios for Distrix needs to be discovered first. This is done by generating

all possible 178,939 tilings for the 6x6 Distrix board[5]. A recursive, backtracking

algorithm was designed for this purpose.

The list of tetromino placements

The input for the backtracking algorithm is the list of all possible positions

of the 19 fixed tetrominoes on the board that needs to be tiled. We call the

combination of a tetromino and its position on the board a tetromino placement.

It is denoted by TP (x,y) where TP is a fixed tetromino per Figure 3b (matrix

implementations are provided in A.3), and (x,y) are the row and column coordinates

of its upper left corner on the Distrix board. Tetromino placements which cross any

of the edges of the board are not allowed. An example of a tetromino placement

for the S tetromino placed in the upper left corner of the Distrix board (0, 0) is

S(0,0), Figure 4a. To generate a list of all tetromino placements for the 6x6 board,

the board is scanned with each one of the 19 fixed tetrominoes in row-major order,

as illustrated with the S-tetromino on Figure 4.

As each tetromino slides, its coordinates at each position on the board are

recorded. The pseudo-code for the scan is provided in Algorithm 1, where:

T19 → a list of the 19 fixed tetrominoes Tf .

Bp×q → a board of p-rows and q-columns.

TP → a tetromino placement.

LTP → a storage list for all tetromino placements.

Rows() → a sub-procedure for determining the rows of board / tetromino.

7



(a) The S(0,0) tetromino place-
ment.

(b) The S(0,1) tetromino place-
ment.

(c) The S(0,4) tetromino place-
ment.

(d) The S(1,0) tetromino place-
ment.

Figure 4: Generating the list of all tetromino placements by sliding each of the
19 fixed tetrominoes across the board. An example is shown with the S-tetromino
(positions (0,3) and (0,4) are omitted for brevity). This process is repeated for the
remaining 18 fixed tetrominoes.
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Cols() → a sub-procedure for determining the cols of board / tetromino.

RecordTP () → a sub-procedure for creating a TP object.

Algorithm 1 Scanning the board

procedure ScanBoard(T19, Bp×q)
A procedure for scanning the board with tetrominoes.
Input: T19 – A list of the 19 fixed tetrominoes.
Input: Bp×q – A board of p-rows and q-cols.
Output: LTP – A storage list for all tetromino placements.
for all Tf ∈ T19 do

for row ← 0, Rows(Bp×q)−Rows(Tf ) do
for col← 0, Cols(Bp×q)− Cols(Tf ) do

TP ← RecordTP (row, col, Tf ) . Create the TP object.
LTP .append(TP )

end for
end for

end for
Return LTP

end procedure

Table 1 shows the number of tetromino placements for each tetromino on the

board. The total number of tetromino placements for a 6x6 board is 381.

(a) Part 1

Tetromino I I90 J J90 J180 J270 L L90 L180 L270

# Placements 18 18 20 20 20 20 20 20 20 20

(b) Part 2

Tetromino O S S90 T T90 T180 T270 Z Z90 Total
# Placements 25 20 20 20 20 20 20 20 20 381

Table 1: The number of tetromino placements for each tetromino on the board.

It may seem that continuously pulling 9 random tetromino placements from

the list of 381 and checking if they result in a tiling is an acceptable way of

tiling the 6x6 board. This, however, is computationally intractable as the num-

ber of combinations without repetition that need to be checked in this case is(
381
9

)
= 4.23861× 1017. Therefore another approach is needed.

9



The recursive backtracking procedure

This is the recursive backtracking part of the algorithm. To tile the board

an exhaustive depth-first search is performed through all possible combinations of

tetromino placements, without repetition. The pseudo-code for the tiling proce-

dure is provided in Algorithm 2. In addition to the symbols for the ScanBoard()

procedure, the following symbols are defined:

LTL → a storage list for all board tilings.

BoardT iled() → a sub-procedure for checking whether a board is tiled.

StoreBoard() → a sub-procedure for storing a board to LTL.

OverlapCheck() → a sub-procedure for checking whether TP overlaps

another TP on the board.

PlaceTP () → a sub-procedure for placing a TP on the board.

Reduce()→ a sub-procedure for reducing LTP by removing TP s that have

been skipped due to overlap, or have already been placed on the board.

RemoveTP () → a sub-procedure for removing a TP from the board.

Details on the main components of Algorithm 2 are provided below:

1. Base case.

For its base case, the algorithm checks whether the board is already tiled. If

so, the combination of tetromino placements that has made up the tiling is

recorded to LTL and the algorithm proceeds with 2. If the board is not tiled,

the algorithm proceeds directly with 2.

10



Algorithm 2 Tiling the board

An updated procedure for tiling the board.
procedure TileBoard(LTP , Bp×q)

Input: LTP – A list of all tetromino placements.
Input: Bp×q – A board to tile.
Output: LTL – Storage for all tilings.
for all TP ∈ LTP do

if BoardT iled(Bp×q) then . Base case.
StoreBoard(Bp×q, LTL)
Return

else if OverlapCheck(TP,Bp×q) = False then
PlaceTP (TP,Bp×q)
RLTP ← Reduce(LTP )
TileBoard(RLTP , Bp×q) . Recursive call.
RemoveTP (TP,Bp×q) . Backtrack step.

end if
end for
Return LTL

end procedure

2. Iterate over LTP .

For each TP :

(a) call the OverlapCheck() procedure to check whether placing the current

TP on the board would partially overlap any TP already on the board.

(b) If OverlapCheck() = True the algorithm backtracks and continues the

iteration over LTP .

(c) If OverlapCheck() = False, PlaceTP () is called and the TP is placed

on the board. At this point all TP s that have been skipped due to over-

lap, and all TP s that have been placed on the board are removed from

LTP , resulting in a reduced list RLTP . A recursive call of TileBoard()

is made on the reduced RLTP .

11



3. Backtracking.

The algorithm backtracks when:

(a) a TP cannot be placed on the board due to overlap, and a new TP is

picked from LTP .

(b) a board is tiled (the procedure enters its base case) after which a TP is

removed from the board by a call to RemoveTP ().

(c) the end of LTP is reached during iteration, after which RemoveTP () is

called.

2.1.2 Algorithm complexity

The backtracking step triggered by an overlap or a completion of a successful

tiling, depends on runtime checks and cannot be predicted in advance. This makes

assessing the complexity of the algorithm challenging. A loose upper bound on

the time complexity can be defined based on a simplification: we assume that

OverlapCheck() and BoardTiled() always return False. Under this assumption the

algorithm never backtracks early1, which eliminates any form of pruning that could

reduce the number of explored search paths. As a result, all possible subsets of

TP s from the set LTP are generated. This is the power set of LTP , denoted by

P(LTP )2. The number of subsets in P(LTP ), or its cardinality, is 2k[11], where k

is the cardinality of the original set LTP . This can be summarized as:

k = |LTP | (1)

|P(LTP )| = 2k (2)

Generating P(LTP ) involves a binary decision, where a choice is made whether

to include a TP in a subset or not include it. Since this simplified model of Algo-

1The algorithm still backtracks when it reaches the end of an RLTP at each recursive level.
2The power set of a set S is the set of all subsets of S, including the empty set and S itself.
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rithm 2 has no pruning mechanism, a new subset from the power set is generated

each time a tetromino is placed on the board. This occurs at every iteration step, at

each recursive level of the algorithm. Consequently, the asymptotic upper bound

on the time complexity of Algorithm 2 is determined by Eq. 2, where k is the

number of tetromino placements for a given board size

O(2k) (3)

It is crucial to note that the presence of the OverlapCheck() and BoardTiled()

checks (i.e. if the assumption described in this section is removed) improves the

performance of the algorithm significantly, compared to the worst case scenario

given in Eq. 3. This makes the further tightening of the upper bound on the time

complexity of Algorithm 2 an interesting problem to investigate. However, it is

beyond the scope of this work.

2.1.3 Speeding up the tiling algorithm

The performance of Algorithm 2 can be improved considerably by implement-

ing an additional trigger for early backtracking. For all regions on the board which

are still not covered by tetrominoes, if the total number of tiles nt, in any region, is

not divisible by 4 (i.e., nt mod 4 6= 0), the algorithm will backtrack. This is shown

in Figure 5 which depicts a tiling in progress. The tiles covered by a tetromino

have a value of 1, and any tiles that remain to be covered have a value of 0. The

placement of the green T (4,0) during the tiling process creates the two red regions

that can never be tiled with a tetromino. This dead-end path is detected by the

algorithm and it backtracks early instead of continuing to try other TP s from the

list LTP . The theoretical background of this approach is described in [12].

In our experience, implementing this additional trigger for early backtracking

lead to a near 84% reduction in the time the algorithm took to generate the set of

13



all possible tilings for a 6x6 board. The pseudo-code for the updated algorithm is

given in Algorithm 3. The only addition is the CheckOddRegions() sub-procedure:

CheckOddRegions(Bp×q) → a base case sub-procedure which returns

True if any non-tiled board regions are of size not divisible by 4.

Figure 5: Tiling in progress: the placement of a T (4,0) creates two regions that
can never be tiled, shown in red. This causes the updated algorithm to backtrack
early.

Algorithm 3 Improving the performance of the backtracking algorithm.

An updated procedure for tiling the board.
procedure TileBoard(LTP , Bp×q)

Input: LTP – A list of all tetromino placements.
Input: Bp×q – A board to tile.
Output: LTL – Storage for all tilings.
for all TP ∈ LTP do

if CheckOddRegions(Bp×q) then . Base case.
Return

else if BoardT iled(Bp×q) then . Base case.
StoreBoard(Bp×q, LTL)
Return

else if OverlapCheck(TP,Bp×q) = False then
PlaceTP (TP,Bp×q)
RLTP ← Reduce(LTP )
TileBoard(RLTP , Bp×q) . Recursive call.
RemoveTP (TP,Bp×q) . Backtrack step.

end if
end for
Return LTL

end procedure
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2.1.4 Distributions of seats won

With the set of 178,939 tilings available, frequency distributions of the seats

(districts) won by each party can be generated for any given random board. Figure

6 introduces the random board that will be used in examples throughout this study.

Figure 7 displays the distributions of seats won for this random board.

Figure 6: A random Distrix board

Figure 7: Distributions of the districts won by party A and party B for the board
on Figure 6, across all 178,939 district plans. The numbers of plans giving 5,6,7,
or 8 seats to Party A are significantly larger then those for Party B. This shows
that the vote distribution from Figure 6 clearly favors party A.
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The tallest bar for party A shows that in 74,562 out of the total of 178,939

plans, party A wins 5 seats. In comparison, party B wins 5 seats in only 32,075

plans. Furthermore, a significantly larger number of plans give party A 6,7, or 8

seats when compared to party B. This is mirrored by a proportionately greater

number of plans giving party B only 1,2,3 or 4 seats as compared to party A3. This

clearly indicates that the vote distribution from Figure 6 favors party A, making

it a lot easier for A to win the game/election by at least 5 out of 9 districts.

2.1.5 Expected Value score calculation

The benchmark EV score is calculated as follows. Let EVA and EVB be the

expected number of seats won by party A and party B, respectively. EV is the

overall expected value benchmark score for the board. d is the categorical variable

for the number of seats won. For the distributions on Figure 7:

EVA =
9∑

i=0

diP (di)

= 0
0

178939
+ 1

15

178939
+ 2

990

178939
+ 3

14402

178939
+ 4

60685

178939

+ 5
74562

178939
+ 6

26299

178939
+ 7

1980

178939
+ 8

6

178939
+ 9

0

178939

= 4.65

(4)

EVB =
9∑

i=0

diP (di)

= 0
0

178939
+ 1

158

178939
+ 2

8838

178939
+ 3

55578

178939
+ 4

78659

178939

+ 5
32075

178939
+ 6

3583

178939
+ 7

48

178939
+ 8

0

178939
+ 9

0

178939

= 3.81

(5)

3No plans give any of the two parties either 0 or 9 seats.
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EV = EVB − EVA

= 3.81− 4.65

= −0.84

(6)

A negative EV score indicates that party A has an advantage in terms of the

average number of seats won across all 178,939 plans. Conversely, a positive EV

score suggests an advantage for party B.
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2.2 Packability score design
2.2.1 Sliding kernel algorithm

To identify opportunities to pack an opponent, a human player typically in-

spects the board visually for areas of high concentration of opponent votes where

packing can be attempted. Following the same approach, we scan the board in

search of clusters of votes for a given party by sliding a small window matrix -

a kernel - across the board. The kernel has p rows and q columns, and weights

wij as its elements. The scan starts at the upper left corner of the board and

proceeds left to right, top to bottom. It is similar to how kernel convolution with a

stride of 1 is performed in image processing, with a few differences. First, instead

of the vector dot product, the Frobenius inner product is taken4[13]. Second, no

kernel flipping is involved. Finally, the kernel never extends beyond the edges of

the board - instead once its right side reaches the edge, it moves down to the next

row. Figure 8 shows an example kernel. The scan process using this kernel on our

example board is illustrated in the sequence on Figure 9.

Figure 8: An example 3x4 kernel.

At each position of the sliding kernel, a local score is calculated and stored to

a list. This is done as follows. Let W be the sliding kernel and B the board. B

is split into two complementary sparse matrices BA and BB such that BA retains

only the votes for party A with all votes for party B set to 0. Correspondingly,

4The Frobenius inner product between two matrices of the same dimensions is the element-
wise product of the elements of the two matrices followed by a sum of this product. It is a
generalization of the vector dot product to matrices.
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(a) sliding kernel at coordinates
(0,0)

(b) sliding kernel at coordinates
(0,1)

(c) sliding kernel at coordinates
(0,2)

(d) sliding kernel at coordinates
(1,0)

Figure 9: The first four positions of a 3x4 sliding kernel. The kernel never goes
over-board during sliding.

19



BB only retains the votes for party B with all votes for party A set to 0. For each

position i, j of the sliding kernel, the Frobenius inner product between W and the

sub-matrices BA[i : i + p − 1, j : j + q − 1] and BB[i : i + p − 1, j : j + q − 1]

is calculated. The results are two non-negative integers sAij (Eq. 7) and sBij

(Eq. 8), which reflect the total votes for each party at the current Wij. sAij is then

subtracted from sBij to come to a single number sij for the local vote concentration

score at the current position of the kernel (Eq. 9).

sAij = 〈BA[i : i+ p− 1, j : j + q − 1],W 〉F (7)

sBij = 〈BB[i : i+ p− 1, j : j + q − 1],W 〉F (8)

sij = sBij − sAij (9)

The sign of sij indicates which party has a vote advantage at position ij. A

negative sij indicates an advantage for party A, while a positive sign indicates a

vote advantage for party B. As W slides across B, the local scores are stored to

a list Ls. An example of this list for the scan from Figure 9 is shown in Eq. 10.

The length of the list Ls varies with the size and shape of the kernel in use, which

determine the number of valid positions for the sliding kernel on the board.

Ls = [−6,−4,−8,−10,−14, 2, 18,−2, 7, 22, 0,−1] (10)

At the next step of the scoring procedure, all negative integers from Ls are

stored in sub-list LsA which holds all local scores for party A. All positive integers

are stored in sub-list LsB .

LsA = [−6,−4,−8,−10,−14,−2,−1]

LsB = [2, 18, 7, 22]

The elements of LsA are then summed to produce an integer PPA which is the

party A component of the overall packability score for the board. The sum of the

20



elements in LsB is the party B component of the board packability score.

PPA =
∑

LsA = −45,

PPB =
∑

LsB = 49.

Finally, PPA and PPB are added together to arrive at a single signed integer PB,

which is the overall packability score for the board.

PB = PPA + PPB

= −45 + 49 =

= 4

A high packability score indicates that the party is more vulnerable to packing

as opposed to its opponent, due to the distribution of its votes on the board. A

high negative PB indicates a board bias against party A, while a high positive PB

indicates a bias against party B. A threshold for when a score is considered “high”

is provided in Section 3.2.

The upper bound on the time complexity of the sliding kernel algorithm is

O(k)

where k represents the number of valid positions for the kernel as it slides across

the board. For a 3x4 kernel on a 6x6 board, k = 12. Thus, in contrast to the EV

score, which requires an exhaustive search accomplished by an O(2k) algorithm,

the PB score is an approximation based on a computationally cost-effective O(k)

algorithm. This efficiency allows PB scoring to be applied effectively to boards

larger than a 6x6.
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2.2.2 Parameterizing the algorithm

The parameters described in this section influence the packability score pro-

duced by the sliding kernel algorithm. In Chapter 3 we conduct an experimental

investigation under various configurations of these parameters.

Kernel shapes and weights

Our score reliability experiment is conducted with 10 kernels of different

shapes and weights. They fall under three categories:

a. Rectangular kernels W , with all weights set to 1.

These are the simplest sliding kernels. An example 3x4 kernel was already

shown in Figure 8 and is provided here for reference. We denote a rectangular

kernel with p rows and q columns by Wp×q.

Figure 10: A W3×4 kernel with all weights set to 1

b. Rectangular kernels V , with variable weights.

The weights in these kernels are based on the number of unique tetromino

placements that cover each tile across the entire set of possible tetromino

tilings for the kernel matrix. For example, from [14] we know that there are

23 unique ways to tile a 3x4 kernel. By scanning the 3x4 kernel with each

of the 19 fixed tetrominoes, we find that there is a total of 65 tetromino
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placements for this kernel size. We then record the number of unique tetro-

mino placements that cover each tile in the 3x4 kernel, across all 23 tilings.

We call the result the tetromino saturation score tij of a tile. Figure

11a shows the tetromino saturation scores for each tile of a 3x4 kernel. The

weight value wij of each tile is then calculated in Eq. 11 where max t is the

maximum saturation score value anywhere on the board. The max t value in

Figure 11a is 20. Figure 11b shows the resulting weights for each tile in the

3x4 kernel.

wij =
tij

max t
(11)

The purpose of designing a kernel with variable weights, is to find out whether

a higher likelihood of a unique tetromino covering a tile results in a more

accurate packability score. We denote a rectangular kernel with p rows and

q columns by Vp×q.

(a) The tetromino saturation score for
each tile in a V3×4 kernel.

(b) The calculated weights for each tile
in a V3×4 kernel.

Figure 11: Calculating the variable weights for a V3×4 kernel.

c. The set T , of multiple tetromino kernels.

Scoring the board with all of the specific shapes that a district can take is

expected to produce PB score results closer to the benchmark EV score,
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when compared to scoring with simpler kernel shapes. However, the former

requires that we have all possible shapes known in advance. For a 6x6 board

where the districts are limited to exactly 4 orthogonally connected tiles, we

know that the possible shapes are the 19 fixed tetrominoes. For larger size

districts however, this number grows quickly. If the district size is set to

5 tiles, its possible shapes are the 63 fixed pentominoes. For 6-tile districts,

the possible shapes are the 216 fixed hexominoes[15]. The problem becomes

computationally intractable if we try to enumerate all the possible shapes

of real-world districts that may have thousands of voting units (e.g. the

state of New York has over 5,000 voting units[16]). Therefore the method of

scoring with all possible shapes is not scalable and a using simpler shapes is

preferred. Nevertheless, it is important to examine the PB scores based on

the set of 19 fixed tetrominoes. Stronger correlation of such PB scores with

the EV score will be evidence that the sliding kernel algorithm functions as

expected.

Figure 12: Example S tetromino kernel.

The 19 tetromino kernels used for scoring are the same ones used in the recur-

sive backtracking algorithm from Section 2.1.1. To improve score accuracy,

the scanning process with tetrominoes omits kernel positions (TP s) which

result in the “cornering” of regions with size less than 4 tiles. A configura-

tion like this does not allow for a board to be tiled. By omitting such kernel
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positions, no local scores will be recorded from tetrominoes that will never

be part of a tiling. In addition, unlike with rectangular kernels, the scanning

is done with the array of all 19 tetrominoes sequentially instead of scoring

with a single tetromino. This is because the unique and specific shapes of the

tetrominoes, do not allow for a proper generalization of the score. Therefore,

in the tetromino kernel experiments we scan with all 19 fixed tetrominoes

sequentially and, at the end of the scan, the list Ls consists of 357 local

scores (based on 381 total TP s, less 24 TP s which “corner” regions of less

than 4 tiles). The set of 19 tetromino kernels is denoted by T19.

Maximum number Ks of local scores to keep in Ls

The list Ls from Section 2.2.1 stores all local scores s for every position visited

by the kernel. For a 3x4 kernel, the list holds 12 scores at the end of the scan.

Ls = [−6,−4,−8,−10,−14, 2, 18,−2, 7, 22, 0,−1]

Since packing needs to be concentrated in as few districts as possible (see Section

1.2), only the highest local scores should be kept in Ls to prevent dilution of the

final packability score for the board. As shown in Section 2.2.1, and provided here

for reference, the final packability score for the board is calculated as:

PPA =
∑

LsA

PPB =
∑

LsB

PB = PPA + PPB

From the goals of the puzzles in Distrix, we know that on a 9-district board,

it is reasonable to attempt to pack an opponent in 1, 2 or at most 3 districts.

Therefore, only the top 1, 2, or 3 scores should be kept in the list Ls. The number

of highest local scores to keep in Ls is denoted by Ks, so for our 9-district board
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Ks ∈ {1, 2, 3}. Eq. 12 shows how the list Ls is reduced to include only the number

of local scores specified by the Ks value. First the list is sorted in descending order

based on the absolute values of its elements. It is then reduced to only include 1,

2 or 3 scores depending on the value of the Ks parameter passed to the algorithm.

Ls = sort(Ls) = [22, 18,−14,−10,−8, 7,−6,−4,−2, 2,−1, 0]

Ks = 1→ Ls = [22]

Ks = 2→ Ls = [22, 18]

Ks = 3→ Ls = [22, 18,−14]

(12)

In the experiment conducted in Chapter 3 we perform calculations using all

three Ks values Ks ∈ {1, 2, 3}, to demonstrate a complete methodology for select-

ing algorithm parameters that produce the most reliable scores. However, for our

gerrymandering hypothesis testing in Chapter 4, we exclusively use scores gener-

ated with

Ks = 1

The reason for this, is a current limitation of the sliding kernel algorithm, which

requires an additional mechanism in order to generate satisfactory scores at Ks = 2

or Ks = 3. Such mechanism would ensure that only local scores covering distinctly

different regions of the board are added to the list Ls. For instance, if a W2×4

kernel covers several neighboring tiles with a high vote concentration for one party

and then slides to its next position, it will likely still be covering the same high

concentration cluster. This could lead to the same cluster being counted multiple

times in Ls, and at Ks = 2 or Ks = 3 it might prevent the inclusion of other

significant vote concentration areas in the final score calculation. A method for

preventing this double counting of clusters is proposed for future work in Chapter 5.
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CHAPTER 3

Evaluation of Score Reliability

3.1 Experimental design

In this chapter, we conduct an experimental investigation to determine the

combination of algorithm parameters described in Section 2.2.2 that results in the

most reliable packability score. A reliable score is one that properly reflects the

susceptibility of a party’s vote to packing, and therefore can be used in hypotheses

testing and statistical inference.

3.1.1 Sampling random boards

For the purpose of testing the sliding kernel algorithm, we create a sample

of 1,500 randomly generated boards. The goal is to evaluate the consistency and

reliability of the scores that the algorithm produces over many boards. Each board

in the sample is scored on its bias towards a party by calculating the board’s EV

score as detailed in Section 2.1.5. Descriptive statistics for the EV scores for the

boards in the random sample are provided in Table 2. The table reveals that

on average, each party wins approximately 4.3 seats across all boards. Figure 13

shows the distribution of EV scores for the 1,500 boards. The normal distribution

is centered around EV = 0 which is evidence that the majority of the boards in

the sample are not inherently biased towards either of the two parties.
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Figure 13: Distribution of the Expected Value (EV ) scores across the sample of
1,500 random boards. The negative values on the left-hand side represent the EV
scores for Party A. The positive values on the right represent the EV scores for
party B. A higher absolute value of the EV score indicates a greater number of
seats won by a party on average, compared to their opponent.

EV A EV B EV Score

count 1500 1500 1500
mean 4.33 4.32 -0.01
std 0.26 0.26 0.51
min 3.40 3.41 -1.69
25% 4.16 4.15 -0.35
50% 4.32 4.32 -0.01
75% 4.50 4.48 0.31
max 5.18 5.33 1.89

Table 2: Descriptive statistics of the sample of 1500 random boards. The mean
Expected Value score is close to 0 due to both parties winning similar number of
seats on average (around 4.3 seats).
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3.1.2 Choosing algorithm parameters

In our experiment, the 1,500 boards in the random sample are scored using

different combinations of the parameters described in Section 2.2.2. We use the W ,

V and T kernels from Appendix A and Ks ∈ {1, 2, 3}. This results in 30 different

scores calculated for each board in the sample. Table 3 shows the score results for

the example board from Figure 6.

Kernel Ks = 1 Ks = 2 Ks = 3

W2×4 27.0 6.0 27.0
W4×2 13.0 3.0 13.0
W3×4 22.0 40.0 26.0
W4×3 14.0 1.0 13.0
W4×4 19.0 3.0 19.0
V3×4 14.9 9.1 14.7
V4×3 8.1 0.2 -6.7
V4×4 8.55 0.55 4.6
V6×6 1.42 1.42 1.42
T19 148.0 9.0 169.0

Table 3: The 30 different packability scores PB resulting from scanning the example
board from Figure 6 with the kernels from A.1, A.2, and A.3 for the 3 different
values of the parameter Ks. For reference, the EV score for this board is -0.84.

3.1.3 Evaluating score reliability using correlation

It is expected that a party with a high packability score will win fewer seats on

average, compared to its opponent. This is why we consider a negative correlation

between PB and EV an appropriate indicator of PB’s reliability as a measure

of packability. As the parameters of the sliding kernel algorithm are varied, we

track the correlation between the PB scores that they produce and the EV score.

The score with the strongest and statistically significant negative correlation is

considered the most reliable for our hypotheses testing needs.

A Pearson correlation test is conducted to quantify the strength of the rela-

tionship, measured by the correlation coefficient, and to determine its statistical
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significance, ensuring the observed correlation is not due to random chance.

The Pearson correlation test evaluates the linear relationship between two con-

tinuous variables by calculating the Pearson correlation coefficient denoted by r.

This coefficient ranges from -1 to 1, indicating perfect negative correlation at -1,

no correlation at 0, and perfect positive correlation at 1. To test the statistical

significance of r, the hypothesis H0 : r = 0 (no linear correlation), is tested using

a t-statistic calculated as t = r
√
n−2√
1−r2 , where n is the number of data points. This t-

statistic follows a t-distribution with n− 2 degrees of freedom. A significant result

rejects H0, indicating a statistically significant correlation between the variables.

The statistical significance of the correlation is indicated by the p-value of the

Pearson correlation test. We choose a significance level of α = 0.05 with a p-value

below this level indicating a statistically significant correlation.

At the end of the parameter evaluation process we select the kernel and the

Ks value parameters that produce a PB score that we consider most reliable for

use in hypotheses testing related to gerrymandering.

3.2 Experimental results
3.2.1 Scoring results

The boards in our random sample are scored and each board receives 30 PB

scores. The correlation coefficients of each of the 30 PB scores and the EV score

is computed. The coefficient results are shown in Table 4. Almost all of the values

have a negative sign indicating that the scoring algorithm is capturing the expected

negative correlation between PB and EV . As expected, the strongest correlation

results come from the T19-based scores. However, the T19-based scores should not

be used in gerrymandering hypotheses testing as explained in Section 2.2.2. From

the results it is also evident that the use of variable weight kernels V provides
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a boost to the reliability of the score when compared to using W kernels. This

stands out most when comparing the r values for W3×4 and V3×4.

Ks = 1 Ks = 2 Ks = 3

W2×4 -0.21 -0.21 -0.17
W4×2 -0.17 -0.14 -0.13
W3×4 -0.10 -0.07 -0.04
W4×3 -0.11 -0.05 -0.02
W4×4 -0.02 -0.03 0.03
V3×4 -0.14 -0.09 -0.07
V4×3 -0.11 -0.07 -0.05
V4×4 -0.05 -0.02 0.0
V6×6 -0.05 -0.05 0.05
T19 -0.33 -0.28 -0.22

Table 4: Correlation coefficient results for the W , V and T19 kernels at Ks ∈
{1, 2, 3}, for the sample of 1,500 boards. The top 3 results are highlighted in gray.

The results in Table 4 show that kernel W2×4 produces the PB scores with

the second strongest negative correlation to the benchmark EV score. Due to its

simple shape, scores derived from this kernel are suitable for practical applications.

As noted in Section 2.2.2, correlation coefficients using scores based on Ks = 2

and Ks = 3 are included here primarily to demonstrate the process of selecting

the optimal Ks parameter value. For this reason, the W2×4 kernel and Ks = 1

are chosen as the sliding kernel algorithm parameters to produce PB scores used

in hypotheses testing related to gerrymandering. The PB score based on these

parameters is denoted by

PB(W2×4, Ks = 1)

The correlation coefficient between PB(W2×4, Ks = 1) and EV across the sample

of 1,500 boards is

r = −0.21
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With a p-value below our threshold of α = 0.05 this results is statistically significant

p = 9× 10−7

The thresholds for categorizing the strength of the correlation r as “weak”,

“medium” or “strong” are not strictly defined in statistics and can very depending

on the context of the research. General guidelines are offered in Table 5[17].

Weak |r| ≤ 0.3

Moderate 0.3 < |r| ≤ 0.6

Strong |r| > 0.6

Table 5: Ranges of strength for statistical correlation.

Although in Table 5 this correlation is classified as weak, it is noteworthy be-

cause it signifies a consistent negative relationship between the approximation PB

score and the benchmark EV score. The finding underscores the relevance of the

PB score in reflecting the patterns captured by the EV score, even in the presence

of only a modest correlation. The correlation coefficient results obtained in this

experiment can serve as a reference point in future studies aimed at improving the

packability scoring algorithm.

Figure 14 shows the distribution of the 1,500 PB(W2×4, Ks = 1) scores. The

saddle is due to no boards receiving a PB score of 0 when Ks = 1. Descriptive

statistics are provided in Table 6.
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Figure 14: Distribution of the 1,500 PB(W2×4, Ks = 1) scores for the boards in the
random sample.

Party A Party B

count 739 761
mean -25.23 25.32
std 6.45 6.48
min -45.00 10.00
25% -30.00 21.00
50% -25.00 25.00
75% -20.00 29.00
max -9.00 49.00

Table 6: Descriptive statistics of the PB(W2×4, Ks = 1) scores for both parties for
the boards in the random sample.
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3.2.2 Score deficiencies

Apart from the need for continuous improvements to the sliding kernel algo-

rithm, we identify the following potential deficiencies in our scoring methodology

that currently limit the PB(W2×4, Ks = 1) score’s correlation with the benchmark

EV score.

1. Sensitivity of the scoring method.

There is a trade-off between using a simple kernel shape as a parameter,

such as the W2×4 kernel, and more complex shapes such as the set of T19

kernels. Using the T19 kernels results in higher score sensitivity evident from

the stronger correlation coefficient results for T19 in Table 4 when compared

to the results from the W2×4 kernel.

2. Crackability and potential other properties of vote distributions.

In addition to packability, the EV score used as a benchmark throughout this

work inherently accounts for crackability. This means that the EV score has

an additional component that the PB score alone does not account for. In

addition, other components of the EV score may exist that reflect unknown

properties of a party’s vote distribution, which may also not be reflected in

the PB score.
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CHAPTER 4

Hypotheses Testing

This chapter presents an example of how the newly developed PB score can

be used to test hypotheses in order to draw insight on the real-world issue of

mathematical redistricting.

4.1 Low PB scores and tied district plans

In Distrix each party gets 50% of the votes on any given board (81 votes per

party), i.e. the two parties are equally popular among the voters. We refer to this

as a 50:50 board. The district plan that best represents the equal popularity of

the two parties is the tied district plan. On a tied plan each party wins an equal

number of districts, with the vote in the remaining districts ending up even. This

is illustrated on Figure 15.

An argument can be made that for a given random vote distribution in Distrix,

a relatively low PB score, regardless of its party sign (−/+), is associated with an

increased likelihood of a tied end-game scenario. The reason to suggest this, is that

boards that are less biased are expected to provide more fertile ground for tight

electoral races. Thus, we hypothesize that in our model, as the absolute value of

the PB(W2×4, Ks = 1) score decreases, the number of tied district plans increases.

Since a tied plan is considered a fair plan in Distrix, statistical evidence supporting

our hypothesis would indicate that low PB scores correlate with electoral results

that more accurately reflect voter preferences.

There are 5 categories of tied plans that can occur in Distrix. The frequency

distributions on Figures 16a, 16b, and 16c provide insights on each of these 5

categories.
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Figure 15: An example of a tied Distrix plan. There are three districts won by
party A, three won by party B, and three districts where the vote is tied.

4.2 The TTPB benchmark score

A new benchmark score, termed Total Tied Plans for board B (TTPB) is

created to help formally define our hypothesis. The score is calculated as the sum

of all tied plans for a given random board as obtained from the 178,939 tilings.

Table 7 shows descriptive statistics, for all TTPB scores for the sample of 1,500

random boards.

TTPB Score

count 1500
mean 22547.82
std 6947.51
min 2944.00
25% 17729.25
50% 22406.00
75% 27196.25
max 43452.00

Table 7: Descriptive statistics of the TTPB score across the sample of 1,500 random
boards.

36



(a) Distribution of the 5 categories of tied plans for the board in Figure 15 over all
178,939 possible plans.

(b) Distribution of the averages of the 5 categories of tied plans for the 1,500 random
boards over all 178,939 possible plans.

(c) The maximum number of times each of the 5 tied plans appears on a board in the
sample of 1,500 random boards. One board in the sample has 40,723 A4, B4, E1 plans,
a different board has 4,026 A3, B3, E3 plans, etc.

Figure 16: Insight on the likelihood of occurrence of each of the 5 categories of
tied plans in Distrix.
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4.3 Correlation analysis

The Pearson correlation coefficient is used to measure the linear correlation

between PB(W2×4, Ks = 1) and TTPB for the 1,500 boards in our random sample.

The correlation coefficient result is

r = −0.20

This indicates a weak but existing negative correlation between the approximation

PB(W2×4, Ks = 1) score and the exhaustive search TTPB score.

4.4 The hypothesis test

The following hypothesis test intends to assess the statistical significance of

the findings from the correlation analysis presented in Section 4.3. This will provide

evidence supporting the hypothesis that as the PB(W2×4, Ks = 1) score decreases,

the number of tied end-game scenarios increases. The Pearson’s correlation hy-

pothesis test is formally defined as follows:

H0: There is no negative linear correlation (r ≥ 0) between

|PB(W2×4, Ks = 1)| and TTPB.

Ha: There is a negative linear correlation (r < 0) between

|PB(W2×4, Ks = 1)| and TTPB.

The test is conducted at significance level of α = 0.05. The test statistic for the

significance of the Pearson correlation coefficient r is calculated in Eq. 13.

t =
r
√
n− 2√

1− r2
=
−0.20

√
1500− 2√

1− (−0.20)2
= −7.90 (13)

where:

• r = −0.20 is the sample Pearson correlation coefficient,
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• n = 1500 is the sample size,

• The test statistic follows a t-distribution with n− 2 degrees of freedom.

The resulting p-value calculated for a one-tailed test (since H0 ≥ 0) is:

p = 2.67× 10−15

This p-value is less than the chosen significance level of α = 0.05, therefore

H0 is rejected and it can be concluded that there is statistically significant ev-

idence to support the claim of an existing negative linear correlation between

|PB(W2×4, Ks = 1)| and TTPB.

In relation to real-world redistricting, the hypothesis test results from our

small-scale model indicate that a decrease in the packability score is associated with

an increase in the number of electoral plans that fairly represent voter preferences.

4.5 Empirical observations

The hypothesis test results are supported by empirical observations, as

demonstrated by the sequence in Table 8, where we observe that as the mean

|PB(W2×4, Ks = 1)| decreases, the mean TTPB score increases. This observations

is across 3 sub-samples q30, q20, and q10, which consist of boards in the 30th, 20th,

and 10th |PB(W2×4, Ks = 1)| score percentile from the 1,500 board sample.
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|PB(W2×4, Ks = 1)| TTPB

count 1500 1500
mean 25.28 22547.82
std 6.46 6947.51
min 9.00 2944.00
25% 21.00 17729.25
50% 25.00 22406.00
75% 30.00 27196.25
max 49.00 43452.00

(a) The sample of 1,500 boards.

|PB(W2×4, Ks = 1)| TTPB

count 522.00 522.00
mean 18.52 23617.27
std 2.80 6803.10
min 9.00 6418.00
25% 17.00 19000.25
50% 19.00 23763.00
75% 21.00 28283.50
max 22.00 43452.00

(b) Sub-sample q30: All boards in the
30th percentile of the large sample,
based on |PB(W2×4,Ks = 1)| score.

|PB(W2×4, Ks = 1)| TTPB

count 367.00 367.00
mean 17.26 23937.35
std 2.39 6666.54
min 9.00 7204.00
25% 16.00 19144.50
50% 18.00 24108.00
75% 19.00 28434.00
max 20.00 43452.00

(c) Sub-sample q20: All boards in the
20th percentile of the large sample,
based on |PB(W2×4,Ks = 1)| score.

|PB(W2×4, Ks = 1)| TTPB

count 169.00 169.00
mean 15.17 24718.69
std 1.88 6673.82
min 9.00 7204.00
25% 14.00 20226.00
50% 16.00 24863.00
75% 17.00 29271.00
max 17.00 43017.00

(d) Sub-sample q10: All boards in the
10th percentile of the large sample,
based on |PB(W2×4,Ks = 1)| score.

Table 8: Mean |PB(W2×4, Ks = 1)| (light gray) and TTPB (gray) scores for the
large sample and quantile-based sub-samples of boards in the 30th, 20th, and 10th
|PB(W2×4, Ks = 1)| score percentile. As the average |PB(W2×4, Ks = 1)| score
decreases, the average TTPB score increases.
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CHAPTER 5

Future work

5.1 Logistic regression for detecting biased boards

A binary logistic regression model can be developed to classify a board as

being biased against one of the parties or not, using the packability score. To

build this model, the set of 1,500 random boards can be split into a training set

and a test set. For training, boards with an |EV | > 0.5 (1 standard deviation

from the mean as shown in Table 2) will be labeled as “biased against one party”

(1), and all others as “not biased against one party” (0). The test set can be used

to fine-tune the probability threshold for classifying a board as biased, deviating

from the typical threshold of 0.5 if needed. For example, if greater certainty is

required, the probability threshold could be set at 0.8. Additionally, a logistic

regression model can help mitigate outliers, such as when a party with a high PB

score performs unexpectedly well on EV score despite the PB score indicating a

bias.

5.2 A measure for the susceptibility to cracking

In Section 3.2.2, it was stated that the benchmark EV score inherently ac-

counts for cracking in addition to packing, while our PB score solely covers packing.

This prompts an investigation of the “crackability” (CB) score of a board to com-

plement the PB score. Such a CB score should be focused on vote concentrations

separate from the ones that have been “marked” as suitable for packing by the

PB scoring algorithm. As in real-world cracking, these will be areas on the board

where the opponent can win districts by relatively narrow margins.

One component of the CB score can take into account the compactness of the

opponent’s vote clusters. This can be measured by the distance between the votes
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within the cluster. If the votes are 1 or 2 tiles apart, they are more likely to end up

in different tetrominoes. In contrast, if they are sharing an edge, the cluster will

be less “crackable” and the votes are more likely to end up in the same tetromino.

For example, in a W2×4 kernel dominated by party A, if the 2 highest vote tiles

for party A are in the top two corners of the kernel, the party is likely to win an

I90-shaped district in some district plans. However, in most of the 178,939 plans,

those two tiles are likely to fall under different districts, which may or may not be

won by party A. This approach can also be used to refine our existing PB scoring

methodology, since packing will be less likely to succeed in a W2×4 area where the

opponent votes are further apart.

Another potential building block of the CB score can be the location of the

opponent’s vote cluster on the board. From the tetromino saturation scores in

Section A.2, we see that the center of the 6x6 board can be covered by more

tetromino placements than its edges. If the opponent’s vote tiles have significantly

different weights, chances are those tiles will end up in different districts. This

means that clusters closer to the center would be more “stable”, while ones closer

to the edges of the board would be more “crackable”, when observed over all

178,939 plans.

The CB and PB scores can be combined into a GB score reflecting the overall

“gerrymanderability” of the board. This combined score is expected to have a

stronger correlation with the EV score.

5.3 Sliding kernel algorithm parameters

In Section 2.2.2, we noted the need for an additional mechanism within the

sliding kernel algorithm in order to produce reasonable scores when using Ks pa-

rameter values of 2 or 3. Such mechanism would ensure that only local scores

covering distinctly different regions of the board are included in the list Ls. One
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way to achieve this is to introduce an additional algorithm parameter, ST , for

kernel “stride”. This parameter, representing the step size with which the kernel

slides across the board, would take an integer value. Instead of the kernel moving

one position forward and taking another local score, as illustrated in Figure 9, it

could skip 1, 2, 3, or more tiles depending on the ST value, before it stops to take

another local score. This mechanism can be implemented as two parameters, STh

and STv, which modify the stride horizontally and vertically.
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CHAPTER 6

Summary

In this thesis we demonstrated how a board game can serve as a tool for

conducting research in mathematical redistricting. We believe that using a board

game to study the problem provides for an engaging research experience and fa-

cilitates the generation of interesting questions to investigate. The idea behind

the approach is to conduct small-scale experiments that provide valuable insights

applicable to real-world redistricting issues.

In Chapter 2, we developed a method to quantify the potential bias of the

board’s vote distribution against a player. The method calculates a “packability”

(PB) score which indicates the vulnerability of a player’s votes to the gerryman-

dering tactic of “packing”. We also parameterized the method so that its efficacy

can be tested over various parameter values. A separate “Expected Value” (EV )

score was created to use as a ground truth against which the PB score is evaluated.

The EV score is based on tiling the game’s rectangular board with tetrominoes.

A special recursive backtracking algorithm was designed to generate all possible

tilings via exhaustive search. The time complexity of this algorithm was analyzed,

and its upper bound was established at O(2k), where k is the number of tetromino

placements.

In Chapter 3 we used correlation analysis to evaluate the PB scores produced at

various parameters of our method against the benchmark EV score. We identified

the sets of parameters that produced the most consistent and reliable scores, and

selected one of these sets for use in hypotheses testing. Additionally, we discussed

potential deficiencies of the existing PB scoring methodology.
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In Chapter 4, we demonstrated how the newly developed PB score can be uti-

lized to test hypotheses related to real-world redistricting. Specifically, we tested

a hypothesis to investigate whether a negative correlation exists between the PB

scores and the number of plans that produce a tied election result for a given

vote distribution. It was found that there is statistically significant evidence to

support this hypothesis, which was further confirmed through empirical observa-

tions. Insight related to real-world redistricting was drawn from the hypothesis

test results.

In Chapter 5, we proposed directions for extending this research. We suggested

developing a logistic regression model based on the PB score to classify boards

as biased or not biased. Additionally, we recommended exploring a method to

quantify a party’s susceptibility to the gerrymandering practice of “cracking”. The

resulting “crackability” score can be combined with the PB score to form an overall

“gerrymanderability” score of a board. Finally, we recommended introducing a

“stride” parameter in the sliding kernel algorithm. This parameter would aim to

prevent duplicate counting of vote concentrations and ensure that only distinct

clusters contribute to the PB score.
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APPENDIX A

Kernels Used in the Experiment

A.1 W kernels

(a) W2×4

(b) W4×2

(c) W3×4

(d) W4×3
(e) W4×4

Figure A.1: All kernels W with weights set to 1.
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A.2 V kernels

(a) V3×4

(b) V4×3

(c) V4×4

(d) V6×6

Figure A.2: All kernels V with variable weights.
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A.3 T19 kernels

(a) I (b) I90 (c) J

(d) J90 (e) J180 (f) J270

(g) L (h) L90 (i) L180

(j) L270 (k) O (l) S

Figure A.3: The T19 fixed tetromino kernels.
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(m) S90 (n) T (o) T90

(p) T180 (q) T270 (r) Z

(s) Z90

Figure A.3: The T19 fixed tetromino kernels (Continued).
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APPENDIX B

Another Redistricting Game

Mapmaker is a game similar to Distrix. The board of the two-player version is

a 37-tile hexagonal grid. Each hexagon in the grid represents a voting unit. Colored

tokens placed on each of the hexagons represent the historic voting preferences in

the units. The players place edges around the voting units to create districts. The

player that controls the most districts at the end of the game wins. Figure B.1

shows an example Mapmaker board from the game’s manual[18].

The 37-tile Mapmaker board is of a size close to the 36-tile Distrix board. For

this reason, it may seem at first that the method outlined in Chapter 2 can use

either Distrix or Mapmaker, interchangeably. The hexagonal shape of the tiles and

board, however, make working with Mapmaker a lot more challenging.

Figure B.1: A Mapmaker game in progress, using the 2-player, 37-tile board[18].
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To create an EV benchmark score for Mapmaker, we need the set of all possi-

ble tilings for the 37-tile hexagonal board. Instead of polyominoes, a combination of

polyhexes needs to be used to tile the board (see Figure B.2) due to 37 mod 4 6= 0.

We have verified through “checkerboard coloring”[19], that the board can be tiled

with at least the following combinations of polyhexes:

• 7 tetrahexes and 3 trihexes1

• 1 trihex, 6 tetrahexes and 1 pentahex

• 2 pentahexes, 1 trihex and 6 tetrahexes

Although other combinations may also exist, including any involving higher-degree

polyhexes, we have not explored these. From [20] it is known that the total number

of fixed polyhex forms of degree 3, 4 and 5 is 241 (11 + 44 + 186). This is

significantly more than the 19 tetrominoes used to tile Distrix. We have not

found the exact number of polyhex placements (PP s)2 produced by sliding the

241 polyhexes on the 37-tile board. However, it is reasonable to assume that it

will far surpass the 381 TP s used to tile Distrix. Given the substantial increase,

a combinatorial explosion is likely, posing significant challenges for generating all

possible tilings using the backtracking algorithm of exponential time complexity

detailed in Algorithm 2. We are also not aware of any work similar to [14] that

provides the total number of possible tilings for a 37-tile hexagonal board. Such

a number would be useful for verifying any tiling results. Thus, fully enumerating

all possible tilings for the 37-tile board with the recursive backtracking algorithm

appears elusive.

1This means that there will be 3-unit districts on the board which are not allowed in the
formal rules of the Mapmaker game. This rule however, can be relaxed for the purposes of using
the game as a research tool.

2Here PP denotes a polyhex placement, equivalent to the TP described in Chapter 2.
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From [7] we understand that a limited solution to the Mapmaker tiling problem

can be achieved by using each of the 7 free tetrahexes, together with each of the 3

free trihexes. This results in 12,290 unique tilings, which, however, is far less than

the 178,939 tetromino tilings for the 6x6 Distrix board. In addition, this means

that we have to use both 3 and 4 unit districts in Mapmaker versus the uniform

4-unit districts used in Distrix which, depending on the goal of the research, can

be considered a deviation from the real world requirement of equal population

size districts. For these reasons, the Mapmaker board appeared less suitable for

the experiments that we wanted to run in this study. It could, however, suit

other experiments where the shape of the voting unit is considered important. For

example each hexagonal unit - apart from the ones on the edges of the board - has

6 neighbors, which could better represent certain real-world redistricting scenarios.
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(a) The 3 free trihexes[21]. Reflections and rotations result in 11 fixed trihexes.

(b) The 7 free tetrahexes[22]. Reflections and rotations result in 44 fixed tetrahexes.

(c) The 22 free pentahexes[23]. Reflections and rotations result in 186 fixed pentahexes.

Figure B.2: The free polyhexes of degree 3,4 and 5.
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