
University of Rhode Island University of Rhode Island

DigitalCommons@URI DigitalCommons@URI

Open Access Master's Theses

2024

VISUALIZATION OF HIGH DIMENSIONAL DATA IN LOW VISUALIZATION OF HIGH DIMENSIONAL DATA IN LOW

DIMENSIONAL SPACE VIA CLUSTERED MANIFOLD MAPPING DIMENSIONAL SPACE VIA CLUSTERED MANIFOLD MAPPING

David Perrone
University of Rhode Island, david_perrone@uri.edu

Follow this and additional works at: https://digitalcommons.uri.edu/theses

Recommended Citation Recommended Citation
Perrone, David, "VISUALIZATION OF HIGH DIMENSIONAL DATA IN LOW DIMENSIONAL SPACE VIA
CLUSTERED MANIFOLD MAPPING" (2024). Open Access Master's Theses. Paper 2500.
https://digitalcommons.uri.edu/theses/2500

This Thesis is brought to you by the University of Rhode Island. It has been accepted for inclusion in Open Access
Master's Theses by an authorized administrator of DigitalCommons@URI. For more information, please contact
digitalcommons-group@uri.edu. For permission to reuse copyrighted content, contact the author directly.

https://digitalcommons.uri.edu/
https://digitalcommons.uri.edu/theses
https://digitalcommons.uri.edu/theses?utm_source=digitalcommons.uri.edu%2Ftheses%2F2500&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.uri.edu/theses/2500?utm_source=digitalcommons.uri.edu%2Ftheses%2F2500&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons-group@uri.edu

VISUALIZATION OF HIGH DIMENSIONAL DATA IN

LOW DIMENSIONAL SPACE VIA CLUSTERED

MANIFOLD MAPPING

BY

DAVID PERRONE

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

IN

COMPUTER SCIENCE

UNIVERSITY OF RHODE ISLAND

2024

MASTER OF SCIENCE

OF

DAVID PERRONE

APPROVED:

Thesis Committee:

Major Professor Noah Daniels

 Shaun Wallace

 Gretchen Macht

Jean-Yves Hervé

 Brenton DeBoef
 DEAN OF THE GRADUATE SCHOOL

UNIVERSITY OF RHODE ISLAND
2024

ABSTRACT

Visualizing high dimensional data can be a challenging task due to the

difficulty people face in comprehending information beyond three dimensions.

Further research and development of tools in this area could prove valuable

for creating efficient, intuitive, and accurate visualizations. It could also provide

insight into the manifold hypothesis, which suggests that high dimensional

data can exist in low dimensional space.

This thesis proposes the utilization of clustered manifold mapping as a

novel visualization technique that summarizes a dataset into a hierarchal tree

of clusters by partitioning the data based on a user-specified distance metric.

A subset of clusters can be carefully selected from the tree to create a 3D

graph using the Unity game engine, which enables the user to interact with the

and explore various features of the data.

The graphs produced with this approach will be quantitatively and

qualitatively compared with existing methods such as UMAP, which

demonstrates its contributions to the field of visualizing high dimensional data.

Furthermore, visualizing the tree of clusters in addition to the graph provides a

greater understanding into the field of clustered manifold mapping.

iii

ACKNOWLEDGMENTS

First and foremost, I extend my heartfelt gratitude to Dr. Noah Daniels for

his unwavering assistance and dedication this past year. Without his

invaluable guidance, this thesis would not have been possible. I am sincerely

grateful for his mentorship and support.

Noah's ABD research group offered invaluable support, advice, and

encouragement throughout my project, particularly during the demonstration

phases of my code base. Their guidance was instrumental in refining my work

and navigating challenges effectively.

Among those research members I would especially like to thank Najib

Ishaq, whose mentorship and knowledge of CLAM and Rust were invaluable. I

am grateful for his patience and guidance whenever I encountered challenges.

I would like to acknowledge Andrew Lefebvre and Joey Buono for their

valuable contributions to my codebase. Joey's implementation of a force-

directed graph in Rust provided a crucial foundation for my own work, while

Andrew's assistance in refactoring the CHAODA and CLAM codebases was

immensely helpful. I am also grateful to the ABD research group and their

commitment to maintaining the CLAM codebase.

I extend my appreciation to Shaun Wallace for his insightful feedback on

my UI design and for encouraging me to conduct HCI experiments.

Finally, I would like to express my gratitude to my friends and family for

their unwavering support and encouragement throughout this journey. Their

iv

faith in me, even when the subject matter seemed obscure, was a constant

source of motivation.

v

TABLE OF CONTENTS

ABSTRACT ..ii

ACKNOWLEDGMENTS .. iii

TABLE OF CONTENTS ... v

LIST OF TABLES ... vii

LIST OF FIGURES... viii

CHAPTER 1 ... 1

INTRODUCTION .. 1

1.1 Problem Statement ... 2

1.2 Proposed Solution ... 2

1.3 Findings ... 3

CHAPTER 2 ... 5

REVIEW OF LITERATURE ... 5

2.1 The Curse of Dimensionality ... 5

2.2 The Manifold Hypothesis .. 5

2.3 Manifold Learning .. 6

2.3.1 Manifold Learning Algorithms ... 7

2.4 Force Directed Graphs ... 8

2.5 Existing Visualization Methods .. 11

2.5.1 PCA .. 11

2.5.2 t-SNE .. 12

2.5.3 UMAP ... 14

2.6 Clustered Manifold Mapping .. 17

2.6.1 CLAM ... 17

2.6.2 Clusters .. 19

2.6.3 Graphs ... 19

CHAPTER 3 ... 23

METHODOLOGY ... 23

vi

3.1 Unity.. 23

3.2 Foreign Function Interfaces ... 24

3.3 The Tree ... 31

3.4 Implementing the Force Directed Graph.. 32

3.5 Edge Drawing .. 33

3.6 Refactoring CLAM and CHAODA ... 34

3.7 Displaying the Tree ... 35

3.7.1 The Reingold Tilford Layout ... 37

3.8 Cluster Properties .. 39

3.9 Coloring Clusters ... 40

3.10 Selecting Clusters with CHAODA ... 42

3.11 Detecting Edges .. 47

3.12 Balancing Local and Global Forces ... 49

CHAPTER 4 ... 52

FINDINGS .. 52

4.1 Examples of Created Graphs... 52

4.2 Comparisons to Existing Methods .. 56

4.2.1 A visual Comparison .. 56

4.2.2 An Analytical Comparison ... 61

CHAPTER 5 ... 72

CONCLUSION .. 72

APPENDICES .. 76

BIBLIOGRAPHY .. 77

vii

LIST OF TABLES

TABLE PAGE

Table 1: A comparison of the performance of Unity line renderer components
vs A mesh renderer with index and vertex buffers ... 34

Table 2: The number of points and dimensionality of datasets used to compare
accuracy of CLAM graphs and UMAP graphs. ... 63

viii

LIST OF FIGURES

Figure 1: Blue dots represent clusters that have been selected for the graph.
By selecting clusters at a variety of depths, we are ensuring that a manifold
without a uniform distribution is properly mapped. ... 21
Figure 2: The Handle Pointer used to pass CLAM data between Rust and C#.
 ... 25
Figure 3: C# declaration of an external Rust function..................................... 25
Figure 4: A Rust function that can be called from C#. 25
Figure 5: The struct that stores all relevant Rust data and needs to persist for
the duration of the visualization. ... 26

Figure 6: A comparison of the Cluster struct and the ffi interface struct used to
pass data between Rust and C#. ... 27

Figure 7: The external Rust function used to create ClusterData. 28
Figure 8: Rust implementation of function allocating ClusterData. 28

Figure 9: Rust implementation for automatically freeing string memory. 29
Figure 10: C# implementation for automatically freeing string memory (note
that this call to free passes the data back to Rust to be freed). 29
Figure 11: A callback function passed from C# to Rust that sets a cluster’s
color according to its cardinality. .. 30

Figure 12: A typedef of the function callback signature in C#. 30
Figure 13: A typedef of the callback function used in Rust. 30

Figure 14: The Rust function that accepts a higher-order function to perform
on clusters. ... 30

Figure 15: Example of a shape that can be drawn by reusing vertices with an
index buffer. ... 34

Figure 16: An example of the Reingold Tilford tree layout. Blue clusters have
been selected to create a graph from this tree. .. 37
Figure 17: A tree with a max height of 30 being displayed as though its max
height was 2. .. 38
Figure 18: A tree with max height 30 being displayed as though its max height
was 8. ... 38
Figure 19: A tree with max height 30 being displayed. The tree is too wide to fit
on screen even with the use of the Reingold Tilford Algorithm. 39
Figure 20: The blue cluster has been selected by the user, displaying its
properties in the menu on the right. .. 39

Figure 21: Coloring a tree by label where green is inlier and red is outlier. 41

Figure 22: Coloring a tree by cardinality. Darker colors mean a higher value. 41
Figure 23: Coloring a tree by depth. ... 42
Figure 24: Coloring a tree by local fractal dimension. 42
Figure 25: The blue clusters have been selected to build a graph with
minimum depth 4 from a tree with a height of 4. Leaf clusters with a depth less
than min_depth are still selected in order to maintain the invariant that the
graph represents the entire dataset.. 43
Figure 26: Clusters selected for a graph with min depth of 4. 45

ix

Figure 27: Clusters selected for a graph with min depth 6 from a tree with
height 11. ... 45

Figure 28: A graph built from the annthyroid dataset with min depth 4.......... 46
Figure 29: A graph built from the annthyroid dataset with min depth 6. 46
Figure 30: A graph built from the annthyroid dataset with min depth 8. 47
Figure 31: A graph built from annthyroid with min depth 10. 47
Figure 32: As seen with the MNIST dataset, it is possible for a graph to have
too many edges, cluttering the image and detracting from the information.
Hiding edges is an easy fix for this. .. 49
Figure 33: An induced graph created with the http dataset. 53
Figure 34: A close-up of the 2D-like graph component found within the http
graph. ... 53

Figure 35: A close-up of the second large component in the http dataset. It
looks like a straight line with a clot in the center. .. 54

Figure 36: A closeup of some of the smaller disjoint components in the http
graph. ... 54

Figure 37: The http dataset with edges (left) and without edges (right). 55
Figure 38: The satellite dataset produces a graph where inlier clusters are
mostly located on the left, outliers on the right, and a small mixture in the
middle. .. 55
Figure 39: A small component within a graph has two outliers connected with
an inlier (left). By displaying the inlier cluster’s subtree (right), we can see that
it contains an outlier cluster, which could explain why it has an edge
connecting to an outlier. ... 56
Figure 40: A Qualitative comparison of t-SNE and UMAP (Melville, 2020). ... 57

Figure 41: The graph of the MNIST dataset produced by my visualization. ... 58
Figure 42: 0 (green) and 1(red) are on opposite sides of the MNIST graph. .. 58

Figure 43: The graph displayed with digits 3, 5, and 8 grouped on the left. Digit
7 is on the right for reference. .. 59
Figure 44: Digits 4,7, and 9 are grouped on the right. Digit 3 is displayed on
the left for reference. .. 59
Figure 45: A UMAP visualization of MNIST in 3D showing groupings of 3,5, 8
and 4,7, 9. .. 60
Figure 46: A UMAP visualization of MNIST in 3D focusing on the relationship
between 0 and 1 digits. .. 60
Figure 47: Arrhythmia accuracy at various depths as visualized by CLAM. ... 65

Figure 48: Accuracy of the Arrhythmia dataset as portrayed by UMAP.......... 66

Figure 49: The accuracy of the MNIST dataset graph visualized by CLAM. .. 66

Figure 50: Accuracy of the MNIST dataset as portrayed by UMAP. 67
Figure 51: The accuracy of the Satellite dataset portrayed by CLAM. 67
Figure 52: Accuracy of the Satellite dataset as portrayed by UMAP. 68
Figure 53: Accuracy of the Wine dataset portrayed by CLAM at various depths.
 ... 68

Figure 54: Accuracy of the Wine dataset as portrayed by UMAP. 69
Figure 55: The percentage of triangles that are proportional in 3D and original
embedding space during each step of the physics simulation. 70

x

Figure 56: The average distortion of the edges in the http graph during each
time step of the physics simulation. .. 71

Figure 57: The average distortion of the angles in the http graph during each
time step of the physics simulation. .. 71
Figure 58: An experimental UI design that could improve the human computer
interaction of the application. .. 74

1

CHAPTER 1

INTRODUCTION

Visualizing high-dimensional data can be challenging due to the curse of

dimensionality, which refers to issues such as computational complexity and

the challenge of representing data beyond three dimensions in a way that

humans can easily understand [1]. Modern datasets are growing increasingly

larger, both in the number of data points and the number of features

describing them. For example, if a dataset is described by two features, one

could create a 2d line or bar plot and display the information in a meaningful

way. However, if the data is described by hundreds or thousands of features, it

is difficult to get an intuitive feel for what the data looks like [2].

A common method for visualizing such high dimensional datasets is to

simplify the data by finding a lower dimensional structure in it [3]. To achieve

this, manifold learning algorithms are commonly employed to calculate

measures of the local geometry of the manifold, after which the original data

points are no longer needed [3]. A prevalent visual representation of the

manifold, exemplified by UMAP, TMAP, and IsoMap, is in the form of a

weighted graph [4]. This tool will build on these existing visualization methods

that have various tradeoffs in performance, quality of the manifold, and user

interface features.

2

1.1 Problem Statement

The weighted graphs used in common visualization methods such as

UMAP and t-SNE are created using a nearest neighbor approximation. The

nearest neighbor algorithm is used to approximate the local structure of the

manifold by showing a cluster in relation to other clusters that it shares some

features with. The relationships between disconnected neighborhoods in the

graph represent the global structure in the manifold. These algorithms must

perform a balancing act of trying to preserve both the local and global

structure while visualizing the manifold.

 This low dimensional representation of the manifold is estimated by

these algorithms using a force directed graph. Based on some “distance”

calculated between data points in high dimensional space, the goal is to

position clusters in 2D or 3D space such that the distance between them is

representative of their relationship in the original embedding space. This is

done by applying attractive or repulsive forces between clusters until their

positions have settled in an optimal layout. The balancing act mentioned

earlier comes from applying forces between the disconnected portions of the

graph without disrupting the local relationships within the neighborhood.

1.2 Proposed Solution

The notable divergence of this work and existing methods is the use of

CLAM (Clustered Learning of Approximate Manifolds) to construct the graph.

CLAM uses a clustering process that repeatedly divides the dataset and

places datapoints that are estimated to be related into the same cluster. The

3

graph is then constructed by selecting a subset of clusters from the tree such

that the entire dataset is represented. This accomplishes one of the first

challenges of attempting to distill a dataset into a subset of its features.

 The selection of clusters to represent the dataset in the graph is a

challenge that can be solved using CHAODA, a collection of anomaly

detection algorithms created by training meta-machine learning models

according to several geometric and topological properties [5].

 CLAM also provides a diverse set of distance functions that can be

used to estimate the distance not only between datapoints but between

clusters. In addition, it provides a radius for each cluster, which describes the

greatest distance from its geometric median to any datapoint in the cluster. By

leveraging the distance functions and radii of clusters, the edges in the graph

can be created by looking for an “overlap” between clusters.

 In addition to the exploration of the manifold through clustered manifold

mapping, this work looks to create an immersive and interactive experience for

the user. The visualization will be created using the Unity game engine, which

will allow for efficient rendering of the tree and graph. In addition, the ability for

the user to move around the graph with a camera and interact with clusters will

provide insights into the underlying manifold of the dataset.

1.3 Findings

The results from this work look promising as the graphs produced for

datasets can be tuned based on a variety of parameters to view low and high

resolutions of the dataset. Selecting clusters from various depths in the tree

4

allows the user to manage the balance of the local and global structure of the

graph. In addition, the visualization of the tree created by CLAM provides an

insight into the density of various sections of the manifold.

 The accuracy of the low dimensional representation is quantified using

a series of tests that measure distortion between the geometry of the low

dimensional manifold and the representation of the data in high dimensional

space. Initial results show that the accuracy of the graph improves with each

iteration of the force directed algorithm used to create the 3D layout and that

the graphs produced provide a better representation of the distances between

points than in UMAP.

5

CHAPTER 2

REVIEW OF LITERATURE
2.1 The Curse of Dimensionality

Datasets over the past few decades have been growing not only in the

number of instances of data but in the number of features describing them [6].

An example of an industry with growing datasets is biotech; which needs to

advance its capability to analyze, visualize, and interpret data in order to better

understand diseases [7]. Another cause of the increase in dimensionality can

be seen in the analysis of images and even entire movies, where a single

observation could have dimensions in the thousands or billions [6].

Donaho provides an example in his article asking the reader to consider

a cartesian grid on a unit cube in 10 dimensions with grid spacing of 1/10 that

contains 1010 points. An exhaustive search of this space could result in

attempting billions of evaluations. In his lecture titled “The Curses and

Blessings of Dimensionality”, Donaho uses the curse of dimensionality “to

refer to the apparent intractability of systematically searching through a high-

dimensional space, the apparent intractability of accurately approximating a

general high-dimensional function, the apparent intractability of integrating a

high-dimensional function [6].” He then confidently states that high

dimensional data analysis will be a significant activity leading to the

development of new methods in the coming years.

2.2 The Manifold Hypothesis

6

In contrast to the Curse of Dimensionality are the blessings of

dimensionality. In Gohan’s article on the Blessings of dimensionality, they

state that in the world of statistical mechanics, a complex system can be

presented as a union of many weakly interacting subsystems that exist in

lower dimension. Furthermore, contributions from physicists and

mathematicians have shown that random points in a high dimensional sphere

tend to lie near the surface [8]. While these theorems relate to

thermodynamics and behaviors of particles in gas, mathematicians theorized

that the behavior of particles in high dimensional balls could be related to the

behavior of high dimensional data. This leads to a collection of methodologies

for analyzing high dimensional data based on the hypothesis that real-world

data tend to lie near a low dimensional manifold, called manifold learning. The

underlying hypothesis is referred to as the manifold hypothesis [9].

2.3 Manifold Learning

Manifold learning is a recent approach to nonlinear dimensionality

reduction based on the idea that data points described by thousands of

features may be described as a function of a few key underlying parameters

[2]. A common example of such data is to consider several images taken of an

object simultaneously from various angles. While the images may contain

hundreds of dimensions, they would also contain a significant amount of

overlap in their data. If one had to analyze hundreds of these images, it would

be helpful to get a simplified representation such that the images are

7

described by key underlying features that describe their similarities or

differences.

This idea can be formalized using the manifold hypothesis, which

assumes that data lie along a low-dimensional manifold embedded in high-

dimensional space. In other words, we do not need to keep all the features of

the data to compare the images. Attempting to uncover this manifold structure

in a data set is referred to as manifold learning [2].

2.3.1 Manifold Learning Algorithms

Here, I will provide a summary of the common steps found in manifold

learning algorithms that lay a foundation for existing methods section, where I

will go into more detail on common manifold learning techniques. One of the

first manifold learning algorithms, which I will use as an example here, is

Isomap. Its algorithm consists of two main steps. The first is to estimate the

distance between points in the input data. The next step is to find points in a

lower-dimensional Euclidian space such that the distance between the points

match their distance in the original embedding space [2]. Manifold learning

algorithms are then forced into a balancing act where they need to consider

the local and global structure of the manifold.

 Isomap is considered a global method because it constructs an

embedding from the distance between all pairs of points. A local method of

manifold learning would only consider the distance between a point and its

immediate neighbors. This tradeoff leads to distinguishing characteristics of

common manifold learning techniques. For example, assuming that each point

8

in the dataset is assigned some number of “neighbors” that are assumed to be

related in some way, a local method would do a good job of representing the

distance between points in a local neighborhood. However, non-neighboring

points could be found in locations in the Euclidian space that are much closer

to each other than they are in the embedding space. Conversely, a global

method would tend to do a good job of spacing non-neighboring points into

distinct clusters but would fail to accurately represent the relationships of

datapoints in the neighborhood [2].

Another factor to consider is that most manifold learning techniques

take in the number of neighbors as a parameter, which can vastly affect the

accuracy of the dimensionality reduction. In addition, it can be difficult to prove

that the manifold being represented actually exists and then even quantifying

how accurate of a representation your manifold is to the real manifold is a

challenge [2].

2.4 Force Directed Graphs

Manifold learning algorithms and visualizations typically use a graph to

represent the underlying data. The specifics might differ between certain

visualization methods, but the overall concept is that a graph is formed where

vertices in the graph represent data points and edges in the graph represent

relationships between vertices and their neighbors. Here, I will cover the

overall concept of how force directed graphs work before going into how they

are used specifically in visualizations.

9

Force directed algorithms in general are a common way to visualize

graphs because certain heuristics and hyper parameters can be used to

achieve desired stability and readability properties [10]. These algorithms can

be broken down into two phases. The first is an initialization phase, where

certain constant values are set as well as an initial layout of the nodes is

formed. Many algorithms such as the Fruchterman and Reingold algorithm will

randomly initialize the node positions [10]. The next step is the iterations

where forces are applied to edges and/or nodes in the graph repeatedly until

some termination condition is met. Ideally, the graph layout should converge

towards some desired end state.

In Fruchterman and Reingold’s implementation, repulsive forces are

calculated between every pair of vertices, but attractive forces are calculated

only between vertices that share an edge. They made this decision because

they decided to emphasize the importance of the local layout of the graph. By

only applying attracted forces along edges, they encourage a vertex to only be

located nearby other neighbor vertices. This means that their algorithm would

lead to what is considered a local embedding in manifold learning. Other

algorithms exist that try to find an ideal distance between vertices and non-

neighbors which would lead to a balancing act between the global and local

structure of the graph. One such algorithm was developed by Kamada and

Kawai, who defined the ideal distance between disconnected vertices as being

proportional the length of the shortest path between them [11]. The implication

of a path existing between them is especially important in the context of my

10

work because this would still only affect the structure within disjoint graph

components.

“A disjoint graph component is a connected subgraph C of the graph G

which is not properly contained in any other subgraph of G [12].” Another

expression of this could be that if there are two components in a graph and a

vertex v exists in the set of vertices of one component but not in the set of the

other component, they are said to be disjoint [12]. This is notable because the

ideal layout discussed above only applies attractive forces within the

components and does not consider one disjoint component relative to another.

As such, a layout would ideally have a better representation of the local

geometry of the manifold but would still not accurately represent the global

structure as there would only be repulsive forces between disjoint components.

The goal of Reingold and Fruchterman’s force directed algorithm was

twofold: “Vertices connected by an edge should be drawn near each other and

vertices should not be drawn too close to each other [11].” However, they do

note that some graphs could be too complex to draw attractively. A notable

aspect of many force directed graph algorithms such as Fruchterman and

Reingold’s is that they have a target frame that should contain the graph. As

such, they create four imaginary walls representing the frame that will prevent

any vertices from leaving the frame. This could lead to a problem if a manifold

learning force directed algorithm wants to accurately represent relationships

between data points but needs to confine the data within a certain frame and

simultaneously prevent vertices from being too close to each other. This topic

11

will be covered in more depth in the review of t-SNE as they discuss the

tradeoffs between aesthetics and accurately portraying the geometry of the

manifold.

As mentioned earlier, a common step in force directed algorithms is to

iterate some number of times and apply forces to the graph until some stop

criteria is met. This stopping criterion is not so easily defined and varies from

algorithm to algorithm. For example, “Eades simply asserted that ‘almost all

graphs reach a minimal energy state after the simulation step is run 200 times’

[11].” Some algorithms such as Kamada and Kawai have a target state that

they aimed for their graph to achieve but did not explicitly state the number of

iterations to achieve that state as it could vary depending on the dataset.

Frechterman and Reingold stated in their paper that the number of iterations to

be used in their algorithm is “guesswork” [11].

2.5 Existing Visualization Methods
2.5.1 PCA

Principal Component Analysis is a dimensional reduction technique first

discussed by Pearson in 1901 but it took decades before the available

computing power made it feasible to use on datasets [13]. Its primary goal is to

reduce the dimensionality of a dataset while retaining as much “variance” in

the dataset as possible. By doing so, it can be used to identify patterns in data

that highlight the similarities and differences between various datapoints [14].

 Principal Component analysis does this by computing a covariance

matrix that represents the correlation between each combination of datapoints.

12

If their covariance is positive, they are positively correlated and if their

covariance is negative, they have an inverse correlation (as one value

increases, the other decreases). The covariance matrix is then used to

compute eigenvectors and eigenvalues where the former represent the

directional vectors on which data lie and the latter represent the importance of

the vector in representing the dataset. Principal Components can then be

created as linear combinations of the original dataset weighted by their

corresponding eigenvectors. The least important principal components can

then be discarded to summarize the dataset while reducing its dimensionality

[13].

 This leads to a simplified description of the dataset that can be used to

analyze the structure in a lower dimension. It can also be thought of as an

unsupervised learning method that finds patterns in datasets without

references to prior knowledge of the grouping of datapoints [14].

 PCA is a powerful tool that comes with limitations such as the fact that

the underlying structure of the data must be linear and that patterns that are

highly correlated could be unresolved because PCA tries to create

uncorrelated components from the data [14].

2.5.2 t-SNE

T-SNE is a manifold learning technique first introduced in 2008 that

aims to visualize data by giving each datapoint a location in 2d or 3d space. It

does this by converting high dimensional Euclidean distances between

datapoints into conditional probabilities that represent similarities. These

13

similarities are then used for each datapoint to find other datapoints that could

be considered its neighbor. T-SNE then initializes a force directed graph in 2d

or 3d space by providing each datapoint a random location.

That same probability of datapoints being neighbors can then be used

to estimate the “distance” between the high dimensional and low dimensional

representation of the dataset. For simplicity, let’s assume that the number of

nearest neighbors being found is a small number such as three. We will then

assume for each datapoint in high dimensional space, some datapoints u,v,w

were found to be the nearest neighbors. For each datapoint in lower

dimensional space, we would also search for its three nearest neighbors. If u’,

v’, w’ correspond to the same datapoints, then the difference between the

datasets would be minimal. In more technical terms, t-SNE “minimizes the

sum of the differences over all datapoints using a gradient descent method,

whose cost function focuses on retaining the local structure of the data in the

map [15].” To minimize this distance, attractive or repulsive forces are applied

between datapoints in lower dimensional space based on if their distance

between datapoints is greater or less than the similarity of the datapoints in

high dimensional space.

T-SNE also scales the forces applied along the “springs” of its graph so

that longer springs will apply more force than shorter springs. This is

accomplished by exerting force proportional to the difference in similarity

between the points in each dimensional space. If the difference is 0 for

example, it means the datapoints in low dimensional space perfectly represent

14

the relationship between the datapoints in high dimensional space, and no

forces would be applied between them [15].

 In their paper, Laurens van der Maaten observe that in high dimensions,

there are numerous ways that datapoints can have the same distance.

However, as you reduce the number of dimensions, you reduce the number of

ways that distance can be represented. This means that if all datapoints were

equidistant to each other, the produced 2D graph could be overcrowded. They

note that if small distances are to be represented accurately, then moderate or

large distances could be placed too far away to fit properly in the 2d

dimensional map.

To mitigate this issue, they apply a slight attractive force between a

datapoint and the far away datapoints with the intention of drawing clusters

closer together to fit on the map. An unfortunate side effect of this is that these

slight forces can add up and cause too many clusters to be pulled towards the

center of the map, resulting in overcrowding. To account for this, they follow a

method presented by Cook et al. in 2007 that creates slight repulsive forces

that prevent the distance between two datapoint falling below a certain

threshold. This essentially creates a minimum possible distance between

datapoints in the 2d map that fight overcrowding while the attractive forces still

prevent clusters from disappearing from the map [15].

2.5.3 UMAP

UMAP is another manifold learning technique for visualization high

dimensional data that is constructed from a theoretical framework based in

15

Riemannian geometry and algebraic topology. In their paper published in 2020,

the authors argue that it has better run time performance and preserves more

of the global structure of the manifold than t-SNE. They also state that

neighborhood based manifold learning algorithms should select their

fundamental components through well-grounded theoretical decisions [4].

 The UMAP paper has a chapter in it that goes into detail on the

mathematical theory behind their algorithm. For the purposes of this review, I

will skip over the math theory and focus more on the higher-level details. At a

high level, the UMAP algorithm looks quite like t-SNE. They create a

topological representation of their dataset in high dimensional space and then

construct a topological representation in a lower dimensional space. UMAP

then uses a force directed algorithm to minimize the cross-entropy between

the two topological representations [4].

 Like t-SNE, UMAP uses a k-nearest neighbor algorithm to represent the

local structures of the manifold. It then estimates the geodesic distance

between each point and its k neighbors to represent the edges of its graph. In

summary, UMAP can be described “in terms of, constructions of, and

operations on, weighted graphs [4].”

The first step of UMAP’s algorithm will sound familiar: to construct a

weighted k-neighbor graph from the dataset. The second is to compute a low

dimensional layout of said graph. The key difference between the t-SNE and

UMAP is that the latter’s cost function used to minimize the difference between

16

the two topological representations is more efficient, resulting in performance

gains.

The behavior of their force directed graph can be described as applying

attractive forces along edges of the graph and repulsive forces between nodes.

However, applying repulsive forces between all nodes as seen by Reingold

and Fruchterman results in a time complexity of 𝑂(𝐸) + 𝑂(𝑁2) [11]. Therefore,

the UMAP algorithm reduces the time complexity by randomly sampling

repulsive forces from vertices whenever an attractive force is applied along an

edge.

The UMAP algorithm takes in four hyper parameters: the number of

neighbors to consider, the target embedding dimension, the minimum distance

between datapoints, and the number of epochs. The number of neighbors

considered has an impact on the tradeoff of local vs global manifold learning

performance. The authors state that “smaller values will ensure detailed

manifold structure is accurately captured (at a loss of the “big picture” view of

the manifold), while larger values will capture large scale manifold structures,

but at a loss of fine detail structure which will get averaged out in the local

approximations [4].”

Another hyperparameter of note is the minimum distance, which deals

with the issue of “overcrowding” as described in t-SNE by allowing the user to

specify the how closely together points can be packed in the lower

dimensional graph. The authors note that this is more of an aesthetic choice

for helping readability of visualizations as larger values will force the

17

embedding to spread the points out, possibly leading to a loss in accuracy in

the representation of the manifold.

The authors of the UMAP paper conclude their findings by pointing out

limitations of their algorithm. One observation they make is that UMAP tends

to focus on the local structure of the geometry of the manifold and that UMAP

may not be the best choice if one’s primary goal is to visualize the global

structure. The authors of UMAP also note that UMAP is focused on preserving

the topology of the structure rather than pure metric structures [4].”

In their future works section, the authors note that they attempt to

discover a manifold on which the data is uniformly distributed. Thus, if the data

consisted of a loose structure in one area and a densely packed structure in

another area, UMAP would put these local areas “on even footing [4].” The

authors also echo what Cayton described in his paper: that “there is a lack of

clear objective measure, or even definitions, of global structure preservation

[4].”

2.6 Clustered Manifold Mapping

2.6.1 CLAM

The notable difference between the manifold learning technique

proposed in this thesis and the methods summarized in the previous section is

that it uses clustered manifold mapping to create its graph rather than k-

nearest neighbors. Clustering is a field that aims to arrange an unordered

collection of objects such that nearby objects are similar [6]. This is usually

achieved by grouping similar datapoints into the same cluster [5]. The

18

CHAODA paper notes that the term manifold learning is “largely synonymous

with dimension reduction and proposed manifold mapping to refer to the study

of the geometric and topological properties of manifolds in their original

embedding spaces [5].” As such, the authors proposed Clustered Learning of

Approximate Manifolds (CLAM) as a novel technique.

 CLAM defines a cluster as a set of points with a center and radius. The

center is the geometric median of the points grouped in the cluster while the

radius is the greatest distance from the center to any point in the cluster [5].

CLAM uses these clusters to create a tree representation of the dataset where

each non-leaf cluster has two child clusters.

 CLAM creates this cluster tree using a “divisive hierarchical clustering

algorithm [16].” The initial step in the partitioning of the tree is to take a cluster

containing |C| points (the cardinality of the dataset) and randomly sample the

square of |C| points. For each of these randomly selected points, the pairwise

distance between all points are calculated based on some metric distance

function. The geometric median of the cluster is then calculated by minimizing

the sum of the distances to all other points in the sample. CLAM then

designates a left “pole” of the cluster as the datapoint that is farthest from the

geometric median as well as a right pole that is the cluster farthest from the

left pole [16]. The cluster is then partitioned such that data points that are

closest to the left pole are assigned to the left child and clusters closest to the

right pole are assigned to the right child. If any clusters are equidistant from

19

the two poles they are assigned to the left child by default. This often leads to

an unbalanced tree that leans to the left.

The authors note that this is a positive feature of the algorithm as the

“varying sampling density in different regions of the manifold and low

dimensional shape of the manifold itself will cause it to be unbalanced [16].”

The authors only expect a perfectly balanced tree if the dataset is uniformly

distributed. This contrasts with the UMAP algorithm which assumes that the

data is uniformly distributed on the manifold.

2.6.2 Clusters

CLAM’s clustering process also provides the advantage of memoizing

properties of the clusters such as radius as defined above, cardinality (the

number of data points stored within the cluster), local fractal dimension

(defined as an approximation of the dimensionality of the lower-dimensional

manifold in the “vicinity” of a given point”, as well as an offset to access points

in the dataset [16]. The data corresponding to a cluster can be found in the

range [offset, offset + cardinality]. These properties can be leveraged in the

visualization to provide more details about clusters and the underlying

manifold.

2.6.3 Graphs

The cluster tree described above plays an important role in the

visualization, however the most important contribution to the visualization is

the ability to induce graphs that can be created by mapping specific clusters in

20

a tree to vertices of a graph. Edges in the graph are drawn between any two

vertices whose corresponding clusters have overlapping volumes, “i.e. the

distance between their centers is less than or equal to the sum of their radii

[5].”

 Clusters can be selected from the graph based on several properties

such as their depth in the tree, cardinality, radius, etc. Clusters at lower depths

in the tree can be considered at a “lower resolution” than those at greater

depths. The authors note that inducing a graph across a variety of depths, as

seen in figure 1, “efficiently maps a manifold with a variety of resolution [5].”

This is based on the intuition that some regions of the manifold consist of a

higher density of points than others and that graphs induced from these

clusters can provide more information on these regions of the manifold [5].

21

Figure 1: Blue dots represent clusters that have been selected for the graph.
By selecting clusters at a variety of depths, we are ensuring that a manifold
without a uniform distribution is properly mapped.

A CLAM graph exhibits an important invariant in that the sum of the

cardinality of all clusters in the graph must be equal to the cardinality of the

root cluster in the tree. This essentially means that every datapoint in the

dataset will be represented in the graph regardless of how many clusters have

been selected. Another notable invariant of the graph is that it will never

contain two clusters that are a parent or child of the other [5].

22

While one could arbitrarily select clusters at various depths while

maintaining the previous two invariants, CHAODA offers insight into selecting

the “right” clusters that provide a useful representation of the underlying

manifold [5]. CHAODA’s focus was on outlier detection in high dimensional

datasets, and thus created several scoring functions for clusters that quantify

how “good” of a choice a cluster is for the graph.

The algorithm for selecting the clusters involves first sorting the clusters

in the tree based on their score. The next step is to take the first cluster from

the sorted queue and add it to the graph. The cluster’s ancestors and

descendants are then removed from the queue. This process is repeated until

the queue is empty. CHAODA also offers a hyper-parameter that allows the

user to specify a minimum depth in the tree that a cluster must have. Providing

a higher minimum depth will force the algorithm to choose clusters higher in

the tree. This can be useful for ensuring that a useful and interesting graph is

created. For example, if the minimum depth is zero, the root cluster could be

selected as the only vertex in the graph. If the min depth is too high, it could

result in many leaf clusters being selected, which would lead to many disjoint

graph components.

23

CHAPTER 3

METHODOLOGY
3.1 Unity

The first design choice I had to make when I started this project

revolved around how I was going to render the visualization. One goal of this

thesis is to create an interactive visual representation of the manifold, and one

idea I had for that was having an interactive camera that the user could control

to move around. I also wanted the ability to have a UI overlayed on the screen

for the user to change aspects of the visualization while allowing the clusters

on the screen themselves to be clickable objects the user could interact with.

 These constraints led to a decision that a game engine should be used

to create such a visualization. I initially considered using a game engine

written in Rust because that is the language in which CLAM was implemented.

However, because Rust is relatively new language, I felt that none of the

engines were stable enough or had enough features to develop with. Another

option I had was to use a game engine developed in another language and

find a way to link the Rust based CLAM code with the engine. Two of the most

popular game engines at the time of this writing are Unreal and Unity. While

both engines are more than suitable for developing applications, the choice for

me boiled down to which engine had better support for interfacing with a Rust

library. Currently, Unity has more documentation for using “foreign function

interfaces”, which allow a user in a host language to call functions from

another language [17].

24

3.2 Foreign Function Interfaces

The Unity game engine uses C# as its scripting language, which means

I would need to create a foreign function interface between C# and Rust using

C# as the host language. The common ground between C# and Rust is that

they can both be easily bound to the C programming language. This means

that if I needed to call a Rust function from Unity, I would need to convert the

C# variables into a common C representation of that type, pass it to Rust,

convert it from Rust’s unsafe C type into a safe Rust variable, do any required

work in Rust and pass any results back to Unity. This last step, of course

potentially involves the same process of converting the Rust type into a c type,

and then converting it from C to C#. These Rust functions would also need to

be compiled into a dynamically linked library that Unity would link to at runtime.

 Some types are trivially converted across the foreign function interface.

For example, passing an int from Unity to Rust simply requires writing a Rust

function that accepts an i32 as a parameter. In a similar fashion, returning a

i32 from a Rust function means storing the output as an int in C#. However,

this concept introduces several complications to the codebase.

 One such complication that I ran into was that I was not simply calling

functions from Rust: I needed to create data structures that were not

compatible with C# and have them live beyond the lifetime of the Rust

functions. The tutorial I initially followed when developing the source code

introduced the concept of a “baton” [18]. The baton is an opaque pointer

allocated in Rust and provided to the host (C#) when the library is initialized.

25

From then on, any operation requested from the host passes the baton back to

Rust. Once the host is finished, it passes the baton back to Rust one last time,

so the memory is freed [18].

 In my case, this “baton” is a struct that stores the CLAM tree, CHAODA

graph, and any other data that I need to persist for the lifetime of the program.

C# receives this baton and stores it as a “IntPtr” type, meaning that C# has no

idea what data type this pointer represents. In Rust, I created a typedef to

save some headaches when writing functions. This pointer is defined as seen

in figure 1. It is used in figures 2 and 3 when C# calls a foreign Rust function,

passing it back the baton with the information Rust needs to return the tree

height.

pub type InHandlePtr<'a> = Option<&'a mut Handle<'a>>;

Figure 2: The Handle Pointer used to pass CLAM data between Rust and C#.

[DllImport(__DllName, EntryPoint = "tree_height")]
private static extern int tree_height(IntPtr handle);

Figure 3: C# declaration of an external Rust function.

#[no_mangle]

pub unsafe extern "C" fn tree_height(ptr: InHandlePtr) -> i32 {
if let Some(handle) = ptr {
 return handle.tree_height();
 }

}

Figure 4: A Rust function that can be called from C#.

26

pub struct Handle<'a> {
 tree: Option<Tree<Vec<f32>, f32, DataSetf32>>,
 clam_graph: Option<Graph<'a, f32>>,
 force_directed_graph: Option<ForceDirectedGraph>,
}

Figure 5: The struct that stores all relevant Rust data and needs to persist for
the duration of the visualization.

A common operation that I needed to perform throughout the code base

was passing the properties of a Cluster from Rust to C# (or vice versa). To do

this, I needed an intermediate C-style struct that could be passed between the

two languages, which I called ClusterData. For example, if a user clicked on a

cluster to view its properties in the side menu, C# would call a Rust function,

passing the name of a cluster as a parameter, and would receive an instance

of ClusterData, which stored any relevant information.

 While Rust stored the clusters in CLAM, Unity needed a way to store

the GameObjects that would be visualized to represent those clusters and

would need an identifier so that the GameObject could be associated back to

its Rust counterpart. To that end, I created a Unity script called Cluster, which

would store an id, position, and color. I could have copied all the properties of

a Cluster into Unity, but I felt it would be a waste of memory to duplicate all the

values when the datasets could potentially involve millions of clusters.

When I first began my thesis, a cluster’s id was created via Huffman

Encoding. The naming convention is such that the root cluster is named ‘1’

and each left child would have a ‘0’ appended to its name while each right

child has a ‘1’ appended to its name. As the tree was created, its name was

27

memoized and stored as a string. The authors of CLAM later refactored the

struct and removed Huffman encoding as they came up with a more efficient

method of naming a cluster based on its offset and cardinality. It would have

been easier to use these integers as identifiers instead of the string ids,

however this change occurred rather late in my development phase, so I left

the id as being stored as a string to avoid breaking changes.

Figure 6: A comparison of the Cluster struct and the ffi interface struct used to
pass data between Rust and C#.

 Passing strings across the foreign function interface led to another

challenge because I needed to dynamically allocate unmanaged memory,

convert it to a C type and pass it to the other language. This also meant that I

was required to manually free the memory down the road. To avoid

unnecessary confusion, I decided to introduce an invariant to my code: Rust

would always be responsible for allocating and freeing unmanaged strings.

To create an instance of this struct in C#, it would pass a safely managed c-

string containing a cluster’s name as well as a ‘out’ variable of type

28

ClusterData to Rust. Rust would fill in any CLAM related variables, allocate the

string id and then set the C# variable equal to this instance.

[DllImport(__DllName, EntryPoint = "alloc_data")]
extern FFIError alloc_data(IntPtr ptr, string id, out ClusterData data);

Figure 7: The external Rust function used to create ClusterData.

#[no_mangle]
pub unsafe extern "C" fn alloc_data(
 ptr: InHandlePtr,
 id: *const c_char,
 outgoing: Option<&mut ClusterData>,
) -> FFIError {
 if let Some(handle) = ptr {
 let cluster = handle.get_cluster_from_string(id);
 let cluster_data = ClusterData::from_clam(cluster);
 *outgoing = cluster_data;
 FFIError::Ok
 }
}

Figure 8: Rust implementation of function allocating ClusterData.

 Rather than calling this type of function directly, I created a struct called

ClusterDataWrapper. Inspired by smart pointers in C++, I made it so the

constructor would allocate a ClusterData struct, and the destructor would free

the memory automatically when going out of scope. Another addition seen in

the image is the FFIError Enum which I use to pass error messages back and

forth between Rust and C#.

29

pub struct ClusterDataWrapper {
 data: ClusterData,
}

impl Drop for ClusterDataWrapper {
 fn drop(&mut self) {
 self.data.free_ids();
 }
}

Figure 9: Rust implementation for automatically freeing string memory.

public interface IRustResource {
 void Free();
}

public class RustResourceWrapper<T> where T : struct, IRustResource {
 T m_Data;
 public FFIError result;

 ~RustResourceWrapper() {
 m_Data.Free();
 }
 public T Data {
 get { return m_Data; }
 }
}

Figure 10: C# implementation for automatically freeing string memory (note
that this call to free passes the data back to Rust to be freed).

 Another notable aspect of the design of my foreign function interface

was the use of callback functions. There are certain cases where I might need

to modify the position of every cluster based on data in Rust. To accomplish

this, I would create a callback function in C# that accepted a ClusterData as a

parameter. In C#, the callback function would behave as normal, meaning I

could modify Unity objects and C# objects such as Dictionaries which are

normally incompatible with a foreign function interface. Rust could then

30

traverse through the tree, create a ClusterData object filled with the necessary

properties and then invoke the C# callback function.

void ColorByCardinality(ref Clam.FFI.ClusterData nodeData) {
 tree.GetValue(nodeData.id, out var cluster);
 float ratio = 1.0f - nodeData.cardinality / tree.cardinality;
 cluster.GetComponent<Cluster>().SetColor(new Color(ratio));
}

Figure 11: A callback function passed from C# to Rust that sets a cluster’s
color according to its cardinality.

public delegate void NodeVisitor(ref Clam.FFI.ClusterData data);

Figure 12: A typedef of the function callback signature in C#.

type CBFnNodeVisitor = extern "C" fn(&ClusterData) -> ();

Figure 13: A typedef of the callback function used in Rust.

fn for_each_dft(root: &Cluster>, node_visitor: CBFnNodeVisitor) {
 if let Some(cluster) = root {
 let ffi_cluster = ClusterDataWrapper::from_cluster(cluster);
 node_visitor(ffi_cluster.data());

 for_each_dft(root.left, node_visitor);
 for_each_dft(root.right, node_visitor);
 }
}

Figure 14: The Rust function that accepts a higher-order function to perform
on clusters.

The design of this interface allows me to write code that transfers data

between Rust and C# without having to directly interface with any of the

unsafe C code in the middle. Any unsafe memory allocations are automatically

freed, any unsafe types are converted to safe types before I start working on

them. I essentially designed this so that I wouldn’t really need to worry about

the unsafe nature of foreign function interfaces when I was implementing the

31

backend code. On top of that, the design of being able to use higher order

functions while iterating over clusters in the tree allowed for more generic re-

usable code.

3.3 The Tree

While Rust stored Clusters in the tree-like structure described in the

literature review, C# stored the companion cluster objects in a Dictionary

where the key is the name of the cluster (a string), and the value is the Unity

Object representing the cluster.

This setup of copying the tree into a C# dictionary leads to a potential

memory bottleneck where I could end up duplicating all the memory stored in

Rust. I used two methods to solve this. One is that I made the attributes of a

Rust cluster and a Unity structure mutually exclusive. Rust would store the

clusters as described in the literature review section while Unity would store

the name of a cluster, its location, and its color. This at least prevents issues

of duplicate data as with large datasets, even duplicating integers and floats

could be costly if there are millions of them.

 The second method that I used to optimize the memory was based on

the observation that there is little need to store every cluster in the tree in Unity

at any given time and instead I decided to only create Unity objects for clusters

that the user cares about. To that end, I treated Unity’s dictionary like a cache

and Rust as the server. I initially only store the first few levels of the Unity tree

in the C# dictionary. If a user requests to view another level in the tree, I check

if the clusters on that level exist in Unity yet. If they do, I simply make the

32

clusters and any corresponding edges visible. If not, I add a cluster to the C#

dictionary and place it on the screen according to layout calculations that will

be covered in the Reingold Tilford section. This behaves in a similar manner

for when the graph is constructed and if a user attempts to view the subtree of

any clusters in the graph.

3.4 Implementing the Force Directed Graph

Calculating the forces and applying them to each cluster is a costly

operation and can be a bottleneck during the physics simulation. Unity has

built in physics systems that could be leveraged here, but I chose to

implement the graph in Rust because of how closely coupled it is with the

CLAM graph. A naïve approach to this would involve Unity calling a Rust

function that computes the forces and waits for it to finish. However, this

freezes the entire application while it waits on Rust. To resolve this, I

implemented the producer consumer idiom.

 Rust’s physics simulation would run on a worker thread, calculating the

forces to be applied on the edges. Once it was finished calculating, it would go

to sleep and wait to be awoken. I then modified the update function of a Unity

object so that it would attempt to have Rust take the finished calculations and

update the Unity objects. If the calculations were not complete, the function

would end, and the objects would not be updated during that frame. However,

if the calculations were complete, CLAM would iterate through each cluster in

the graph and use callback functions to update the respective Unity objects’

33

positions in 3D space. This function would then send a signal to the worker

thread, waking it up to work on its next iteration.

 In the cases of large graphs, performance bottlenecks can still be

noticed as the clusters won’t be moving each frame. However, it is still better

than the naïve method because it reduces the amount of time that Unity is

waiting on Rust.

3.5 Edge Drawing

Unity provides a line renderer component for drawing lines between two

or more points that I initially used to draw the edges between clusters in the

tree. However, I noticed a performance bottleneck because the line renderer

component is not well optimized for handling thousands of lines. To optimize

this, I introduced an index and vertex buffer on a mesh and manually drew the

lines.

 One aspect of the improvement in performance came from the

reduction in the number of game objects to update. Five thousand objects

would take five thousand update and draw calls during the main loop. Creating

one mesh object to draw all the lines only takes one update and draw call.

Another aspect of the optimization came from the reduction in the number of

vertices being placed on the screen. The purpose of an index buffer is to re-

use existing vertices rather than draw duplicates on screen.

 Take for example, a graph consisting of four vertices where each vertex

has an edge connecting it to each other vertex. This leads to a graph with six

edges. Drawing the edges naively would result in placing two vertices on

34

screen for each line (12 vertices). However, using an index buffer to re-use

vertices, we can reduce the number of vertices drawn on screen to just four.

Figure 15: Example of a shape that can be drawn by reusing vertices with an
index buffer.

To summarize, this means that drawing the graph requires drawing a

number of vertices equal to the number of clusters that have an edge, rather

than the number of edges x 2. Changing to this method led to an impressive

boost of performance seen in table one.

Line Renderer

Mesh Renderer

num_lines fps

num_lines fps

1000 200

1000 400

3000 90

3000 300

5000 70

5000 300

10000 40

10000 280

Table 1: A comparison of the performance of Unity line renderer components
vs A mesh renderer with index and vertex buffers

3.6 Refactoring CLAM and CHAODA

35

Another factor that went into the implementation of this thesis was that

the CHAODA paper had originally been published with a codebase written in

Python. Most of the code had been ported to Rust, but it was outdated and no

longer compatible with the latest version of CLAM. In addition, parts of CLAM

such as the Ratios, which are required to score clusters were not implemented.

To push my changes to the Clam repository, I also needed the code to pass

several quality checks setup by the research group.

In some cases, the refactoring was as simple as adding documentation

to a function or struct (although that does add up when there are hundreds of

functions that need documentation). Other times I wrote unit tests for the

Graph and CHAODA modules, which led to the discovery of some bugs,

including an improper implementation of standard deviation. I also needed to

update the types that the Graph struct was using so that it matched the latest

version of CLAM. This could mean adding lifetime specifiers or changing

names of variables or functions.

Within the CLAM codebase itself I needed to add the ratios calculations

as an optional function that could be called when building the tree. This would

memoize the ratio values of each cluster compared with its parent. The ratios

play an important role in how CHAODA selects optimal clusters to be in the

graph. Overall, this took a couple of months before I had the changes all

merged into their codebase and ready for use with my visualization.

3.7 Displaying the Tree

36

The primary purpose of my thesis is to view an induced graph

representing the underlying structure of a manifold in a reduced dimension.

However, I felt it important to visualize the CLAM tree in addition to the graph

for several reasons. The first was simply because when I first started this

project, I was new to Unity, Rust, CLAM, and the concept of foreign function

interfaces. I also did not fully grasp how the graph would work yet. I did, on the

other hand, understand what a tree-like structure was. So, I taught myself

about all these topics by creating a visual representation of the tree before I

started any work on the graph. After I finished creating the tree, I chose to

include it in my final visualization application because it helps provide insight

into the underlying structure of the data as well as provide insight into CLAM.

As noted by the authors of CLAM, the tree is typically unbalanced and

left leaning because they state that data is not always evenly distributed along

the manifold. In addition, when creating the graph, I provide an intermediate

step where, based on the hyperparameters specified by the user, the clusters

that have been chosen to build the graph are highlighted for the user. This

gives them a visual representation of how deep in the tree their graph is. It

also helps users distinguish the difference between the purpose of the graph

and the tree altogether.

37

Figure 16: An example of the Reingold Tilford tree layout. Blue clusters have
been selected to create a graph from this tree.

3.7.1 The Reingold Tilford Layout

A challenging aspect of visualizing the tree is that trees of certain heights

become increasingly difficult to visualize effectively. In fact, for large enough

trees, the spacing required to place the clusters in a naïve manner could result

in only the root being visible as the other clusters were pushed off into space.

This is also affected by the fact that the trees are typically left-leaning and my

initial spacing algorithm did not account for the fact that the left side might

need more spacing than the right side.

 To rectify this, I researched several tree visualization algorithms and

settled on the Reingold-Tilford algorithm which aimed to preserve several

invariants. First was that nodes at the same depth in the tree should be drawn

in the same vertical level in the tree. Next was that a left child should be drawn

to the left of its parent, and the right child to the right of the parent. The parent

should be centered over the children, and a subtree should be drawn the

same way regardless of where it appears in the tree [19]. In addition to the

properties, Reingold and Tilford aimed to achieve this while minimizing the

38

width of the tree. However, I found that even with this algorithm designed to

minimize width of the tree, large datasets were still not easy to view.

I redesigned the algorithm to have a specified starting cluster, not just the

root of the tree, and I added an additional parameter called max depth as

stopping criteria. The latter allowed the user to only space clusters as if the

tree was a specified height, rather than its actual height. This allowed clusters

close to the root to initially be placed more closely together. As the user

requests to view deeper in the tree, the max depth parameter is increased and

the layout of the tree is recalculated with this new height, behaving in much

the same way as a dynamically resizing array. Changing the algorithm to work

from any cluster rather than just the root comes in handy when visualizing the

subtrees of clusters in a graph. The results of this implementation can be seen

in Figure 17, Figure 18, and Figure 19 below.

Figure 17: A tree with a max height of 30 being displayed as though its max
height was 2.

Figure 18: A tree with max height 30 being displayed as though its max height
was 8.

39

Figure 19: A tree with max height 30 being displayed. The tree is too wide to fit
on screen even with the use of the Reingold Tilford Algorithm.

3.8 Cluster Properties

An important aspect of this thesis was to provide an interactive visual to

the user. As such, the user can click on clusters and have their properties

displayed on screen. The current UI design behaves much like the project

TensorFlow visualization where you can click on a cluster to view its properties.

However, the hope of using this clustered manifold mapping technique is that

providing information about the cluster properties will provide additional

information about the manifold. For example, the local fractal dimension of a

cluster provides insight into the actual embedding space of the cluster. Other

properties such as cardinality and radius can be used to determine how

densely packed the cluster is. In addition, the offset combined with the

cardinality allows the user to know which indices in the dataset are

represented by that cluster.

Figure 20: The blue cluster has been selected by the user, displaying its
properties in the menu on the right.

40

3.9 Coloring Clusters

This visualization tool allows the user to color clusters based on several of

the clusters’ properties including cardinality, local fractal dimension, radius,

label, depth, and vertex degree. Currently, all coloring properties besides by

label are in greyscale and are normalized to the dataset. For example, if

coloring by cardinality, a white cluster has a low cardinality compared to a

cluster colored dark grey or black. Future HCI experiments could be

conducted to research how users would prefer the color scheme be

represented.

 I initially created this visualization using the anomaly detection datasets

used in the CHAODA paper, which only had two labels: inlier or outlier. As

such, I setup the coloring scheme so that a red cluster would signify an outlier

and a green cluster an inlier. I also scaled the color gradient based on the

entropy of the cluster. So, the red channel was calculated as the number of

outliers divided by the cardinality of the cluster and the green channel was

calculated as the number of inliers divided the cardinality of the cluster. This

would lead to clusters with a mix of inlier and outlier data being a yellowish

color.

 Later, I added functionality to support up to ten labels. However, I had

to drop the shifting gradient idea because it could result in misleading colors of

clusters. For example, if I assign a unique cluster for each label and those

colors include yellow, green, and red, then a cluster made up of half green,

half red could be the same color as a cluster with the yellow label. One other

41

notable aspect of the coloring scheme is that it is designed to be colorblind

friendly, using a tool developed by Adobe that warns if certain colors clash in

certain types of color blindness. The colors are still setup so that if using the

anomaly detection datasets, green are inliers and red are outliers, as seen

below. Coloring clusters in the tree and graph based on their properties allows

the user to gain a better understanding of how clusters work while also

portraying important properties of the tree and graph.

Figure 21: Coloring a tree by label where green is inlier and red is outlier.

Figure 22: Coloring a tree by cardinality. Darker colors mean a higher value.

42

Figure 23: Coloring a tree by depth.

Figure 24: Coloring a tree by local fractal dimension.

3.10 Selecting Clusters with CHAODA

As seen in the CHAODA review in the previous section, an important

consideration for building the graph is how the clusters are selected. To

summarize, clusters must be selected from the tree such that every datapoint

in the original dataset is represented in the graph while avoiding duplicate

datapoints. One could arbitrarily select clusters that meet these criteria but

there is a chance they could end up with a graph containing too few or too

43

many components. To avoid the first problem, the user interface suggests to

the user that they build the graph with a min depth of 4 by default.

 By increasing the min depth parameter, the user is guaranteeing that

their graph will consist of more clusters. If the user goes too far, they could

potentially end up with all leaf clusters chosen, which would lead to a disjoint

graph with few to no edges. One note about the algorithm is that it will only

ignore non-leaf clusters below the minimum depth parameter. For example, in

Figure 25, the right child of the root is a leaf cluster and is chosen for the

graph despite being lower than the minimum threshold. If this was not

considered, we would break the invariant that each point in the dataset be

represented in the graph.

Figure 25: The blue clusters have been selected to build a graph with
minimum depth 4 from a tree with a height of 4. Leaf clusters with a depth less

than min_depth are still selected in order to maintain the invariant that the
graph represents the entire dataset.

44

 CHAODA selects clusters based on scoring functions produced through

a meta machine learning model. The scoring functions accept the “ratio” of a

cluster as a parameter and return a score representing how good of a choice a

cluster is for the graph. A ratio of the cluster is an array of six floats consisting

of its cardinality, radius, and local fractal dimension divided by its parent’s

corresponding values as well as the next exponential moving average of each

value. The next exponential moving average is used to place a greater weight

on more recent values while still taking older values into account.

 One issue I ran into with CHAODA’s cluster selection was dealing with

tiebreakers. For example, if clusters had the same score, the order that the

clusters appeared in the queue was not stable between runs. This means that

you could give the program the same input twice and receive different outputs.

To address this, I added custom comparators to CHAODA’s codebase that

would rank clusters by highest score, lowest offset, highest cardinality. The

intention here is provide a heavier bias towards clusters close to the root as

the deeper in the tree you go, the higher the offset and lower the cardinality. If

clusters deeper in the tree were ranked higher, it would be difficult for the user

to intentionally create a smaller graph. However, if the bias is towards clusters

closer to the root, the user can just increase the min depth parameter if they

want a more complex graph. An example of this can be seen in Figure 26 and

Figure 27, where the min_depth value is increased, resulting in more clusters

being selected. Figure 28, Figure 29, Figure 30, and Figure 31 also show how

the graph becomes more populated as the min_depth parameter is increased.

45

 I also provided an intermediate step for the user where they could

preview the graph before running the physics simulation. Clusters selected for

the graph would be highlighted blue in the tree, giving the user an idea of how

deep in the tree their cluster selection is. In addition, I display properties such

as the number of graph components, number of clusters, and number of

edges present in the tree. This allows the user to experiment with different

min_depth values and preview properties of the graph

Figure 26: Clusters selected for a graph with min depth of 4.

Figure 27: Clusters selected for a graph with min depth 6 from a tree with
height 11.

46

Figure 28: A graph built from the annthyroid dataset with min depth 4.

Figure 29: A graph built from the annthyroid dataset with min depth 6.

47

Figure 30: A graph built from the annthyroid dataset with min depth 8.

Figure 31: A graph built from annthyroid with min depth 10.

3.11 Detecting Edges

Common manifold learning algorithms such as t-SNE and UMAP use k-

nearest neighbors to construct their graph. In contrast, this visualization uses

48

clustered manifold mapping. By selecting clusters from the tree, the algorithm

is reducing the number of individual datapoints that need be considered while

building the graph. This is an important aspect of manifold learning as one the

key steps described in the introduction is that the dataset should be distilled to

a subset of its data that represents key features. The nature of the CLAM tree

groups alike datapoints into clusters. However, we still need to create edges

between these clusters. Recall that edges represent some sort of similarity

between datapoints in manifold learning. The formula used to detect edges

between clusters is that the pairwise distance between them is less than or

equal to the sum of their radii and the target length of the edge between the

clusters is simply their pairwise distance. The current implementation

compares each cluster in the graph to each other cluster in the graph and has

a time complexity of O(|C|2). Future work could investigate a method of

optimizing the detection, which would speed up the building process of the

graph.

A problem that appears in some graphs is that the sheer number of edges

can obscure the relationships between the clusters. The ability to hide edges

as seen in figure 32 can provide the user the choice of if they want to look at

edges.

49

Figure 32: As seen with the MNIST dataset, it is possible for a graph to have
too many edges, cluttering the image and detracting from the information.
Hiding edges is an easy fix for this.

3.12 Balancing Local and Global Forces

The next steps follow the similar algorithms seen in the sections on UMAP,

t-SNE, and force directed graphs. The initial positions of the clusters are

randomly initialized. The graph is then iterated over a user-specified number of

times and forces are applied each iteration. For each edge in the graph, forces

are computed that will attract clusters together if their physical distance is

greater than their metric distance. If the clusters are too close, a repulsive

force will be applied instead.

These forces represent the local structure of the geometry of the manifold.

The global geometry consists of the relationship between disjoint components

in the graph. Other manifold learning algorithms apply some mixture of

repulsive forces to avoid crowding and attractive forces to keep datapoints in

frame. In this force directed graph, I aim to find an ideal distance between the

components themselves. This means that each component is given edges that

connect it to each other component. The method choosing clusters to

50

represent its disjoint component could be a topic of further research, however I

reason that the clusters with a high connectivity would be a viable choice. To

that end, I sort the clusters in a disjoint component based on their vertex

degree and select (up to) the highest three ranked clusters. I specify “up to”

because there are some cases when a disjoint component consists of only

one or two clusters. This sampling comes from the concern of time complexity

of the force directed algorithm.

This now leads us to the tradeoff between local and global structure of the

graph. By estimating a target distance between disjoint components, the

global structure of the graph should increase in quality. However, by applying

forces between the disjoint components, I am disrupting the local

representation of each component. One proposal for avoiding this would be to

treat each component as a static object and apply forces between the object

instead of the individual clusters within it. This would mean that the

components themselves would be translated or rotated in respect to one

another but the clusters within each component would not have their

respective distances altered. This approach seems promising but requires a

significant amount of work involving creating Unity objects for each component

and applying force and torque between the objects based on forces applied

from the location of one cluster to another. This implementation should be

investigated in future work to preserve the local layout while optimizing the

global layout however due to time constraints and the initial accuracy

51

benchmarks of the application looking promising, I have opted to leave the

implementation as-is for now.

52

CHAPTER 4

FINDINGS
4.1 Examples of Created Graphs

The figures below are examples of graphs created using the CLAM

visualization tool with the http anomaly detection dataset. In Figure 33, a

broader perspective reveals two large components, a small component, and

many tiny disjoint components. Figure 35 zooms in on the large component on

the left, showcasing clusters packed together into a rope-like structure with a

knot in the center. Meanwhile, Figure 34 focuses on the large component on

the right, which seems to flatten into a more 2D square shape. The red

clusters signify outliers and are notably visible as small disjoint components

outside of the larger inlier sections. In Figure 39, I examine an inlier cluster

that has two edges connecting to outlier clusters by expanding its subtree. It

becomes clear that the edges exist because while the cluster has outlier data

in its children.

Figure 38 shows a graph created using the Satellite dataset. I chose to

make the edges invisible for this image because they blocked the view of the

clusters. The graph shows that the inlier and outlier clusters separate into two

different sections with some overlap in the middle. This shows that the graphs

created with anomaly detection datasets can be used to visualize the

relationship between inlier and outlier clusters.

53

Figure 33: An induced graph created with the http dataset.

Figure 34: A close-up of the 2D-like graph component found within the http
graph.

54

Figure 35: A close-up of the second large component in the http dataset. It
looks like a straight line with a clot in the center.

Figure 36: A closeup of some of the smaller disjoint components in the http
graph.

55

Figure 37: The http dataset with edges (left) and without edges (right).

Figure 38: The satellite dataset produces a graph where inlier clusters are
mostly located on the left, outliers on the right, and a small mixture in the

middle.

56

Figure 39: A small component within a graph has two outliers connected with
an inlier (left). By displaying the inlier cluster’s subtree (right), we can see that

it contains an outlier cluster, which could explain why it has an edge
connecting to an outlier.

4.2 Comparisons to Existing Methods
4.2.1 A visual Comparison

In the UMAP paper, the authors show how their visualization compares

to t-SNE’s visualization of the MNIST dataset (see Figure 40). UMAP’s results

showed that 0 and 1 were on opposite sides of the map while 3,5, and 8 were

grouped together and 4,7, and 9 were grouped together. Their visualization

does a better job of portraying the global structure than t-SNE’s because it not

57

only groups alike datapoints together, but it gives a better representation of the

relationship between unrelated data points.

Figure 40: A Qualitative comparison of t-SNE and UMAP (Melville, 2020).

Examining the results produced by my visualization (seen in Figure 41)

is more difficult in 3D space because the result is a mostly hollow sphere that

creates misleading results when viewed in 2D form. To compare the results

with UMAP and t-SNE, I disable the rendering of certain digits and change

viewing angles to highlight the relationships between the digits I want to focus

on. In Figure 42, I highlight that the 0 and 1 digits are located on opposite

sides of the sphere, matching how the digits are located in the UMAP and t-

SNE visualizations. In Figure 43, I show that digits 3,5, and 8 are located on

the left side of the sphere, leaving the digit 7 on the right as a reference frame.

In Figure 44, I examine the relationship between 4, 7, and 9 by showing how

they are located on the right side of the sphere, leaving digit 3 on the left as a

reference frame. I included 3D visualizations of the MNIST dataset created by

UMAP to show a more direct comparison of the results as seen in figures

Figure 45 and Figure 46.

58

Figure 41: The graph of the MNIST dataset produced by my visualization.

Figure 42: 0 (green) and 1(red) are on opposite sides of the MNIST graph.

59

Figure 43: The graph displayed with digits 3, 5, and 8 grouped on the left. Digit
7 is on the right for reference.

Figure 44: Digits 4,7, and 9 are grouped on the right. Digit 3 is displayed on
the left for reference.

60

Figure 45: A UMAP visualization of MNIST in 3D showing groupings of 3,5, 8
and 4,7, 9.

Figure 46: A UMAP visualization of MNIST in 3D focusing on the relationship
between 0 and 1 digits.

61

4.2.2 An Analytical Comparison

 Both the authors of the UMAP paper and Cayton state that it is difficult

to measure the accuracy of the manifold created through manifold learning.

For a quantitative analysis on the performance of my visualization, I chose to

leverage the geometrical properties of triangles. To that end, I would randomly

select three clusters in my graph and use their physical positions in 3D space

to form a triangle. I would then find the metric distance (in my experiments I

used Euclidean) between the three clusters as the reference triangle. I also

ensured that the points selected made valid triangles by testing the triangle

inequality theorem, which states that the sum of the lengths of any two sides

of a triangle must be greater than or equal to the length of the remaining side

[20]. Once this was done, I used three tests to quantify the accuracy of my

graphs.

The initial evaluation involved assessing the lengths of the edges of each

triangle. In this analysis, a reference triangle comprised points A, B, C, while a

test triangle consisted of points A', B', C'. The primary objective was to ensure

that the edges maintained the correct relative order by length. For instance, if

AB > AC > BC in the reference triangle, then A'B' > A'C' > B'C' in the test

triangle would indicate that the distances between the data points in 3D space

and their embedding space were proportional.

 I defined the accuracy of the graphs as the ratio of triangles with

proportional edges to the total number of sampled triangles. However,

determining what constitutes a "good" score remained subjective. To address

62

this, I conducted similar tests on graphs generated by UMAP and compared

the accuracies. The only variation in these tests was the manipulation of the

number of neighbors when constructing UMAP graphs, while I tested my

graphs with a variable number of min_depth parameters as these parameters

can impact the accuracy of the graphs. I chose to plot the results for UMAP

and clam separately because the minimum depth and number of neighbors

hyperparameters are not equivalent, i.e. a minimum depth of five does not

directly compare to a number of neighbors of five. The purpose of creating

graphs with a variety of hyperparameters like this is to evaluate how they can

affect the accuracy of the graphs. Another difference to keep in mind is that I

am comparing the accuracy of distances portrayed between clusters with the

clam graph whereas the distances are between datapoints with the UMAP

graphs.

The remaining two tests aimed to quantify the extent of distortion present

in the triangles, rather than simply identifying whether distortion occurred. In

one test, I compared the lengths of the edges, while in the other, I examined

the magnitude of the angles. In the first test, the focus was on assessing the

proportion of the perimeter of a triangle occupied by each edge in their

respective spaces. This measurement provided insight into the extent to which

edges were stretched or compressed when transitioning between dimensions.

The exact equation used to measure the distortion of a triangle can be seen

below.

𝑟𝑒𝑓𝐸𝑑𝑔𝑒𝑅𝑎𝑡𝑖𝑜 =
𝑙𝑒𝑛(𝐴𝐵)

𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟(𝑟𝑒𝑓𝑇𝑟𝑖𝑎𝑛𝑔𝑙𝑒)

63

𝑡𝑒𝑠𝑡𝐸𝑑𝑔𝑒𝑅𝑎𝑡𝑖𝑜 =
𝑙𝑒𝑛(𝐴′𝐵′)

𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟(𝑡𝑒𝑠𝑡𝑇𝑟𝑖𝑎𝑛𝑔𝑙𝑒)

𝑒𝑑𝑔𝑒𝐷𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛 = 𝑎𝑏𝑠(𝑟𝑒𝑓𝐸𝑑𝑔𝑒𝑅𝑎𝑡𝑖𝑜 − 𝑡𝑒𝑠𝑡𝐸𝑑𝑔𝑒𝑅𝑎𝑡𝑖𝑜)

𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝐷𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛 = 𝑑𝑖𝑠𝑜𝑟𝑡𝑖𝑜𝑛𝐴𝐵 + 𝑑𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛𝐴𝐶 + 𝑑𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛𝐵𝐶

𝑎𝑣𝑔𝑇𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝐷𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛 = 𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝐷𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛 / 3.0

The second test measures the distortion of the angles between the

points. I calculated the angles of the triangle in the original embedding space

by using the law of cosines [21]. This is because they are not aligned to a

coordinate system, and I needed to calculate the angles while only knowing

the edge lengths of the triangle. Once I have calculated the angles, I take

ratios in a similar method as described with edge distortion (except using 180

degrees instead of the perimeter). I plotted these results so that

triangle_equivalence represents the percentage of triangles that had edges

sorted in the same order while edge and angle accuracy are 1 – the respective

distortion percent (meaning that a higher value is better for all three tests).

Dataset Points Dimensionality

Arrhythmia 452 274

Mnist 7603 100

Satellite 6435 36

Wine 129 13

Table 2: The number of points and dimensionality of datasets used to compare
accuracy of CLAM graphs and UMAP graphs.

64

I ran these tests on datasets with a variety of dimensionalities seen in

Table 2 above. Figure 47 and Figure 48 show accuracy of the clam and umap

graphs with the Arrhythmia dataset. The results of the edge and angle

accuracy tests show that UMAP and clam are relatively close, with both being

above 80% accuracy. However, the clam graph does slightly outperform the

UMAP graph. An interesting observation is that the sorted edges test has a

significant difference, with the accuracy of the clam graph hovering between

65% and 85% accuracy while the UMAP graph is between 30% and

40$ accuracy. This shows the importance of measuring not just if the edges

were distorted, but by how much. For example, this infers that roughly 70% of

the UMAP triangles did not have edge lengths in the same order as the

original embedding space, however the average distortion of the edges was

about 20%, meaning that they were still relatively accurate.

In Figure 49 and Figure 50, I compare the accuracy of the graphs

created with the MNIST dataset. Building a graph with clam from a minimum

depth of 4 results in a lower accuracy than graphs created with UMAP,

however at all other depths clam outperforms UMAP in accuracy. However,

the performance in the edge sorting test is much closer than with the

Arrhythmia dataset. Figure 51 and Figure 52 show that clam outperforms

UMAP in all three tests with the Satellite dataset.

Figure 53 and Figure 54 compare the results of graphs built with the Wine

dataset. The results plotted here are interesting because they show that clam

graphs have an accuracy of about 100% at depths four through eight.

65

However, depths between nine and eleven show a sharp drop off in accuracy

because its tree has a height of eleven. Leaf Clusters of a tree with a

cardinality of one have a radius of zero, so they are less likely to form edges

with other clusters, especially other leaf clusters. If a graph consists entirely of

leaf clusters, it ends up with no edges, which essentially means the local

structure of graph is lost.

Figure 47: Arrhythmia accuracy at various depths as visualized by CLAM.

66

Figure 48: Accuracy of the Arrhythmia dataset as portrayed by UMAP.

Figure 49: The accuracy of the MNIST dataset graph visualized by CLAM.

67

Figure 50: Accuracy of the MNIST dataset as portrayed by UMAP.

Figure 51: The accuracy of the Satellite dataset portrayed by CLAM.

68

Figure 52: Accuracy of the Satellite dataset as portrayed by UMAP.

Figure 53: Accuracy of the Wine dataset portrayed by CLAM at various depths.

69

Figure 54: Accuracy of the Wine dataset as portrayed by UMAP.

One other test I ran was to see how much the accuracy of the graphs

improved over the course of the physics simulation. The plots below show the

accuracy of the graphs during each time step. The edge and angle accuracies

are not inverted in the graphs below, so a lower score is better for those two

graphs. The results show that the physics forces are improving the quality of

the graph over time by decreasing distortion and increasing the number of

edges that are sorted in the same order between embedding spaces.

70

Figure 55: The percentage of triangles that are proportional in 3D and original
embedding space during each step of the physics simulation.

 Quantifying the accuracy of the graph representation of the manifold

can be a difficult task. By creating these tests, I am showing that the graphs

induced with CLAM provide an accurate visualization of the structure of the

underlying manifold. My visualization put more of an emphasis on the

importance of preserving the distances between vertices in the graph than

methods such as UMAP and t-SNE. This can be reflected by the fact that the

clam graphs are more accurate than the UMAP graphs when comparing their

performance on several datasets with a variety of dimensionalities.

71

Figure 56: The average distortion of the edges in the http graph during each
time step of the physics simulation.

Figure 57: The average distortion of the angles in the http graph during each
time step of the physics simulation.

72

CHAPTER 5

CONCLUSION

In conclusion, the application of clustered manifold mapping as a novel

visualization technique has demonstrated significant potential in addressing

the challenges of visualizing high-dimensional data. Visualizing the tree that

CLAM creates provides an interesting summary of the dataset as well as

providing additional insights into the field of clustered manifold mapping.

Additionally, the intermediate step of highlighting clusters in the tree that have

been selected for building the graph provides the user with an intuitive

understanding of the “resolution” at which they will be viewing the manifold.

Moreover, the resulting graph visualization enables users to delve into

complex datasets, revealing the relationships between closely associated or

disparate clusters of data.

The qualitative and quantitative analysis of the performance of this

visualization technique in comparison to existing methods such as UMAP

demonstrates its effectiveness in showing distances between data points. This

means that it not only groups similar data points well but also accurately

represent their distance in the original data space and produces an accurate

visual representation of the underlying structure of the manifold.

FUTURE WORK

73

This thesis not only provides an important contribution to the field of

visualizing high dimensional data, but it also paves the way for future work in

the field of clustered manifold mapping. Examples of features that could

provide valuable insight to these complex datasets would be coloring clusters

by graph component, allowing the user to show or hide cluster and edges

based on certain variables, and allowing the user to dynamically change the

resolution of the graph by replacing a cluster with its children (or vice versa).

Human computer interaction was not the primary focus of my thesis,

however future work could improve the user’s experience by streamlining

various parts of the user interface. In a small HCI experiment I conducted,

some feedback I received included comments on the “clunky” nature of

switching between the overlayed user interface and the in-world UI (i.e.

clicking clusters and moving the camera). Other comments were made on how

the use of a dropdown menu slowed down users because they might need to

switch menus to complete a task. Towards the end of my work as part of a

course I was taking, I created a rough draft of a more user-friendly UI based

on this feedback, which can be seen in figure 38. Additionally, there is

potential to create a VR version of this application that would allow the user to

interact with the data with their hands rather than a keyboard and mouse.

74

Figure 58: An experimental UI design that could improve the human computer
interaction of the application.

Another aspect of potential improvement for this work could be on the

performance of the graph building and physics simulation. As I noted in the

methodology section, despite calculating the physics forces on a worker

thread, there can still be noticeable performance hits on larger graphs

because of the sheer number of clusters that need to be processed each

frame. Looking into the use of multithreading to perform the calculations and

updates of cluster positions in parallel could prove quite useful to improving

the performance of the application.

In the methodology section, I noted that the idea of applying global forces

between disjoint components without disrupting the local geometry seems

75

promising and laid out an algorithm for doing so that should be studied and

implemented in more depth.

Another area of future work could be further developing the tests to show

how accurate the graphs are. One such test being discussed in my research

group is “false nearest neighbors.” This test would find the k-nearest neighbors

of each cluster in the graph and compare it with the k-nearest neighbors of the

datapoints in their original embedding space. If the same neighbors are found,

that would indicate the graphs do a good job of finding the k-nearest neighbors.

If the same neighbors are not found, it would indicate that the graph does a

poor job of representing which clusters are most closely related to other

clusters.

76

APPENDICES

Link to Source Code: https://github.com/djperrone/clam_visual3d

77

BIBLIOGRAPHY
[1] D. Probst and J.-L. Reymond, “Visualization of very large high-dimensional

data sets as minimum spanning trees,” Journal of Cheminformatics, vol. 12, no.

1, Feb. 2020, doi: https://doi.org/10.1186/s13321-020-0416-x.

[2] L. Cayton, “Algorithms for manifold learning,” UC San Diego: Department of

Computer Science & Engineering, 2005. Accessed: Apr. 14, 2024. [Online].

Available:

https://www.cs.columbia.edu/~verma/classes/ml/ref/lec8_cayton_manifolds.pd

f

[3] H. S. Seung, “COGNITION: The Manifold Ways of Perception,” Science,

vol. 290, no. 5500, pp. 2268–2269, Dec. 2000, doi:

https://doi.org/10.1126/science.290.5500.2268.

[4] L. McInnes, J. Healy, and J. Melville, “UMAP: Uniform Manifold

Approximation and Projection for Dimension Reduction,” arXiv.org, 2018.

https://arxiv.org/abs/1802.03426

[5] N. Ishaq, T. J. Howard III, and N. M. Daniels, “Clustered Hierarchical

Anomaly and Outlier Detection Algorithms,” arXiv.org, Nov. 21, 2021.

https://arxiv.org/abs/2103.11774 (accessed Apr. 14, 2024).

[6] D. Donoho, “Aide-Memoire. High-Dimensional Data Analysis: The Curses

and Blessings of Dimensionality,” 2000. Accessed: Apr. 14, 2024. [Online].

Available:

https://www.math.ucdavis.edu/~strohmer/courses/270/Donoho_Curses.pdf

[7] W. W. B. Goh and L. Wong, “The Birth of Bio-data Science: Trends,

Expectations, and Applications,” Genomics, Proteomics & Bioinformatics, vol.

18, no. 1, pp. 5–15, Feb. 2020, doi: https://doi.org/10.1016/j.gpb.2020.01.002.

[8] A. N. Gorban and I. Y. Tyukin, “Blessing of dimensionality: mathematical

foundations of the statistical physics of data,” Philosophical Transactions of

the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.

376, no. 2118, p. 20170237, Mar. 2018, doi:

https://doi.org/10.1098/rsta.2017.0237.

[9] C. Fefferman, S. Mitter, and H. Narayanan, “Testing the manifold

https://doi.org/10.1186/s13321-020-0416-x
https://www.cs.columbia.edu/~verma/classes/ml/ref/lec8_cayton_manifolds.pdf
https://www.cs.columbia.edu/~verma/classes/ml/ref/lec8_cayton_manifolds.pdf
https://doi.org/10.1126/science.290.5500.2268
https://arxiv.org/abs/1802.03426
https://arxiv.org/abs/2103.11774
https://www.math.ucdavis.edu/~strohmer/courses/270/Donoho_Curses.pdf
https://doi.org/10.1016/j.gpb.2020.01.002
https://doi.org/10.1098/rsta.2017.0237

78

hypothesis,” Journal of the American Mathematical Society, vol. 29, no. 4, pp.

983–1049, 2016, Accessed: Apr. 14, 2024. [Online]. Available:

https://www.jstor.org/stable/jamermathsoci.29.4.983

[10] S.-H. Cheong, Y.-W. Si, and R. K. Wong, “Online force-directed

algorithms for visualization of dynamic graphs,” Information Sciences, vol. 556,

pp. 223–255, May 2021, doi: https://doi.org/10.1016/j.ins.2020.12.069.

[11] T. M. J. Fruchterman and E. M. Reingold, “Graph drawing by force-

directed placement,” Software: Practice and Experience, vol. 21, no. 11, pp.

1129–1164, Nov. 1991, doi: https://doi.org/10.1002/spe.4380211102.

[12] C. John and Holton Derek Allan, A First Look at Graph Theory. Allied

Publishers, 1995, p. 28.

[13] I. T. Jolliffe and J. Cadima, “Principal component analysis: a review and

recent developments,” Philosophical Transactions of the Royal Society A:

Mathematical, Physical and Engineering Sciences, vol. 374, no. 2065, p.

20150202, Apr. 2016, doi: https://doi.org/10.1098/rsta.2015.0202.

[14] J. Lever, M. Krzywinski, and N. Altman, “Principal component analysis,”

Nature Methods, vol. 14, no. 7, pp. 641–642, Jul. 2017, doi:

https://doi.org/10.1038/nmeth.4346.

[15] L. van der Maaten and G. Hinton, “Visualizing Data using t-SNE,” Journal

of Machine Learning Research, vol. 9, no. 86, pp. 2579–2605, 2008, Available:

https://jmlr.org/papers/v9/vandermaaten08a.html

[16] M. Prior, T. Iii, O. Mclaughlin, T. Ferguson, N. Ishaq, and N. Daniels, “LET

THEM HAVE CAKES: A CUTTING-EDGE ALGORITHM FOR SCALABLE,

EFFICIENT, AND EXACT SEARCH ON BIG DATA.” Accessed: Apr. 14, 2024.

[Online]. Available: https://arxiv.org/pdf/2309.05491.pdf

[17] J. Yallop, D. Sheets, and A. Madhavapeddy, “A modular foreign function

interface,” Science of Computer Programming, vol. 164, pp. 82–97, Oct. 2018,

doi: https://doi.org/10.1016/j.scico.2017.04.002.

[18] M. Schoonmaker, “Getting started with FFI: Rust & Unity,” Test Double,

Jan. 02, 2018. https://blog.testdouble.com/posts/2018-01-02-unity-rust-ffi-

getting-started/ (accessed Apr. 14, 2024).

https://www.jstor.org/stable/jamermathsoci.29.4.983
https://doi.org/10.1016/j.ins.2020.12.069
https://doi.org/10.1002/spe.4380211102
https://doi.org/10.1098/rsta.2015.0202
https://doi.org/10.1038/nmeth.4346
https://jmlr.org/papers/v9/vandermaaten08a.html
https://arxiv.org/pdf/2309.05491.pdf
https://doi.org/10.1016/j.scico.2017.04.002
https://blog.testdouble.com/posts/2018-01-02-unity-rust-ffi-getting-started/
https://blog.testdouble.com/posts/2018-01-02-unity-rust-ffi-getting-started/

79

[19] E. M. Reingold and J. S. Tilford, “Tidier Drawings of Trees,” IEEE

Transactions on Software Engineering, vol. SE-7, no. 2, pp. 223–228, Mar.

1981, doi: https://doi.org/10.1109/tse.1981.234519.

[20] M. A. Khamsi and W. A. Kirk, An Introduction to Metric Spaces and Fixed

Point Theory. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2001. doi:

https://doi.org/10.1002/9781118033074.

[21] Clarence Raymond Wylie, Plane Trigonometry. McGraw-Hill, 1955.

https://doi.org/10.1109/tse.1981.234519
https://doi.org/10.1002/9781118033074

	VISUALIZATION OF HIGH DIMENSIONAL DATA IN LOW DIMENSIONAL SPACE VIA CLUSTERED MANIFOLD MAPPING
	Recommended Citation

	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	CHAPTER 1
	INTRODUCTION
	1.1 Problem Statement
	1.2 Proposed Solution
	1.3 Findings

	CHAPTER 2
	REVIEW OF LITERATURE
	2.1 The Curse of Dimensionality
	2.2 The Manifold Hypothesis
	2.3 Manifold Learning
	2.3.1 Manifold Learning Algorithms

	2.4 Force Directed Graphs
	2.5 Existing Visualization Methods
	2.5.1 PCA
	2.5.2 t-SNE
	2.5.3 UMAP

	2.6 Clustered Manifold Mapping
	2.6.1 CLAM
	2.6.2 Clusters
	2.6.3 Graphs

	CHAPTER 3
	METHODOLOGY
	3.1 Unity
	3.2 Foreign Function Interfaces
	3.3 The Tree
	3.4 Implementing the Force Directed Graph
	3.5 Edge Drawing
	3.6 Refactoring CLAM and CHAODA
	3.7 Displaying the Tree
	3.7.1 The Reingold Tilford Layout

	3.8 Cluster Properties
	3.9 Coloring Clusters
	3.10 Selecting Clusters with CHAODA
	3.11 Detecting Edges
	3.12 Balancing Local and Global Forces

	CHAPTER 4
	FINDINGS
	4.1 Examples of Created Graphs
	4.2 Comparisons to Existing Methods
	4.2.1 A visual Comparison
	4.2.2 An Analytical Comparison

	CHAPTER 5
	CONCLUSION

	APPENDICES
	BIBLIOGRAPHY

