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ABSTRACT 

Visualizing high dimensional data can be a challenging task due to the 

difficulty people face in comprehending information beyond three dimensions. 

Further research and development of tools in this area could prove valuable 

for creating efficient, intuitive, and accurate visualizations. It could also provide 

insight into the manifold hypothesis, which suggests that high dimensional 

data can exist in low dimensional space. 

This thesis proposes the utilization of clustered manifold mapping as a 

novel visualization technique that summarizes a dataset into a hierarchal tree 

of clusters by partitioning the data based on a user-specified distance metric. 

A subset of clusters can be carefully selected from the tree to create a 3D 

graph using the Unity game engine, which enables the user to interact with the 

and explore various features of the data. 

The graphs produced with this approach will be quantitatively and 

qualitatively compared with existing methods such as UMAP, which 

demonstrates its contributions to the field of visualizing high dimensional data. 

Furthermore, visualizing the tree of clusters in addition to the graph provides a 

greater understanding into the field of clustered manifold mapping. 
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CHAPTER 1 
 

INTRODUCTION 
 

Visualizing high-dimensional data can be challenging due to the curse of 

dimensionality, which refers to issues such as computational complexity and 

the challenge of representing data beyond three dimensions in a way that 

humans can easily understand [1]. Modern datasets are growing increasingly 

larger, both in the number of data points and the number of features 

describing them. For example, if a dataset is described by two features, one 

could create a 2d line or bar plot and display the information in a meaningful 

way. However, if the data is described by hundreds or thousands of features, it 

is difficult to get an intuitive feel for what the data looks like [2]. 

A common method for visualizing such high dimensional datasets is to 

simplify the data by finding a lower dimensional structure in it [3]. To achieve 

this, manifold learning algorithms are commonly employed to calculate 

measures of the local geometry of the manifold, after which the original data 

points are no longer needed [3]. A prevalent visual representation of the 

manifold, exemplified by UMAP, TMAP, and IsoMap, is in the form of a 

weighted graph [4]. This tool will build on these existing visualization methods 

that have various tradeoffs in performance, quality of the manifold, and user 

interface features. 
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1.1 Problem Statement 
 

The weighted graphs used in common visualization methods such as 

UMAP and t-SNE are created using a nearest neighbor approximation. The 

nearest neighbor algorithm is used to approximate the local structure of the 

manifold by showing a cluster in relation to other clusters that it shares some 

features with. The relationships between disconnected neighborhoods in the 

graph represent the global structure in the manifold. These algorithms must 

perform a balancing act of trying to preserve both the local and global 

structure while visualizing the manifold. 

 This low dimensional representation of the manifold is estimated by 

these algorithms using a force directed graph. Based on some “distance” 

calculated between data points in high dimensional space, the goal is to 

position clusters in 2D or 3D space such that the distance between them is 

representative of their relationship in the original embedding space. This is 

done by applying attractive or repulsive forces between clusters until their 

positions have settled in an optimal layout. The balancing act mentioned 

earlier comes from applying forces between the disconnected portions of the 

graph without disrupting the local relationships within the neighborhood. 

 

1.2 Proposed Solution 
 

The notable divergence of this work and existing methods is the use of 

CLAM (Clustered Learning of Approximate Manifolds) to construct the graph. 

CLAM uses a clustering process that repeatedly divides the dataset and 

places datapoints that are estimated to be related into the same cluster. The 
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graph is then constructed by selecting a subset of clusters from the tree such 

that the entire dataset is represented. This accomplishes one of the first 

challenges of attempting to distill a dataset into a subset of its features. 

 The selection of clusters to represent the dataset in the graph is a 

challenge that can be solved using CHAODA, a collection of anomaly 

detection algorithms created by training meta-machine learning models 

according to several geometric and topological properties [5]. 

 CLAM also provides a diverse set of distance functions that can be 

used to estimate the distance not only between datapoints but between 

clusters. In addition, it provides a radius for each cluster, which describes the 

greatest distance from its geometric median to any datapoint in the cluster. By 

leveraging the distance functions and radii of clusters, the edges in the graph 

can be created by looking for an “overlap” between clusters.  

 In addition to the exploration of the manifold through clustered manifold 

mapping, this work looks to create an immersive and interactive experience for 

the user. The visualization will be created using the Unity game engine, which 

will allow for efficient rendering of the tree and graph. In addition, the ability for 

the user to move around the graph with a camera and interact with clusters will 

provide insights into the underlying manifold of the dataset. 

 

1.3 Findings 
 

The results from this work look promising as the graphs produced for 

datasets can be tuned based on a variety of parameters to view low and high 

resolutions of the dataset. Selecting clusters from various depths in the tree 
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allows the user to manage the balance of the local and global structure of the 

graph. In addition, the visualization of the tree created by CLAM provides an 

insight into the density of various sections of the manifold.  

 The accuracy of the low dimensional representation is quantified using 

a series of tests that measure distortion between the geometry of the low 

dimensional manifold and the representation of the data in high dimensional 

space. Initial results show that the accuracy of the graph improves with each 

iteration of the force directed algorithm used to create the 3D layout and that 

the graphs produced provide a better representation of the distances between 

points than in UMAP.  
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CHAPTER 2 
 

REVIEW OF LITERATURE 
2.1 The Curse of Dimensionality 
 

Datasets over the past few decades have been growing not only in the 

number of instances of data but in the number of features describing them [6]. 

An example of an industry with growing datasets is biotech; which needs to 

advance its capability to analyze, visualize, and interpret data in order to better 

understand diseases [7]. Another cause of the increase in dimensionality can 

be seen in the analysis of images and even entire movies, where a single 

observation could have dimensions in the thousands or billions [6]. 

Donaho provides an example in his article asking the reader to consider 

a cartesian grid on a unit cube in 10 dimensions with grid spacing of 1/10 that 

contains 1010 points. An exhaustive search of this space could result in 

attempting billions of evaluations. In his lecture titled “The Curses and 

Blessings of Dimensionality”, Donaho uses the curse of dimensionality “to 

refer to the apparent intractability of systematically searching through a high-

dimensional space, the apparent intractability of accurately approximating a 

general high-dimensional function, the apparent intractability of integrating a 

high-dimensional function [6].” He then confidently states that high 

dimensional data analysis will be a significant activity leading to the 

development of new methods in the coming years.  

 
 
2.2 The Manifold Hypothesis 
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In contrast to the Curse of Dimensionality are the blessings of 

dimensionality. In Gohan’s article on the Blessings of dimensionality, they 

state that in the world of statistical mechanics, a complex system can be 

presented as a union of many weakly interacting subsystems that exist in 

lower dimension. Furthermore, contributions from physicists and 

mathematicians have shown that random points in a high dimensional sphere 

tend to lie near the surface [8]. While these theorems relate to 

thermodynamics and behaviors of particles in gas, mathematicians theorized 

that the behavior of particles in high dimensional balls could be related to the 

behavior of high dimensional data. This leads to a collection of methodologies 

for analyzing high dimensional data based on the hypothesis that real-world 

data tend to lie near a low dimensional manifold, called manifold learning. The 

underlying hypothesis is referred to as the manifold hypothesis [9]. 

 
2.3 Manifold Learning  

Manifold learning is a recent approach to nonlinear dimensionality 

reduction based on the idea that data points described by thousands of 

features may be described as a function of a few key underlying parameters 

[2]. A common example of such data is to consider several images taken of an 

object simultaneously from various angles. While the images may contain 

hundreds of dimensions, they would also contain a significant amount of 

overlap in their data. If one had to analyze hundreds of these images, it would 

be helpful to get a simplified representation such that the images are 
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described by key underlying features that describe their similarities or 

differences.  

This idea can be formalized using the manifold hypothesis, which 

assumes that data lie along a low-dimensional manifold embedded in high-

dimensional space. In other words, we do not need to keep all the features of 

the data to compare the images. Attempting to uncover this manifold structure 

in a data set is referred to as manifold learning [2]. 

2.3.1 Manifold Learning Algorithms 
 

Here, I will provide a summary of the common steps found in manifold 

learning algorithms that lay a foundation for existing methods section, where I 

will go into more detail on common manifold learning techniques. One of the 

first manifold learning algorithms, which I will use as an example here, is 

Isomap. Its algorithm consists of two main steps. The first is to estimate the 

distance between points in the input data. The next step is to find points in a 

lower-dimensional Euclidian space such that the distance between the points 

match their distance in the original embedding space [2]. Manifold learning 

algorithms are then forced into a balancing act where they need to consider 

the local and global structure of the manifold. 

 Isomap is considered a global method because it constructs an 

embedding from the distance between all pairs of points. A local method of 

manifold learning would only consider the distance between a point and its 

immediate neighbors. This tradeoff leads to distinguishing characteristics of 

common manifold learning techniques. For example, assuming that each point 
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in the dataset is assigned some number of “neighbors” that are assumed to be 

related in some way, a local method would do a good job of representing the 

distance between points in a local neighborhood. However, non-neighboring 

points could be found in locations in the Euclidian space that are much closer 

to each other than they are in the embedding space. Conversely, a global 

method would tend to do a good job of spacing non-neighboring points into 

distinct clusters but would fail to accurately represent the relationships of 

datapoints in the neighborhood [2].  

Another factor to consider is that most manifold learning techniques 

take in the number of neighbors as a parameter, which can vastly affect the 

accuracy of the dimensionality reduction. In addition, it can be difficult to prove 

that the manifold being represented actually exists and then even quantifying 

how accurate of a representation your manifold is to the real manifold is a 

challenge [2]. 

 
2.4 Force Directed Graphs 
 

Manifold learning algorithms and visualizations typically use a graph to 

represent the underlying data. The specifics might differ between certain 

visualization methods, but the overall concept is that a graph is formed where 

vertices in the graph represent data points and edges in the graph represent 

relationships between vertices and their neighbors. Here, I will cover the 

overall concept of how force directed graphs work before going into how they 

are used specifically in visualizations. 
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Force directed algorithms in general are a common way to visualize 

graphs because certain heuristics and hyper parameters can be used to 

achieve desired stability and readability properties [10]. These algorithms can 

be broken down into two phases. The first is an initialization phase, where 

certain constant values are set as well as an initial layout of the nodes is 

formed. Many algorithms such as the Fruchterman and Reingold algorithm will 

randomly initialize the node positions [10]. The next step is the iterations 

where forces are applied to edges and/or nodes in the graph repeatedly until 

some termination condition is met. Ideally, the graph layout should converge 

towards some desired end state. 

In Fruchterman and Reingold’s implementation, repulsive forces are 

calculated between every pair of vertices, but attractive forces are calculated 

only between vertices that share an edge. They made this decision because 

they decided to emphasize the importance of the local layout of the graph. By 

only applying attracted forces along edges, they encourage a vertex to only be 

located nearby other neighbor vertices. This means that their algorithm would 

lead to what is considered a local embedding in manifold learning. Other 

algorithms exist that try to find an ideal distance between vertices and non-

neighbors which would lead to a balancing act between the global and local 

structure of the graph. One such algorithm was developed by Kamada and 

Kawai, who defined the ideal distance between disconnected vertices as being 

proportional the length of the shortest path between them [11]. The implication 

of a path existing between them is especially important in the context of my 
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work because this would still only affect the structure within disjoint graph 

components.  

“A disjoint graph component is a connected subgraph C of the graph G 

which is not properly contained in any other subgraph of G [12].” Another 

expression of this could be that if there are two components in a graph and a 

vertex v exists in the set of vertices of one component but not in the set of the 

other component, they are said to be disjoint [12]. This is notable because the 

ideal layout discussed above only applies attractive forces within the 

components and does not consider one disjoint component relative to another. 

As such, a layout would ideally have a better representation of the local 

geometry of the manifold but would still not accurately represent the global 

structure as there would only be repulsive forces between disjoint components. 

The goal of Reingold and Fruchterman’s force directed algorithm was 

twofold: “Vertices connected by an edge should be drawn near each other and 

vertices should not be drawn too close to each other [11].” However, they do 

note that some graphs could be too complex to draw attractively. A notable 

aspect of many force directed graph algorithms such as Fruchterman and 

Reingold’s is that they have a target frame that should contain the graph. As 

such, they create four imaginary walls representing the frame that will prevent 

any vertices from leaving the frame. This could lead to a problem if a manifold 

learning force directed algorithm wants to accurately represent relationships 

between data points but needs to confine the data within a certain frame and 

simultaneously prevent vertices from being too close to each other. This topic 
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will be covered in more depth in the review of t-SNE as they discuss the 

tradeoffs between aesthetics and accurately portraying the geometry of the 

manifold. 

As mentioned earlier, a common step in force directed algorithms is to 

iterate some number of times and apply forces to the graph until some stop 

criteria is met. This stopping criterion is not so easily defined and varies from 

algorithm to algorithm. For example, “Eades simply asserted that ‘almost all 

graphs reach a minimal energy state after the simulation step is run 200 times’ 

[11].” Some algorithms such as Kamada and Kawai have a target state that 

they aimed for their graph to achieve but did not explicitly state the number of 

iterations to achieve that state as it could vary depending on the dataset. 

Frechterman and Reingold stated in their paper that the number of iterations to 

be used in their algorithm is “guesswork” [11]. 

 
2.5 Existing Visualization Methods 
2.5.1 PCA 
 

Principal Component Analysis is a dimensional reduction technique first 

discussed by Pearson in 1901 but it took decades before the available 

computing power made it feasible to use on datasets [13]. Its primary goal is to 

reduce the dimensionality of a dataset while retaining as much “variance” in 

the dataset as possible. By doing so, it can be used to identify patterns in data 

that highlight the similarities and differences between various datapoints [14]. 

 Principal Component analysis does this by computing a covariance 

matrix that represents the correlation between each combination of datapoints. 
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If their covariance is positive, they are positively correlated and if their 

covariance is negative, they have an inverse correlation (as one value 

increases, the other decreases). The covariance matrix is then used to 

compute eigenvectors and eigenvalues where the former represent the 

directional vectors on which data lie and the latter represent the importance of 

the vector in representing the dataset. Principal Components can then be 

created as linear combinations of the original dataset weighted by their 

corresponding eigenvectors. The least important principal components can 

then be discarded to summarize the dataset while reducing its dimensionality 

[13]. 

 This leads to a simplified description of the dataset that can be used to 

analyze the structure in a lower dimension. It can also be thought of as an 

unsupervised learning method that finds patterns in datasets without 

references to prior knowledge of the grouping of datapoints [14].  

 PCA is a powerful tool that comes with limitations such as the fact that 

the underlying structure of the data must be linear and that patterns that are 

highly correlated could be unresolved because PCA tries to create 

uncorrelated components from the data [14]. 

 
2.5.2 t-SNE 
 

T-SNE is a manifold learning technique first introduced in 2008 that 

aims to visualize data by giving each datapoint a location in 2d or 3d space. It 

does this by converting high dimensional Euclidean distances between 

datapoints into conditional probabilities that represent similarities. These 
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similarities are then used for each datapoint to find other datapoints that could 

be considered its neighbor. T-SNE then initializes a force directed graph in 2d 

or 3d space by providing each datapoint a random location.  

That same probability of datapoints being neighbors can then be used 

to estimate the “distance” between the high dimensional and low dimensional 

representation of the dataset. For simplicity, let’s assume that the number of 

nearest neighbors being found is a small number such as three. We will then 

assume for each datapoint in high dimensional space, some datapoints u,v,w 

were found to be the nearest neighbors. For each datapoint in lower 

dimensional space, we would also search for its three nearest neighbors. If u’, 

v’, w’ correspond to the same datapoints, then the difference between the 

datasets would be minimal. In more technical terms, t-SNE “minimizes the 

sum of the differences over all datapoints using a gradient descent method, 

whose cost function focuses on retaining the local structure of the data in the 

map [15].” To minimize this distance, attractive or repulsive forces are applied 

between datapoints in lower dimensional space based on if their distance 

between datapoints is greater or less than the similarity of the datapoints in 

high dimensional space. 

T-SNE also scales the forces applied along the “springs” of its graph so 

that longer springs will apply more force than shorter springs. This is 

accomplished by exerting force proportional to the difference in similarity 

between the points in each dimensional space. If the difference is 0 for 

example, it means the datapoints in low dimensional space perfectly represent 
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the relationship between the datapoints in high dimensional space, and no 

forces would be applied between them [15]. 

 In their paper, Laurens van der Maaten observe that in high dimensions, 

there are numerous ways that datapoints can have the same distance. 

However, as you reduce the number of dimensions, you reduce the number of 

ways that distance can be represented. This means that if all datapoints were 

equidistant to each other, the produced 2D graph could be overcrowded. They 

note that if small distances are to be represented accurately, then moderate or 

large distances could be placed too far away to fit properly in the 2d 

dimensional map.  

To mitigate this issue, they apply a slight attractive force between a 

datapoint and the far away datapoints with the intention of drawing clusters 

closer together to fit on the map. An unfortunate side effect of this is that these 

slight forces can add up and cause too many clusters to be pulled towards the 

center of the map, resulting in overcrowding. To account for this, they follow a 

method presented by Cook et al. in 2007 that creates slight repulsive forces 

that prevent the distance between two datapoint falling below a certain 

threshold. This essentially creates a minimum possible distance between 

datapoints in the 2d map that fight overcrowding while the attractive forces still 

prevent clusters from disappearing from the map [15]. 

 
2.5.3 UMAP 
 

UMAP is another manifold learning technique for visualization high 

dimensional data that is constructed from a theoretical framework based in 
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Riemannian geometry and algebraic topology. In their paper published in 2020, 

the authors argue that it has better run time performance and preserves more 

of the global structure of the manifold than t-SNE. They also state that 

neighborhood based manifold learning algorithms should select their 

fundamental components through well-grounded theoretical decisions [4]. 

 The UMAP paper has a chapter in it that goes into detail on the 

mathematical theory behind their algorithm. For the purposes of this review, I 

will skip over the math theory and focus more on the higher-level details. At a 

high level, the UMAP algorithm looks quite like t-SNE. They create a 

topological representation of their dataset in high dimensional space and then 

construct a topological representation in a lower dimensional space. UMAP 

then uses a force directed algorithm to minimize the cross-entropy between 

the two topological representations [4]. 

 Like t-SNE, UMAP uses a k-nearest neighbor algorithm to represent the 

local structures of the manifold. It then estimates the geodesic distance 

between each point and its k neighbors to represent the edges of its graph. In 

summary, UMAP can be described “in terms of, constructions of, and 

operations on, weighted graphs [4].” 

The first step of UMAP’s algorithm will sound familiar: to construct a 

weighted k-neighbor graph from the dataset. The second is to compute a low 

dimensional layout of said graph. The key difference between the t-SNE and 

UMAP is that the latter’s cost function used to minimize the difference between 
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the two topological representations is more efficient, resulting in performance 

gains. 

The behavior of their force directed graph can be described as applying 

attractive forces along edges of the graph and repulsive forces between nodes. 

However, applying repulsive forces between all nodes as seen by Reingold 

and Fruchterman results in a time complexity of 𝑂(𝐸) + 𝑂(𝑁2) [11]. Therefore, 

the UMAP algorithm reduces the time complexity by randomly sampling 

repulsive forces from vertices whenever an attractive force is applied along an 

edge. 

The UMAP algorithm takes in four hyper parameters: the number of 

neighbors to consider, the target embedding dimension, the minimum distance 

between datapoints, and the number of epochs. The number of neighbors 

considered has an impact on the tradeoff of local vs global manifold learning 

performance. The authors state that “smaller values will ensure detailed 

manifold structure is accurately captured (at a loss of the “big picture” view of 

the manifold), while larger values will capture large scale manifold structures, 

but at a loss of fine detail structure which will get averaged out in the local 

approximations [4].”  

Another hyperparameter of note is the minimum distance, which deals 

with the issue of “overcrowding” as described in t-SNE by allowing the user to 

specify the how closely together points can be packed in the lower 

dimensional graph. The authors note that this is more of an aesthetic choice 

for helping readability of visualizations as larger values will force the 
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embedding to spread the points out, possibly leading to a loss in accuracy in 

the representation of the manifold. 

The authors of the UMAP paper conclude their findings by pointing out 

limitations of their algorithm. One observation they make is that UMAP tends 

to focus on the local structure of the geometry of the manifold and that UMAP 

may not be the best choice if one’s primary goal is to visualize the global 

structure. The authors of UMAP also note that UMAP is focused on preserving 

the topology of the structure rather than pure metric structures [4].” 

In their future works section, the authors note that they attempt to 

discover a manifold on which the data is uniformly distributed. Thus, if the data 

consisted of a loose structure in one area and a densely packed structure in 

another area, UMAP would put these local areas “on even footing [4].” The 

authors also echo what Cayton described in his paper: that “there is a lack of 

clear objective measure, or even definitions, of global structure preservation 

[4].” 

 
2.6 Clustered Manifold Mapping  
 
2.6.1 CLAM 
 

The notable difference between the manifold learning technique 

proposed in this thesis and the methods summarized in the previous section is 

that it uses clustered manifold mapping to create its graph rather than k-

nearest neighbors. Clustering is a field that aims to arrange an unordered 

collection of objects such that nearby objects are similar [6]. This is usually 

achieved by grouping similar datapoints into the same cluster [5]. The 
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CHAODA paper notes that the term manifold learning is “largely synonymous 

with dimension reduction and proposed manifold mapping to refer to the study 

of the geometric and topological properties of manifolds in their original 

embedding spaces [5].” As such, the authors proposed Clustered Learning of 

Approximate Manifolds (CLAM) as a novel technique.  

 CLAM defines a cluster as a set of points with a center and radius. The 

center is the geometric median of the points grouped in the cluster while the 

radius is the greatest distance from the center to any point in the cluster [5]. 

CLAM uses these clusters to create a tree representation of the dataset where 

each non-leaf cluster has two child clusters. 

 CLAM creates this cluster tree using a “divisive hierarchical clustering 

algorithm [16].” The initial step in the partitioning of the tree is to take a cluster 

containing |C| points (the cardinality of the dataset) and randomly sample the 

square of |C| points. For each of these randomly selected points, the pairwise 

distance between all points are calculated based on some metric distance 

function. The geometric median of the cluster is then calculated by minimizing 

the sum of the distances to all other points in the sample. CLAM then 

designates a left “pole” of the cluster as the datapoint that is farthest from the 

geometric median as well as a right pole that is the cluster farthest from the 

left pole [16]. The cluster is then partitioned such that data points that are 

closest to the left pole are assigned to the left child and clusters closest to the 

right pole are assigned to the right child. If any clusters are equidistant from 
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the two poles they are assigned to the left child by default. This often leads to 

an unbalanced tree that leans to the left.  

The authors note that this is a positive feature of the algorithm as the 

“varying sampling density in different regions of the manifold and low 

dimensional shape of the manifold itself will cause it to be unbalanced [16].” 

The authors only expect a perfectly balanced tree if the dataset is uniformly 

distributed. This contrasts with the UMAP algorithm which assumes that the 

data is uniformly distributed on the manifold.  

 
2.6.2 Clusters 
 

CLAM’s clustering process also provides the advantage of memoizing 

properties of the clusters such as radius as defined above, cardinality (the 

number of data points stored within the cluster), local fractal dimension 

(defined as an approximation of the dimensionality of the lower-dimensional 

manifold in the “vicinity” of a given point”, as well as an offset to access points 

in the dataset [16]. The data corresponding to a cluster can be found in the 

range [offset, offset + cardinality]. These properties can be leveraged in the 

visualization to provide more details about clusters and the underlying 

manifold. 

 
2.6.3 Graphs 
 

The cluster tree described above plays an important role in the 

visualization, however the most important contribution to the visualization is 

the ability to induce graphs that can be created by mapping specific clusters in 
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a tree to vertices of a graph. Edges in the graph are drawn between any two 

vertices whose corresponding clusters have overlapping volumes, “i.e. the 

distance between their centers is less than or equal to the sum of their radii 

[5].” 

 Clusters can be selected from the graph based on several properties 

such as their depth in the tree, cardinality, radius, etc. Clusters at lower depths 

in the tree can be considered at a “lower resolution” than those at greater 

depths. The authors note that inducing a graph across a variety of depths, as 

seen in figure 1, “efficiently maps a manifold with a variety of resolution [5].” 

This is based on the intuition that some regions of the manifold consist of a 

higher density of points than others and that graphs induced from these 

clusters can provide more information on these regions of the manifold [5]. 
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Figure 1: Blue dots represent clusters that have been selected for the graph. 
By selecting clusters at a variety of depths, we are ensuring that a manifold 
without a uniform distribution is properly mapped. 

A CLAM graph exhibits an important invariant in that the sum of the 

cardinality of all clusters in the graph must be equal to the cardinality of the 

root cluster in the tree. This essentially means that every datapoint in the 

dataset will be represented in the graph regardless of how many clusters have 

been selected. Another notable invariant of the graph is that it will never 

contain two clusters that are a parent or child of the other [5]. 
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While one could arbitrarily select clusters at various depths while 

maintaining the previous two invariants, CHAODA offers insight into selecting 

the “right” clusters that provide a useful representation of the underlying 

manifold [5]. CHAODA’s focus was on outlier detection in high dimensional 

datasets, and thus created several scoring functions for clusters that quantify 

how “good” of a choice a cluster is for the graph.  

The algorithm for selecting the clusters involves first sorting the clusters 

in the tree based on their score. The next step is to take the first cluster from 

the sorted queue and add it to the graph. The cluster’s ancestors and 

descendants are then removed from the queue. This process is repeated until 

the queue is empty. CHAODA also offers a hyper-parameter that allows the 

user to specify a minimum depth in the tree that a cluster must have. Providing 

a higher minimum depth will force the algorithm to choose clusters higher in 

the tree. This can be useful for ensuring that a useful and interesting graph is 

created. For example, if the minimum depth is zero, the root cluster could be 

selected as the only vertex in the graph. If the min depth is too high, it could 

result in many leaf clusters being selected, which would lead to many disjoint 

graph components. 
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CHAPTER 3 
 

METHODOLOGY 
3.1 Unity 
 

The first design choice I had to make when I started this project 

revolved around how I was going to render the visualization. One goal of this 

thesis is to create an interactive visual representation of the manifold, and one 

idea I had for that was having an interactive camera that the user could control 

to move around. I also wanted the ability to have a UI overlayed on the screen 

for the user to change aspects of the visualization while allowing the clusters 

on the screen themselves to be clickable objects the user could interact with. 

 These constraints led to a decision that a game engine should be used 

to create such a visualization. I initially considered using a game engine 

written in Rust because that is the language in which CLAM was implemented. 

However, because Rust is relatively new language, I felt that none of the 

engines were stable enough or had enough features to develop with. Another 

option I had was to use a game engine developed in another language and 

find a way to link the Rust based CLAM code with the engine. Two of the most 

popular game engines at the time of this writing are Unreal and Unity. While 

both engines are more than suitable for developing applications, the choice for 

me boiled down to which engine had better support for interfacing with a Rust 

library. Currently, Unity has more documentation for using “foreign function 

interfaces”, which allow a user in a host language to call functions from 

another language [17].  
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3.2 Foreign Function Interfaces 
 

The Unity game engine uses C# as its scripting language, which means 

I would need to create a foreign function interface between C# and Rust using 

C# as the host language. The common ground between C# and Rust is that 

they can both be easily bound to the C programming language. This means 

that if I needed to call a Rust function from Unity, I would need to convert the 

C# variables into a common C representation of that type, pass it to Rust, 

convert it from Rust’s unsafe C type into a safe Rust variable, do any required 

work in Rust and pass any results back to Unity. This last step, of course 

potentially involves the same process of converting the Rust type into a c type, 

and then converting it from C to C#. These Rust functions would also need to 

be compiled into a dynamically linked library that Unity would link to at runtime. 

 Some types are trivially converted across the foreign function interface. 

For example, passing an int from Unity to Rust simply requires writing a Rust 

function that accepts an i32 as a parameter. In a similar fashion, returning a 

i32 from a Rust function means storing the output as an int in C#. However, 

this concept introduces several complications to the codebase.  

 One such complication that I ran into was that I was not simply calling 

functions from Rust: I needed to create data structures that were not 

compatible with C# and have them live beyond the lifetime of the Rust 

functions. The tutorial I initially followed when developing the source code 

introduced the concept of a “baton” [18]. The baton is an opaque pointer 

allocated in Rust and provided to the host (C#) when the library is initialized. 
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From then on, any operation requested from the host passes the baton back to 

Rust. Once the host is finished, it passes the baton back to Rust one last time, 

so the memory is freed [18]. 

 In my case, this “baton” is a struct that stores the CLAM tree, CHAODA 

graph, and any other data that I need to persist for the lifetime of the program. 

C# receives this baton and stores it as a “IntPtr” type, meaning that C# has no 

idea what data type this pointer represents. In Rust, I created a typedef to 

save some headaches when writing functions. This pointer is defined as seen 

in figure 1. It is used in figures 2 and 3 when C# calls a foreign Rust function, 

passing it back the baton with the information Rust needs to return the tree 

height. 

pub type InHandlePtr<'a> = Option<&'a mut Handle<'a>>; 
 

Figure 2: The Handle Pointer used to pass CLAM data between Rust and C#. 

 

[DllImport(__DllName, EntryPoint = "tree_height")] 
private static extern int tree_height(IntPtr handle); 

 

Figure 3: C# declaration of an external Rust function. 

 

#[no_mangle] 

pub unsafe extern "C" fn tree_height(ptr: InHandlePtr) -> i32 { 
if let Some(handle) = ptr { 
        return handle.tree_height(); 
   } 

} 
 

Figure 4: A Rust function that can be called from C#. 
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pub struct Handle<'a> { 
    tree: Option<Tree<Vec<f32>, f32, DataSetf32>>, 
    clam_graph: Option<Graph<'a, f32>>, 
    force_directed_graph: Option<ForceDirectedGraph>, 
} 

 

Figure 5: The struct that stores all relevant Rust data and needs to persist for 
the duration of the visualization. 

 
 

A common operation that I needed to perform throughout the code base 

was passing the properties of a Cluster from Rust to C# (or vice versa). To do 

this, I needed an intermediate C-style struct that could be passed between the 

two languages, which I called ClusterData. For example, if a user clicked on a 

cluster to view its properties in the side menu, C# would call a Rust function, 

passing the name of a cluster as a parameter, and would receive an instance 

of ClusterData, which stored any relevant information. 

 While Rust stored the clusters in CLAM, Unity needed a way to store 

the GameObjects that would be visualized to represent those clusters and 

would need an identifier so that the GameObject could be associated back to 

its Rust counterpart. To that end, I created a Unity script called Cluster, which 

would store an id, position, and color. I could have copied all the properties of 

a Cluster into Unity, but I felt it would be a waste of memory to duplicate all the 

values when the datasets could potentially involve millions of clusters.  

When I first began my thesis, a cluster’s id was created via Huffman 

Encoding. The naming convention is such that the root cluster is named ‘1’ 

and each left child would have a ‘0’ appended to its name while each right 

child has a ‘1’ appended to its name. As the tree was created, its name was 
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memoized and stored as a string. The authors of CLAM later refactored the 

struct and removed Huffman encoding as they came up with a more efficient 

method of naming a cluster based on its offset and cardinality. It would have 

been easier to use these integers as identifiers instead of the string ids, 

however this change occurred rather late in my development phase, so I left 

the id as being stored as a string to avoid breaking changes. 

 

Figure 6: A comparison of the Cluster struct and the ffi interface struct used to 
pass data between Rust and C#. 

  

 Passing strings across the foreign function interface led to another 

challenge because I needed to dynamically allocate unmanaged memory, 

convert it to a C type and pass it to the other language. This also meant that I 

was required to manually free the memory down the road. To avoid 

unnecessary confusion, I decided to introduce an invariant to my code: Rust 

would always be responsible for allocating and freeing unmanaged strings. 

To create an instance of this struct in C#, it would pass a safely managed c-

string containing a cluster’s name as well as a ‘out’ variable of type 
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ClusterData to Rust. Rust would fill in any CLAM related variables, allocate the 

string id and then set the C# variable equal to this instance.  

[DllImport(__DllName, EntryPoint = "alloc_data")] 
extern FFIError alloc_data(IntPtr ptr, string id, out ClusterData data); 

 

 

Figure 7: The external Rust function used to create ClusterData. 

#[no_mangle] 
pub unsafe extern "C" fn alloc_data( 
    ptr: InHandlePtr, 
    id: *const c_char, 
    outgoing: Option<&mut ClusterData>, 
) -> FFIError { 
    if let Some(handle) = ptr { 
        let cluster = handle.get_cluster_from_string(id); 
        let cluster_data = ClusterData::from_clam(cluster); 
        *outgoing = cluster_data; 
        FFIError::Ok 
    } 
} 

 

Figure 8: Rust implementation of function allocating ClusterData. 

 

 Rather than calling this type of function directly, I created a struct called 

ClusterDataWrapper. Inspired by smart pointers in C++, I made it so the 

constructor would allocate a ClusterData struct, and the destructor would free 

the memory automatically when going out of scope. Another addition seen in 

the image is the FFIError Enum which I use to pass error messages back and 

forth between Rust and C#. 
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pub struct ClusterDataWrapper { 
    data: ClusterData, 
} 
 
impl Drop for ClusterDataWrapper { 
    fn drop(&mut self) { 
        self.data.free_ids(); 
    } 
} 

 
 

Figure 9: Rust implementation for automatically freeing string memory. 

 

public interface IRustResource { 
    void Free(); 
} 
 
public class RustResourceWrapper<T> where T : struct, IRustResource { 
    T m_Data; 
    public FFIError result; 
 
    ~RustResourceWrapper() { 
        m_Data.Free(); 
    } 
    public T Data { 
        get { return m_Data; } 
    } 
} 

 

Figure 10: C# implementation for automatically freeing string memory (note 
that this call to free passes the data back to Rust to be freed). 

 

 Another notable aspect of the design of my foreign function interface 

was the use of callback functions. There are certain cases where I might need 

to modify the position of every cluster based on data in Rust. To accomplish 

this, I would create a callback function in C# that accepted a ClusterData as a 

parameter. In C#, the callback function would behave as normal, meaning I 

could modify Unity objects and C# objects such as Dictionaries which are 

normally incompatible with a foreign function interface. Rust could then 
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traverse through the tree, create a ClusterData object filled with the necessary 

properties and then invoke the C# callback function. 

void ColorByCardinality(ref Clam.FFI.ClusterData nodeData) { 
    tree.GetValue(nodeData.id, out var cluster); 
    float ratio = 1.0f - nodeData.cardinality / tree.cardinality; 
    cluster.GetComponent<Cluster>().SetColor(new Color(ratio));   
} 

 

 

Figure 11: A callback function passed from C# to Rust that sets a cluster’s 
color according to its cardinality. 

 

public delegate void NodeVisitor(ref Clam.FFI.ClusterData data); 
 

Figure 12: A typedef of the function callback signature in C#. 

type CBFnNodeVisitor = extern "C" fn(&ClusterData) -> (); 
 

Figure 13: A typedef of the callback function used in Rust. 

 

fn for_each_dft(root: &Cluster>, node_visitor: CBFnNodeVisitor) { 
        if let Some(cluster) = root { 
        let ffi_cluster = ClusterDataWrapper::from_cluster(cluster); 
        node_visitor(ffi_cluster.data()); 
 
        for_each_dft(root.left, node_visitor); 
        for_each_dft(root.right, node_visitor);    
    } 
} 

  

Figure 14: The Rust function that accepts a higher-order function to perform 
on clusters. 

The design of this interface allows me to write code that transfers data 

between Rust and C# without having to directly interface with any of the 

unsafe C code in the middle. Any unsafe memory allocations are automatically 

freed, any unsafe types are converted to safe types before I start working on 

them. I essentially designed this so that I wouldn’t really need to worry about 

the unsafe nature of foreign function interfaces when I was implementing the 
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backend code. On top of that, the design of being able to use higher order 

functions while iterating over clusters in the tree allowed for more generic re-

usable code. 

 
3.3 The Tree 
 

While Rust stored Clusters in the tree-like structure described in the 

literature review, C# stored the companion cluster objects in a Dictionary 

where the key is the name of the cluster (a string), and the value is the Unity 

Object representing the cluster. 

This setup of copying the tree into a C# dictionary leads to a potential 

memory bottleneck where I could end up duplicating all the memory stored in 

Rust. I used two methods to solve this. One is that I made the attributes of a 

Rust cluster and a Unity structure mutually exclusive. Rust would store the 

clusters as described in the literature review section while Unity would store 

the name of a cluster, its location, and its color. This at least prevents issues 

of duplicate data as with large datasets, even duplicating integers and floats 

could be costly if there are millions of them. 

 The second method that I used to optimize the memory was based on 

the observation that there is little need to store every cluster in the tree in Unity 

at any given time and instead I decided to only create Unity objects for clusters 

that the user cares about. To that end, I treated Unity’s dictionary like a cache 

and Rust as the server. I initially only store the first few levels of the Unity tree 

in the C# dictionary. If a user requests to view another level in the tree, I check 

if the clusters on that level exist in Unity yet. If they do, I simply make the 
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clusters and any corresponding edges visible. If not, I add a cluster to the C# 

dictionary and place it on the screen according to layout calculations that will 

be covered in the Reingold Tilford section. This behaves in a similar manner 

for when the graph is constructed and if a user attempts to view the subtree of 

any clusters in the graph. 

 
3.4 Implementing the Force Directed Graph 
 

Calculating the forces and applying them to each cluster is a costly 

operation and can be a bottleneck during the physics simulation. Unity has 

built in physics systems that could be leveraged here, but I chose to 

implement the graph in Rust because of how closely coupled it is with the 

CLAM graph. A naïve approach to this would involve Unity calling a Rust 

function that computes the forces and waits for it to finish. However, this 

freezes the entire application while it waits on Rust. To resolve this, I 

implemented the producer consumer idiom. 

 Rust’s physics simulation would run on a worker thread, calculating the 

forces to be applied on the edges. Once it was finished calculating, it would go 

to sleep and wait to be awoken. I then modified the update function of a Unity 

object so that it would attempt to have Rust take the finished calculations and 

update the Unity objects. If the calculations were not complete, the function 

would end, and the objects would not be updated during that frame. However, 

if the calculations were complete, CLAM would iterate through each cluster in 

the graph and use callback functions to update the respective Unity objects’ 
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positions in 3D space. This function would then send a signal to the worker 

thread, waking it up to work on its next iteration.  

 In the cases of large graphs, performance bottlenecks can still be 

noticed as the clusters won’t be moving each frame. However, it is still better 

than the naïve method because it reduces the amount of time that Unity is 

waiting on Rust. 

 
3.5 Edge Drawing 
 

Unity provides a line renderer component for drawing lines between two 

or more points that I initially used to draw the edges between clusters in the 

tree. However, I noticed a performance bottleneck because the line renderer 

component is not well optimized for handling thousands of lines. To optimize 

this, I introduced an index and vertex buffer on a mesh and manually drew the 

lines.  

 One aspect of the improvement in performance came from the 

reduction in the number of game objects to update. Five thousand objects 

would take five thousand update and draw calls during the main loop. Creating 

one mesh object to draw all the lines only takes one update and draw call. 

Another aspect of the optimization came from the reduction in the number of 

vertices being placed on the screen. The purpose of an index buffer is to re-

use existing vertices rather than draw duplicates on screen.  

 Take for example, a graph consisting of four vertices where each vertex 

has an edge connecting it to each other vertex. This leads to a graph with six 

edges. Drawing the edges naively would result in placing two vertices on 
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screen for each line (12 vertices). However, using an index buffer to re-use 

vertices, we can reduce the number of vertices drawn on screen to just four. 

 

Figure 15: Example of a shape that can be drawn by reusing vertices with an 
index buffer. 

  

To summarize, this means that drawing the graph requires drawing a 

number of vertices equal to the number of clusters that have an edge, rather 

than the number of edges x 2. Changing to this method led to an impressive 

boost of performance seen in table one. 

Line Renderer 
 

Mesh Renderer 

num_lines fps 
 

num_lines fps 

1000 200 
 

1000 400 

3000 90 
 

3000 300 

5000 70 
 

5000 300 

10000 40 
 

10000 280 

Table 1: A comparison of the performance of Unity line renderer components 
vs A mesh renderer with index and vertex buffers 

 
3.6 Refactoring CLAM and CHAODA 
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Another factor that went into the implementation of this thesis was that 

the CHAODA paper had originally been published with a codebase written in 

Python. Most of the code had been ported to Rust, but it was outdated and no 

longer compatible with the latest version of CLAM. In addition, parts of CLAM 

such as the Ratios, which are required to score clusters were not implemented. 

To push my changes to the Clam repository, I also needed the code to pass 

several quality checks setup by the research group. 

In some cases, the refactoring was as simple as adding documentation 

to a function or struct (although that does add up when there are hundreds of 

functions that need documentation). Other times I wrote unit tests for the 

Graph and CHAODA modules, which led to the discovery of some bugs, 

including an improper implementation of standard deviation. I also needed to 

update the types that the Graph struct was using so that it matched the latest 

version of CLAM. This could mean adding lifetime specifiers or changing 

names of variables or functions. 

Within the CLAM codebase itself I needed to add the ratios calculations 

as an optional function that could be called when building the tree. This would 

memoize the ratio values of each cluster compared with its parent. The ratios 

play an important role in how CHAODA selects optimal clusters to be in the 

graph. Overall, this took a couple of months before I had the changes all 

merged into their codebase and ready for use with my visualization.  

 
3.7 Displaying the Tree 
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The primary purpose of my thesis is to view an induced graph 

representing the underlying structure of a manifold in a reduced dimension. 

However, I felt it important to visualize the CLAM tree in addition to the graph 

for several reasons. The first was simply because when I first started this 

project, I was new to Unity, Rust, CLAM, and the concept of foreign function 

interfaces. I also did not fully grasp how the graph would work yet. I did, on the 

other hand, understand what a tree-like structure was. So, I taught myself 

about all these topics by creating a visual representation of the tree before I 

started any work on the graph. After I finished creating the tree, I chose to 

include it in my final visualization application because it helps provide insight 

into the underlying structure of the data as well as provide insight into CLAM.  

As noted by the authors of CLAM, the tree is typically unbalanced and 

left leaning because they state that data is not always evenly distributed along 

the manifold. In addition, when creating the graph, I provide an intermediate 

step where, based on the hyperparameters specified by the user, the clusters 

that have been chosen to build the graph are highlighted for the user. This 

gives them a visual representation of how deep in the tree their graph is. It 

also helps users distinguish the difference between the purpose of the graph 

and the tree altogether. 
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Figure 16: An example of the Reingold Tilford tree layout. Blue clusters have 
been selected to create a graph from this tree. 

 
3.7.1 The Reingold Tilford Layout  
 

A challenging aspect of visualizing the tree is that trees of certain heights 

become increasingly difficult to visualize effectively. In fact, for large enough 

trees, the spacing required to place the clusters in a naïve manner could result 

in only the root being visible as the other clusters were pushed off into space. 

This is also affected by the fact that the trees are typically left-leaning and my 

initial spacing algorithm did not account for the fact that the left side might 

need more spacing than the right side.  

 To rectify this, I researched several tree visualization algorithms and 

settled on the Reingold-Tilford algorithm which aimed to preserve several 

invariants. First was that nodes at the same depth in the tree should be drawn 

in the same vertical level in the tree. Next was that a left child should be drawn 

to the left of its parent, and the right child to the right of the parent. The parent 

should be centered over the children, and a subtree should be drawn the 

same way regardless of where it appears in the tree [19]. In addition to the 

properties, Reingold and Tilford aimed to achieve this while minimizing the 
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width of the tree. However, I found that even with this algorithm designed to 

minimize width of the tree, large datasets were still not easy to view.  

I redesigned the algorithm to have a specified starting cluster, not just the 

root of the tree, and I added an additional parameter called max depth as 

stopping criteria. The latter allowed the user to only space clusters as if the 

tree was a specified height, rather than its actual height. This allowed clusters 

close to the root to initially be placed more closely together. As the user 

requests to view deeper in the tree, the max depth parameter is increased and 

the layout of the tree is recalculated with this new height, behaving in much 

the same way as a dynamically resizing array. Changing the algorithm to work 

from any cluster rather than just the root comes in handy when visualizing the 

subtrees of clusters in a graph. The results of this implementation can be seen 

in Figure 17, Figure 18, and Figure 19 below. 

 

Figure 17: A tree with a max height of 30 being displayed as though its max 
height was 2. 

 

 

Figure 18: A tree with max height 30 being displayed as though its max height 
was 8. 
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Figure 19: A tree with max height 30 being displayed. The tree is too wide to fit 
on screen even with the use of the Reingold Tilford Algorithm. 

 
3.8 Cluster Properties 
 

An important aspect of this thesis was to provide an interactive visual to 

the user. As such, the user can click on clusters and have their properties 

displayed on screen. The current UI design behaves much like the project 

TensorFlow visualization where you can click on a cluster to view its properties. 

However, the hope of using this clustered manifold mapping technique is that 

providing information about the cluster properties will provide additional 

information about the manifold. For example, the local fractal dimension of a 

cluster provides insight into the actual embedding space of the cluster. Other 

properties such as cardinality and radius can be used to determine how 

densely packed the cluster is. In addition, the offset combined with the 

cardinality allows the user to know which indices in the dataset are 

represented by that cluster.   

 

Figure 20: The blue cluster has been selected by the user, displaying its 
properties in the menu on the right. 
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3.9 Coloring Clusters  
 

This visualization tool allows the user to color clusters based on several of 

the clusters’ properties including cardinality, local fractal dimension, radius, 

label, depth, and vertex degree. Currently, all coloring properties besides by 

label are in greyscale and are normalized to the dataset. For example, if 

coloring by cardinality, a white cluster has a low cardinality compared to a 

cluster colored dark grey or black. Future HCI experiments could be 

conducted to research how users would prefer the color scheme be 

represented.  

 I initially created this visualization using the anomaly detection datasets 

used in the CHAODA paper, which only had two labels: inlier or outlier. As 

such, I setup the coloring scheme so that a red cluster would signify an outlier 

and a green cluster an inlier. I also scaled the color gradient based on the 

entropy of the cluster. So, the red channel was calculated as the number of 

outliers divided by the cardinality of the cluster and the green channel was 

calculated as the number of inliers divided the cardinality of the cluster. This 

would lead to clusters with a mix of inlier and outlier data being a yellowish 

color. 

 Later, I added functionality to support up to ten labels. However, I had 

to drop the shifting gradient idea because it could result in misleading colors of 

clusters. For example, if I assign a unique cluster for each label and those 

colors include yellow, green, and red, then a cluster made up of half green, 

half red could be the same color as a cluster with the yellow label. One other 
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notable aspect of the coloring scheme is that it is designed to be colorblind 

friendly, using a tool developed by Adobe that warns if certain colors clash in 

certain types of color blindness. The colors are still setup so that if using the 

anomaly detection datasets, green are inliers and red are outliers, as seen 

below. Coloring clusters in the tree and graph based on their properties allows 

the user to gain a better understanding of how clusters work while also 

portraying important properties of the tree and graph.  

   

 

Figure 21: Coloring a tree by label where green is inlier and red is outlier. 

 

 

Figure 22: Coloring a tree by cardinality. Darker colors mean a higher value. 
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Figure 23: Coloring a tree by depth. 

 

 

Figure 24: Coloring a tree by local fractal dimension. 

 
3.10 Selecting Clusters with CHAODA 
 

As seen in the CHAODA review in the previous section, an important 

consideration for building the graph is how the clusters are selected. To 

summarize, clusters must be selected from the tree such that every datapoint 

in the original dataset is represented in the graph while avoiding duplicate 

datapoints. One could arbitrarily select clusters that meet these criteria but 

there is a chance they could end up with a graph containing too few or too 
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many components. To avoid the first problem, the user interface suggests to 

the user that they build the graph with a min depth of 4 by default.  

 By increasing the min depth parameter, the user is guaranteeing that 

their graph will consist of more clusters. If the user goes too far, they could 

potentially end up with all leaf clusters chosen, which would lead to a disjoint 

graph with few to no edges. One note about the algorithm is that it will only 

ignore non-leaf clusters below the minimum depth parameter. For example, in 

Figure 25, the right child of the root is a leaf cluster and is chosen for the 

graph despite being lower than the minimum threshold. If this was not 

considered, we would break the invariant that each point in the dataset be 

represented in the graph. 

 

 

Figure 25: The blue clusters have been selected to build a graph with 
minimum depth 4 from a tree with a height of 4. Leaf clusters with a depth less 

than min_depth are still selected in order to maintain the invariant that the 
graph represents the entire dataset. 
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 CHAODA selects clusters based on scoring functions produced through 

a meta machine learning model. The scoring functions accept the “ratio” of a 

cluster as a parameter and return a score representing how good of a choice a 

cluster is for the graph. A ratio of the cluster is an array of six floats consisting 

of its cardinality, radius, and local fractal dimension divided by its parent’s 

corresponding values as well as the next exponential moving average of each 

value. The next exponential moving average is used to place a greater weight 

on more recent values while still taking older values into account. 

 One issue I ran into with CHAODA’s cluster selection was dealing with 

tiebreakers. For example, if clusters had the same score, the order that the 

clusters appeared in the queue was not stable between runs. This means that 

you could give the program the same input twice and receive different outputs. 

To address this, I added custom comparators to CHAODA’s codebase that 

would rank clusters by highest score, lowest offset, highest cardinality. The 

intention here is provide a heavier bias towards clusters close to the root as 

the deeper in the tree you go, the higher the offset and lower the cardinality. If 

clusters deeper in the tree were ranked higher, it would be difficult for the user 

to intentionally create a smaller graph. However, if the bias is towards clusters 

closer to the root, the user can just increase the min depth parameter if they 

want a more complex graph. An example of this can be seen in Figure 26 and 

Figure 27, where the min_depth value is increased, resulting in more clusters 

being selected. Figure 28, Figure 29, Figure 30, and Figure 31 also show how 

the graph becomes more populated as the min_depth parameter is increased. 
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 I also provided an intermediate step for the user where they could 

preview the graph before running the physics simulation. Clusters selected for 

the graph would be highlighted blue in the tree, giving the user an idea of how 

deep in the tree their cluster selection is. In addition, I display properties such 

as the number of graph components, number of clusters, and number of 

edges present in the tree. This allows the user to experiment with different 

min_depth values and preview properties of the graph  

 

Figure 26: Clusters selected for a graph with min depth of 4. 

 

 

Figure 27: Clusters selected for a graph with min depth 6 from a tree with 
height 11. 
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Figure 28:  A graph built from the annthyroid dataset with min depth 4. 

 

 

Figure 29: A graph built from the annthyroid dataset with min depth 6. 
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Figure 30: A graph built from the annthyroid dataset with min depth 8. 

 

 

Figure 31: A graph built from annthyroid with min depth 10. 

 
3.11 Detecting Edges  
 

Common manifold learning algorithms such as t-SNE and UMAP use k-

nearest neighbors to construct their graph. In contrast, this visualization uses 
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clustered manifold mapping. By selecting clusters from the tree, the algorithm 

is reducing the number of individual datapoints that need be considered while 

building the graph. This is an important aspect of manifold learning as one the 

key steps described in the introduction is that the dataset should be distilled to 

a subset of its data that represents key features. The nature of the CLAM tree 

groups alike datapoints into clusters. However, we still need to create edges 

between these clusters. Recall that edges represent some sort of similarity 

between datapoints in manifold learning. The formula used to detect edges 

between clusters is that the pairwise distance between them is less than or 

equal to the sum of their radii and the target length of the edge between the 

clusters is simply their pairwise distance. The current implementation 

compares each cluster in the graph to each other cluster in the graph and has 

a time complexity of O(|C|2). Future work could investigate a method of 

optimizing the detection, which would speed up the building process of the 

graph. 

A problem that appears in some graphs is that the sheer number of edges 

can obscure the relationships between the clusters. The ability to hide edges 

as seen in figure 32 can provide the user the choice of if they want to look at 

edges. 
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Figure 32: As seen with the MNIST dataset, it is possible for a graph to have 
too many edges, cluttering the image and detracting from the information. 
Hiding edges is an easy fix for this. 

 
3.12 Balancing Local and Global Forces 
 

The next steps follow the similar algorithms seen in the sections on UMAP, 

t-SNE, and force directed graphs. The initial positions of the clusters are 

randomly initialized. The graph is then iterated over a user-specified number of 

times and forces are applied each iteration. For each edge in the graph, forces 

are computed that will attract clusters together if their physical distance is 

greater than their metric distance. If the clusters are too close, a repulsive 

force will be applied instead.  

These forces represent the local structure of the geometry of the manifold. 

The global geometry consists of the relationship between disjoint components 

in the graph. Other manifold learning algorithms apply some mixture of 

repulsive forces to avoid crowding and attractive forces to keep datapoints in 

frame. In this force directed graph, I aim to find an ideal distance between the 

components themselves. This means that each component is given edges that 

connect it to each other component. The method choosing clusters to 
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represent its disjoint component could be a topic of further research, however I 

reason that the clusters with a high connectivity would be a viable choice. To 

that end, I sort the clusters in a disjoint component based on their vertex 

degree and select (up to) the highest three ranked clusters. I specify “up to” 

because there are some cases when a disjoint component consists of only 

one or two clusters. This sampling comes from the concern of time complexity 

of the force directed algorithm.  

This now leads us to the tradeoff between local and global structure of the 

graph. By estimating a target distance between disjoint components, the 

global structure of the graph should increase in quality. However, by applying 

forces between the disjoint components, I am disrupting the local 

representation of each component. One proposal for avoiding this would be to 

treat each component as a static object and apply forces between the object 

instead of the individual clusters within it. This would mean that the 

components themselves would be translated or rotated in respect to one 

another but the clusters within each component would not have their 

respective distances altered. This approach seems promising but requires a 

significant amount of work involving creating Unity objects for each component 

and applying force and torque between the objects based on forces applied 

from the location of one cluster to another. This implementation should be 

investigated in future work to preserve the local layout while optimizing the 

global layout however due to time constraints and the initial accuracy 
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benchmarks of the application looking promising, I have opted to leave the 

implementation as-is for now.  
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CHAPTER 4 

 

FINDINGS 
4.1 Examples of Created Graphs 
 

The figures below are examples of graphs created using the CLAM 

visualization tool with the http anomaly detection dataset. In Figure 33, a 

broader perspective reveals two large components, a small component, and 

many tiny disjoint components. Figure 35 zooms in on the large component on 

the left, showcasing clusters packed together into a rope-like structure with a 

knot in the center. Meanwhile, Figure 34 focuses on the large component on 

the right, which seems to flatten into a more 2D square shape. The red 

clusters signify outliers and are notably visible as small disjoint components 

outside of the larger inlier sections. In Figure 39, I examine an inlier cluster 

that has two edges connecting to outlier clusters by expanding its subtree. It 

becomes clear that the edges exist because while the cluster has outlier data 

in its children. 

Figure 38 shows a graph created using the Satellite dataset. I chose to 

make the edges invisible for this image because they blocked the view of the 

clusters. The graph shows that the inlier and outlier clusters separate into two 

different sections with some overlap in the middle. This shows that the graphs 

created with anomaly detection datasets can be used to visualize the 

relationship between inlier and outlier clusters. 
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Figure 33: An induced graph created with the http dataset. 

 

Figure 34: A close-up of the 2D-like graph component found within the http 
graph. 
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Figure 35: A close-up of the second large component in the http dataset. It 
looks like a straight line with a clot in the center. 

 

 

Figure 36: A closeup of some of the smaller disjoint components in the http 
graph. 
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Figure 37: The http dataset with edges (left) and without edges (right). 

 
 

 

Figure 38: The satellite dataset produces a graph where inlier clusters are 
mostly located on the left, outliers on the right, and a small mixture in the 

middle. 
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Figure 39: A small component within a graph has two outliers connected with 
an inlier (left). By displaying the inlier cluster’s subtree (right), we can see that 

it contains an outlier cluster, which could explain why it has an edge 
connecting to an outlier. 

 

4.2 Comparisons to Existing Methods 
4.2.1 A visual Comparison 
 

In the UMAP paper, the authors show how their visualization compares 

to t-SNE’s visualization of the MNIST dataset (see Figure 40). UMAP’s results 

showed that 0 and 1 were on opposite sides of the map while 3,5, and 8 were 

grouped together and 4,7, and 9 were grouped together. Their visualization 

does a better job of portraying the global structure than t-SNE’s because it not 
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only groups alike datapoints together, but it gives a better representation of the 

relationship between unrelated data points.  

 

Figure 40: A Qualitative comparison of t-SNE and UMAP (Melville, 2020). 

 

Examining the results produced by my visualization (seen in Figure 41) 

is more difficult in 3D space because the result is a mostly hollow sphere that 

creates misleading results when viewed in 2D form. To compare the results 

with UMAP and t-SNE, I disable the rendering of certain digits and change 

viewing angles to highlight the relationships between the digits I want to focus 

on. In Figure 42, I highlight that the 0 and 1 digits are located on opposite 

sides of the sphere, matching how the digits are located in the UMAP and t-

SNE visualizations. In Figure 43, I show that digits 3,5, and 8 are located on 

the left side of the sphere, leaving the digit 7 on the right as a reference frame. 

In Figure 44, I examine the relationship between 4, 7, and 9 by showing how 

they are located on the right side of the sphere, leaving digit 3 on the left as a 

reference frame. I included 3D visualizations of the MNIST dataset created by 

UMAP to show a more direct comparison of the results as seen in figures 

Figure 45 and Figure 46. 
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Figure 41: The graph of the MNIST dataset produced by my visualization. 

  
 

 

Figure 42: 0 (green) and 1(red) are on opposite sides of the MNIST graph. 
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Figure 43: The graph displayed with digits 3, 5, and 8 grouped on the left. Digit 
7 is on the right for reference. 

 

 

Figure 44: Digits 4,7, and 9 are grouped on the right. Digit 3 is displayed on 
the left for reference. 
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Figure 45: A UMAP visualization of MNIST in 3D showing groupings of 3,5, 8 
and 4,7, 9. 

 

 

Figure 46: A UMAP visualization of MNIST in 3D focusing on the relationship 
between 0 and 1 digits. 
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4.2.2 An Analytical Comparison 
 

 Both the authors of the UMAP paper and Cayton state that it is difficult 

to measure the accuracy of the manifold created through manifold learning. 

For a quantitative analysis on the performance of my visualization, I chose to 

leverage the geometrical properties of triangles. To that end, I would randomly 

select three clusters in my graph and use their physical positions in 3D space 

to form a triangle. I would then find the metric distance (in my experiments I 

used Euclidean) between the three clusters as the reference triangle. I also 

ensured that the points selected made valid triangles by testing the triangle 

inequality theorem, which states that the sum of the lengths of any two sides 

of a triangle must be greater than or equal to the length of the remaining side 

[20]. Once this was done, I used three tests to quantify the accuracy of my 

graphs. 

The initial evaluation involved assessing the lengths of the edges of each 

triangle. In this analysis, a reference triangle comprised points A, B, C, while a 

test triangle consisted of points A', B', C'. The primary objective was to ensure 

that the edges maintained the correct relative order by length. For instance, if 

AB > AC > BC in the reference triangle, then A'B' > A'C' > B'C' in the test 

triangle would indicate that the distances between the data points in 3D space 

and their embedding space were proportional. 

 I defined the accuracy of the graphs as the ratio of triangles with 

proportional edges to the total number of sampled triangles. However, 

determining what constitutes a "good" score remained subjective. To address 
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this, I conducted similar tests on graphs generated by UMAP and compared 

the accuracies. The only variation in these tests was the manipulation of the 

number of neighbors when constructing UMAP graphs, while I tested my 

graphs with a variable number of min_depth parameters as these parameters 

can impact the accuracy of the graphs. I chose to plot the results for UMAP  

and clam separately because the minimum depth and number of neighbors 

hyperparameters are not equivalent, i.e. a minimum depth of five does not 

directly compare to a number of neighbors of five. The purpose of creating 

graphs with a variety of hyperparameters like this is to evaluate how they can 

affect the accuracy of the graphs. Another difference to keep in mind is that I 

am comparing the accuracy of distances portrayed between clusters with the 

clam graph whereas the distances are between datapoints with the UMAP 

graphs. 

The remaining two tests aimed to quantify the extent of distortion present 

in the triangles, rather than simply identifying whether distortion occurred. In 

one test, I compared the lengths of the edges, while in the other, I examined 

the magnitude of the angles. In the first test, the focus was on assessing the 

proportion of the perimeter of a triangle occupied by each edge in their 

respective spaces. This measurement provided insight into the extent to which 

edges were stretched or compressed when transitioning between dimensions. 

The exact equation used to measure the distortion of a triangle can be seen 

below. 

𝑟𝑒𝑓𝐸𝑑𝑔𝑒𝑅𝑎𝑡𝑖𝑜 =
𝑙𝑒𝑛(𝐴𝐵)

𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟(𝑟𝑒𝑓𝑇𝑟𝑖𝑎𝑛𝑔𝑙𝑒)
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𝑡𝑒𝑠𝑡𝐸𝑑𝑔𝑒𝑅𝑎𝑡𝑖𝑜 =
𝑙𝑒𝑛(𝐴′𝐵′)

𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟(𝑡𝑒𝑠𝑡𝑇𝑟𝑖𝑎𝑛𝑔𝑙𝑒)
 

𝑒𝑑𝑔𝑒𝐷𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛 = 𝑎𝑏𝑠(𝑟𝑒𝑓𝐸𝑑𝑔𝑒𝑅𝑎𝑡𝑖𝑜 − 𝑡𝑒𝑠𝑡𝐸𝑑𝑔𝑒𝑅𝑎𝑡𝑖𝑜) 

𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝐷𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛 = 𝑑𝑖𝑠𝑜𝑟𝑡𝑖𝑜𝑛𝐴𝐵 + 𝑑𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛𝐴𝐶 + 𝑑𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛𝐵𝐶 

𝑎𝑣𝑔𝑇𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝐷𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛 = 𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝐷𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛 / 3.0 

The second test measures the distortion of the angles between the 

points. I calculated the angles of the triangle in the original embedding space 

by using the law of cosines [21]. This is because they are not aligned to a 

coordinate system, and I needed to calculate the angles while only knowing 

the edge lengths of the triangle. Once I have calculated the angles, I take 

ratios in a similar method as described with edge distortion (except using 180 

degrees instead of the perimeter). I plotted these results so that 

triangle_equivalence represents the percentage of triangles that had edges 

sorted in the same order while edge and angle accuracy are 1 – the respective 

distortion percent (meaning that a higher value is better for all three tests).  

Dataset Points Dimensionality 

Arrhythmia 452 274 

Mnist 7603 100 

Satellite 6435 36 

Wine 129 13 

Table 2: The number of points and dimensionality of datasets used to compare 
accuracy of CLAM graphs and UMAP graphs. 
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I ran these tests on datasets with a variety of dimensionalities seen in 

Table 2 above. Figure 47 and Figure 48 show accuracy of the clam and umap 

graphs with the Arrhythmia dataset. The results of the edge and angle 

accuracy tests show that UMAP and clam are relatively close, with both being 

above 80% accuracy. However, the clam graph does slightly outperform the 

UMAP graph. An interesting observation is that the sorted edges test has a 

significant difference, with the accuracy of the clam graph hovering between 

65% and 85% accuracy while the UMAP graph is between 30% and 

40$ accuracy. This shows the importance of measuring not just if the edges 

were distorted, but by how much. For example, this infers that roughly 70% of 

the UMAP triangles did not have edge lengths in the same order as the 

original embedding space, however the average distortion of the edges was 

about 20%, meaning that they were still relatively accurate. 

In Figure 49 and Figure 50, I compare the accuracy of the graphs 

created with the MNIST dataset. Building a graph with clam from a minimum 

depth of 4 results in a lower accuracy than graphs created with UMAP, 

however at all other depths clam outperforms UMAP in accuracy. However, 

the performance in the edge sorting test is much closer than with the 

Arrhythmia dataset. Figure 51 and Figure 52 show that clam outperforms 

UMAP in all three tests with the Satellite dataset. 

Figure 53 and Figure 54 compare the results of graphs built with the Wine 

dataset. The results plotted here are interesting because they show that clam 

graphs have an accuracy of about 100% at depths four through eight. 
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However, depths between nine and eleven show a sharp drop off in accuracy 

because its tree has a height of eleven. Leaf Clusters of a tree with a 

cardinality of one have a radius of zero, so they are less likely to form edges 

with other clusters, especially other leaf clusters. If a graph consists entirely of 

leaf clusters, it ends up with no edges, which essentially means the local 

structure of graph is lost. 

 

Figure 47: Arrhythmia accuracy at various depths as visualized by CLAM. 
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Figure 48: Accuracy of the Arrhythmia dataset as portrayed by UMAP. 

 

 

 

 

Figure 49: The accuracy of the MNIST dataset graph visualized by CLAM. 
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Figure 50: Accuracy of the MNIST dataset as portrayed by UMAP. 

 

 

 

Figure 51: The accuracy of the Satellite dataset portrayed by CLAM. 
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Figure 52: Accuracy of the Satellite dataset as portrayed by UMAP. 

 

Figure 53: Accuracy of the Wine dataset portrayed by CLAM at various depths. 
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Figure 54: Accuracy of the Wine dataset as portrayed by UMAP. 

 

One other test I ran was to see how much the accuracy of the graphs 

improved over the course of the physics simulation. The plots below show the 

accuracy of the graphs during each time step. The edge and angle accuracies 

are not inverted in the graphs below, so a lower score is better for those two 

graphs. The results show that the physics forces are improving the quality of 

the graph over time by decreasing distortion and increasing the number of 

edges that are sorted in the same order between embedding spaces. 
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Figure 55: The percentage of triangles that are proportional in 3D and original 
embedding space during each step of the physics simulation. 

 

 Quantifying the accuracy of the graph representation of the manifold 

can be a difficult task. By creating these tests, I am showing that the graphs 

induced with CLAM provide an accurate visualization of the structure of the 

underlying manifold. My visualization put more of an emphasis on the 

importance of preserving the distances between vertices in the graph than 

methods such as UMAP and t-SNE. This can be reflected by the fact that the 

clam graphs are more accurate than the UMAP graphs when comparing their 

performance on several datasets with a variety of dimensionalities. 
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Figure 56: The average distortion of the edges in the http graph during each 
time step of the physics simulation. 

 

 

Figure 57: The average distortion of the angles in the http graph during each 
time step of the physics simulation. 
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CHAPTER 5 
 

CONCLUSION 
 

In conclusion, the application of clustered manifold mapping as a novel 

visualization technique has demonstrated significant potential in addressing 

the challenges of visualizing high-dimensional data. Visualizing the tree that 

CLAM creates provides an interesting summary of the dataset as well as 

providing additional insights into the field of clustered manifold mapping. 

Additionally, the intermediate step of highlighting clusters in the tree that have 

been selected for building the graph provides the user with an intuitive 

understanding of the “resolution” at which they will be viewing the manifold. 

Moreover, the resulting graph visualization enables users to delve into 

complex datasets, revealing the relationships between closely associated or 

disparate clusters of data. 

The qualitative and quantitative analysis of the performance of this 

visualization technique in comparison to existing methods such as UMAP 

demonstrates its effectiveness in showing distances between data points. This 

means that it not only groups similar data points well but also accurately 

represent their distance in the original data space and produces an accurate 

visual representation of the underlying structure of the manifold. 

FUTURE WORK 
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This thesis not only provides an important contribution to the field of 

visualizing high dimensional data, but it also paves the way for future work in 

the field of clustered manifold mapping. Examples of features that could 

provide valuable insight to these complex datasets would be coloring clusters 

by graph component, allowing the user to show or hide cluster and edges 

based on certain variables, and allowing the user to dynamically change the 

resolution of the graph by replacing a cluster with its children (or vice versa). 

Human computer interaction was not the primary focus of my thesis, 

however future work could improve the user’s experience by streamlining 

various parts of the user interface. In a small HCI experiment I conducted, 

some feedback I received included comments on the “clunky” nature of 

switching between the overlayed user interface and the in-world UI (i.e. 

clicking clusters and moving the camera). Other comments were made on how 

the use of a dropdown menu slowed down users because they might need to 

switch menus to complete a task. Towards the end of my work as part of a 

course I was taking, I created a rough draft of a more user-friendly UI based 

on this feedback, which can be seen in figure 38. Additionally, there is 

potential to create a VR version of this application that would allow the user to 

interact with the data with their hands rather than a keyboard and mouse. 
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Figure 58: An experimental UI design that could improve the human computer 
interaction of the application. 

 

Another aspect of potential improvement for this work could be on the 

performance of the graph building and physics simulation. As I noted in the 

methodology section, despite calculating the physics forces on a worker 

thread, there can still be noticeable performance hits on larger graphs 

because of the sheer number of clusters that need to be processed each 

frame. Looking into the use of multithreading to perform the calculations and 

updates of cluster positions in parallel could prove quite useful to improving 

the performance of the application. 

In the methodology section, I noted that the idea of applying global forces 

between disjoint components without disrupting the local geometry seems 
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promising and laid out an algorithm for doing so that should be studied and 

implemented in more depth.  

Another area of future work could be further developing the tests to show 

how accurate the graphs are. One such test being discussed in my research 

group is “false nearest neighbors.” This test would find the k-nearest neighbors 

of each cluster in the graph and compare it with the k-nearest neighbors of the 

datapoints in their original embedding space. If the same neighbors are found, 

that would indicate the graphs do a good job of finding the k-nearest neighbors. 

If the same neighbors are not found, it would indicate that the graph does a 

poor job of representing which clusters are most closely related to other 

clusters. 
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APPENDICES 

Link to Source Code: https://github.com/djperrone/clam_visual3d 
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