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ABSTRACT

The report by the Insurance Information Institute underscores a notable in-

crease in both claims frequency and severity, particularly highlighting a significant

surge in accident claim severity within US car insurance from 2010 to 2019. Si-

multaneously, there has been a marked rise in the average expenditure on US car

insurance during this timeframe. These shifts emphasize the critical need for ac-

curate predictions to fine-tune premium adjustments and enhance the accessibility

of car insurance coverage for a broader demographic of drivers. Consequently, nu-

merous insurance companies are transitioning from traditional methodologies to

incorporate machine learning (ML) techniques, providing a more sophisticated and

reliable framework for generating outcomes. Nonetheless, the challenge persists in

selecting the most optimal ML predictive model to effectively identify probable

claims or potential premium defaulters. This study tackles these complexities

by employing diverse classification methods and proposing specific techniques for

feature selection and data resampling, with the overarching goal of constructing

comprehensive classification models tailored for in-depth claim analysis.
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CHAPTER 1

Introduction

According to the insights conveyed in the Insurance Information Institute

report (III, 2020), there exists a discernible upward trajectory in claims frequency,

the number of claims per car, and claim severity. Noteworthy is the 35% surge in

the severity of accident claims for US car insurance observed between 2010 and

2019. The average expenditure on US car insurance also witnessed an increase

from USD $78,665 in 2009 to USD $100,458 in 2017 (III, 2020). The importance

of precise predictions in the insurance domain cannot be overstated, as they enable

the industry to refine premium adjustments, fostering increased affordability of car

insurance coverage for a broader spectrum of drivers.

A palpable shift in the industry’s operational approach is apparent, with nu-

merous insurance companies transitioning from conventional methods to embrac-

ing machine learning (ML) techniques. This transition is pivotal, providing a more

nuanced and robust framework for generating outcomes that are both dependable

and representative. A recent study by McKinsey & Company (Columbus, 2017),

focused on the intersection of artificial intelligence and business profitability, re-

vealed compelling insights. Businesses wholeheartedly adopting artificial intelli-

gence projects experienced a substantial boost in profit margins, ranging from 3%

to 15%. However, despite these advancements, the challenge of selecting an optimal

ML predictive model remains an aspect that demands comprehensive consideration

and attention.

In the context of claim prediction challenges, classification models function

as decision-making tools, employing techniques like feature selection, feature dis-

cretization, and data resampling. These models are pivotal for effective risk as-
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sessment. Optimal feature subset selection not only reduces computational costs

but also enhances the model’s efficiency and interpretability, as underscored by

(Rawat et al., 2021). Additionally, the imbalanced nature of datasets, where pos-

itive and negative cases are unevenly distributed, necessitates strategies such as

data resampling to enhance overall performance. Surprisingly, despite the rec-

ognized importance of integrating feature selection, feature discretization, resam-

pling, and classification techniques, there is a paucity of literature that amalga-

mates all these strategies into a unified processing approach for constructing a

comprehensive classification model in the realm of claim analysis.

In this study, three datasets were employed to analyze claims using various

classification methods, namely Nearest Neighbor, Logistic Regression, Decision

Tree, Random Forest, Extreme Gradient Boosting, and Naive Bayes. The Logistic

Lasso, Random Forest, and knockoffs methods were suggested for feature selection

to reduce dimensionality, and various resampling strategies, including under sam-

pling, over sampling, and SMOTE, were employed to address the data’s imbalance

problem.

1.1 Literature Review

In the higly competitive landscape of the insurance sector, the imperative to

secure and maintain customer loyalty has risen to the forefront. A profound com-

prehension of customers, encompassing their purchasing behaviors and potential

losses, is now a critical necessity. Consequently, the classification of customers

and the predictive capacity to assess their potential losses assume paramount im-

portance. This predictive prowess not only enhances the profitability of insurance

companies but also facilitates strategic interventions to mitigate loss ratios. At

the heart of this process is underwriting, a pivotal procedure that assesses the risk

associated with the insured. The determination of premium rates and insurance
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contract terms is intricately tied to this risk assessment (Briys and Varenne, 2001;

Gay et al., 1998).

As each policyholder introduces a unique level of risk to the insurance com-

pany, ensuring fair and equitable premiums mandates the categorization of policy-

holders into distinct risk classes, where higher risks correspond to higher premiums.

This rationale underscores the critical need for insurers to precisely evaluate the

risks associated with their customers. Developing a highly effective model for clas-

sifying customers into distinct risk groups has perennially posed a fundamental

and formidable challenge in the insurance industry.

In their pursuit of reducing financial losses for insurance companies,

(Dhieb et al., 2020) introduced a system that minimizes human intervention, en-

hances process security, issues alerts about risky customers, and identifies fraudu-

lent claims. Leveraging the XGBoost algorithm for insurance services, their study

systematically compared its performance with other established algorithms such

as Decision Trees (DT), K-Nearest Neighbors (k-NN), and Support Vector Ma-

chines (SVM). To fortify the foundation for secure transactions and data exchange

within the insurance network, the authors advocated for the implementation of

a blockchain-based infrastructure. The application of this solution to a dataset

comprising vehicle insurance claims underscored the superiority of the XGBoost

algorithm over its counterparts.

Exploring predictive models in the insurance domain,

(Kate A. Smith and Brooks, 2000) conducted a comprehensive assessment of

machine learning models, favoring neural networks over decision trees. Sim-

ilarly, (Jing et al., 2018) opted for a Bayesian network as the exclusive tool

for classifying the occurrence of insurance claims. In a unique approach,

(Pesantez-Narvaez et al., 2019) conducted a comparative analysis using XGBoost
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and logistic regression to predict the frequency of motor insurance claims, with

XGBoost demonstrating marginally superior performance. (Shady et al., 2020)

contributed by developing four classifiers, including XGBoost, for predicting the

occurrence of insurance claims.

While these studies focused on insurance-related predictive mod-

eling, the works of (Hanafy and Ming, 2021a; Hanafy and Ming, 2021d;

Hanafy and Ming, 2021c; Hanafy and Ming, 2021b) stand out for leveraging

substantial large data, providing insights into the performance of various machine

learning algorithms. Despite XGBoost’s prominence, their findings revealed the

superiority of random forest and decision tree (C50), while naive Bayes emerged

as the least effective model. Noteworthy is the use of a real-world database from

Porto Seguro, adding authenticity to their results.

Moreover, Hanafy and Ming addressed the challenges of large dataset

volumes and missing values, employing diverse resampling strategies and in-

corporating a range of machine learning algorithms. In their recent work

(Hanafy and Ming, 2022), they integrated feature selection, feature discretization,

resampling, and classification techniques, presenting a comprehensive approach.

1.2 Background tools to find an effective predictive model

1.2.1 Data collection

Data collection for machine learning (ML) models is a critical process that lays

the foundation for effective model training and performance. It involves gathering

relevant and representative datasets from various sources such as databases, APIs,

web scraping, or sensor networks. The collected data should encompass a diverse

range of examples that reflect real-world scenarios and variations. Careful attention

must be paid to data quality, ensuring accuracy, consistency, and completeness.

Preprocessing steps may include cleaning, normalization, and feature engineering
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to refine the dataset for optimal model training. Ethical considerations such as

privacy and consent are also paramount throughout the data collection process.

Ultimately, the success of an ML model hinges on the quality and relevance of

the data it is trained on, making meticulous data collection a crucial precursor to

meaningful insights and predictive capabilities.

1.2.2 Data Preparation

Data Preparation involves the essential transformation of data to render it

suitable for utilization by machine learning algorithms, thereby influencing the

model’s performance significantly. It encompasses a series of crucial steps including

data cleaning, exploratory data analysis (EDA), normalization, encoding, address-

ing imbalanced data issues, and dimensionality reduction. Each of these facets

plays a pivotal role in refining the dataset to ensure its compatibility with ML

algorithms, ultimately enhancing the model’s efficacy and predictive capabilities.

1.2.3 Data Cleaning

Data cleaning is an essential step in the data preprocessing pipeline, crucial

for ensuring the accuracy and reliability of datasets before analysis. It involves

identifying and rectifying errors, inconsistencies, and missing values within the

data. This process may include tasks such as removing duplicates, correcting typos,

standardizing formats, and imputing missing values using statistical methods or

domain knowledge. Effective data cleaning not only improves the quality of the

dataset but also enhances the robustness and validity of subsequent analyses and

machine learning models.

1.2.4 Exploratory data analysis (EDA)

Exploratory Data Analysis (EDA) serves as a crucial step in comprehending

data prior to implementing any machine learning models. It involves visualizing
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data through various graphs and charts to uncover diverse characteristics that may

not be apparent merely by examining the dataset table. By leveraging EDA tech-

niques, analysts gain insights into hidden relationships among different features.

These relationships might be elusive when solely inspecting the dataset in tabu-

lar form. EDA empowers data scientists to grasp the intricate dynamics within

the data, enabling them to make informed decisions regarding feature engineering,

model selection, and preprocessing strategies.

1.2.5 Feature engineering

Feature engineering stands as a critical pillar in the realm of data prepara-

tion, paving the way for subsequent model training and evaluation. It involves

the strategic creation of new features, drawn from insights garnered through Ex-

ploratory Data Analysis (EDA) and domain expertise, all in pursuit of bolstering

model performance. Despite its demanding nature, feature engineering wields a

profound impact on the accuracy of models.

These new features are crafted through an array of calculations including ra-

tios, transformations, and statistical formulas. This transformative process extends

beyond the confines of linear regression or text classification, proving beneficial

across a spectrum of algorithms such as support vector machines, random forests,

neural networks, and gradient boosting machines.

Furthermore, encoding categorical variables assumes paramount importance,

given that the majority of machine learning algorithms operate on numerical data.

Nominal encoding disregards the order of data, while ordinal encoding takes it into

account. One-hot encoding, a method we utilize, circumvents multicollinearity by

removing one column. Additionally, normalization plays a pivotal role by scaling

data within a predefined range, typically from 0 to 1, thereby augmenting numerical

scalability.
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1.2.6 Feature selection

Feature selection is a vital process in machine learning where the most rele-

vant and informative features are chosen from the dataset for model training. By

selecting the most significant features and discarding irrelevant or redundant ones,

feature selection helps in improving model performance, reducing overfitting, and

enhancing interpretability. Various techniques, including filter, wrapper, and em-

bedded methods, are employed to identify and select the optimal subset of features

that contribute the most to predictive accuracy. Efficient feature selection not only

streamlines computational resources but also aids in understanding the underlying

patterns within the data, leading to more effective decision-making. The feature

selection methods employed in this thesis are mentioned below.

Lasso Feature selection

Logistic Lasso feature selection is a powerful technique used in the context

of logistic regression models to enhance predictive accuracy and interpretability.

It combines the strengths of both L1 regularization (Lasso) and logistic regres-

sion, effectively shrinking coefficients towards zero while simultaneously perform-

ing variable selection. By imposing a penalty on the absolute size of regression

coefficients, Logistic Lasso encourages sparsity in the model, automatically ex-

cluding irrelevant or redundant features. This attribute is particularly beneficial

in high-dimensional datasets where the number of predictors exceeds the number

of observations, thereby mitigating the risk of overfitting and improving the gener-

alization capability of the model. Furthermore, Logistic Lasso facilitates variable

selection by assigning zero coefficients to irrelevant features, thus simplifying the

model and enhancing its interpretability, making it a valuable tool in fields such

as biostatistics, epidemiology, and machine learning.
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Random Forest Feature selection

Random Forest feature selection is a versatile and effective method for iden-

tifying important variables within a dataset. It operates within the framework

of ensemble learning, constructing numerous decision trees and aggregating their

predictions to generate robust and accurate results. In the process of building

each tree, Random Forest randomly selects subsets of features, thereby promoting

diversity among the trees and reducing the risk of overfitting. Feature importance

is determined by measuring the decrease in node impurity, typically using met-

rics like Gini impurity or information gain, across all trees in the forest. Features

with higher impurity decrease values are deemed more important in explaining the

variance within the data. This method not only provides insight into the relative

importance of different predictors but also offers a natural mechanism for feature

selection, as less informative features tend to have lower importance scores.

Knockoffs’ Feature selection

Knockoffs’ feature selection (Barber and Candès, 2015;

Kormaksson et al., 2020) is an innovative technique tailored to tackle the

complexities of high-dimensional data analysis, particularly prevalent in fields

such as genomics, economics, and social sciences. The essence of this method

lies in the creation of a set of ”knockoff” variables, which are crafted to mirror

the statistical characteristics of the original features while deliberately avoiding

redundancy. Through a meticulous comparison between the original features and

their knockoff counterparts, researchers can discern genuinely significant variables

while simultaneously exerting control over the false discovery rate. This strategy

proves instrumental in mitigating the challenges posed by multiple testing, ulti-

mately facilitating the revelation of meaningful patterns within intricate datasets.

By employing knockoffs feature selection, analysts can navigate the intricacies
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of high-dimensional data analysis with greater precision and confidence, thereby

unlocking valuable insights that might otherwise remain obscured.

1.2.7 Machine Learning Classifiers

Logistic Regression (LR)

Linear regression serves as a reliable tool for approximating the (linear) rela-

tionship between a continuous response variable and a set of predictor variables.

However, when the response variable is binary, such as ”Yes” or ”No,” linear re-

gression isn’t appropriate. Thankfully, analysts can turn to an alternative method,

analogous to linear regression in various aspects, known as logistic regression .

Decision Tree (DT)

A decision tree is a graphical representation or model that resembles a tree

structure, with its root positioned at the top and branches extending downward,

akin to an inverted tree. This visual representation of data offers a clear and

straightforward interpretation compared to other methods. Each input attribute

corresponds to an internal node within the tree. The number of branches stemming

from a hypothetical internal node equals the number of potential input attribute

values. As data traverses from the root to the leaf nodes, each leaf node signifies

a particular value of the label attribute.

In algorithms like Simple Cart, decision trees are constructed by recursively

partitioning each decision node into two distinct branches based on various sepa-

ration criteria. This iterative process enables decision trees to effectively capture

relationships and patterns within the data, facilitating predictive modeling and

classification tasks.
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Random Forest (RF)

Random Forest (RF) stands as a widely utilized machine-learning model

rooted in the decision theory pioneered by (Breiman et al., 1984). Leveraging the

Classification and Regression Tree (CART) algorithm, RF constructs trees within

its framework. Whether the response variable is categorical or continuous, RF

adeptly handles classification and regression tasks respectively.

Within the RF model, CART initially grows an extensive tree, later subject to

pruning. (Grömping, 2009) suggests that trimming an expansive tree, as opposed

to limiting the number of trees grown, enhances RF’s predictive accuracy. This

strategy highlights RF’s adaptability and efficacy in handling complex datasets,

making it a favored choice in diverse analytical scenarios.

K-nearest Neighbor (KNN)

The K-nearest neighbor (KNN) algorithm operates on a fundamental princi-

ple: predicting each observation’s outcome by assessing its similarity to neighboring

observations. KNN is characterized as a memory-based algorithm, which implies

that it relies on training samples during runtime, crafting predictions grounded

on sample associations. Hence, KNN models are often referred to as ”lazy learn-

ers” , underscoring their reliance on stored data for decision-making rather than

extensive upfront computation.

Extreme Gradient Boosting (XGB)

XGBoost, or eXtreme Gradient Boosting, stands as a pinnacle in the realm of

ensemble learning techniques, particularly gradient boosting machines. Renowned

for its exceptional performance and scalability, XGBoost operates by sequentially

building an ensemble of decision trees during training, with each subsequent tree

rectifying errors made by its predecessors. What sets XGBoost apart is its metic-
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ulous optimization strategies, including parallelization, tree-pruning, and regular-

ization, aimed at enhancing both training speed and model accuracy. Moreover,

XGBoost offers robust mechanisms for handling missing values and controlling

overfitting through a suite of regularization parameters. With its innate ability

to extract valuable insights on feature importance and support cross-validation

for hyperparameter tuning, XGBoost has become the de facto choice for a myr-

iad of machine learning tasks, from classification and regression to ranking and

recommendation systems. Its widespread adoption and proven track record in

data science competitions underscore its status as a cornerstone algorithm in the

machine learning landscape.

Gaussian Näıve Bayes (NB)

The Gaussian Näıve Bayes classifier is a fundamental and efficient machine

learning algorithm based on Bayes’ theorem and the assumption of feature inde-

pendence. Despite its simplicity, it remains a powerful tool for classification tasks,

particularly in domains with continuous feature variables. This classifier assumes

that the features follow a Gaussian (normal) distribution, making it well-suited for

numerical data. Through the process of calculating probabilities using Bayes’ the-

orem, the Gaussian Näıve Bayes classifier determines the likelihood of a particular

class given the observed features. Despite its ”näıve” assumption of feature inde-

pendence, this classifier often performs admirably well in practice, especially with

datasets that exhibit reasonably independent features. Its computational efficiency

and ability to handle high-dimensional data make it a popular choice in various

applications, including text classification, medical diagnosis, and spam filtering.

While it may not capture complex relationships between features, the Gaussian

Näıve Bayes classifier serves as a reliable and interpretable baseline model for clas-

sification tasks in machine learning.
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1.2.8 Resampling Methods

In scenarios where the distribution of classes in the training set is uneven,

machine learning classifiers tend to favor categorizing all instances as belonging

to the majority class to optimize overall accuracy. However, this approach often

results in a significant disparity in accuracy for the minority class, which is un-

derrepresented in the training set. Despite its lesser prevalence, the minority class

can hold crucial significance in real-world applications. Consequently, overlooking

the minority class can lead to inadequate performance of the classifier, particu-

larly when accurate identification of these instances is essential. This imbalance

underscores the importance of employing strategies that address class imbalance,

ensuring that classifiers effectively capture patterns and nuances across all classes,

regardless of their frequency in the dataset.

In this context, three resampling methods are employed, namely Random

Over Sampling, Random Under Sampling, and SMOTE (Synthetic Minority Over-

sampling Technique).

Random Over Sampling

Random over sampling is a technique used to address class imbalance in ma-

chine learning datasets. In this method, instances from the minority class are

randomly replicated and added to the training dataset until the class distribution

is balanced or reaches a desired ratio between the minority and majority classes.

By increasing the number of instances in the minority class, random over sampling

helps prevent classifiers from being biased towards the majority class and improves

their ability to learn patterns from the data. However, random over sampling may

lead to overfitting, especially when the minority class is already well represented

in the dataset.
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Random Under Sampling

It involves randomly removing instances from the majority class to balance the

class distribution with the minority class. By reducing the number of instances in

the majority class, the dataset becomes more balanced, which can help classifiers

better learn from the data and improve their performance, especially on the mi-

nority class. However, random under sampling may lead to information loss since

it removes instances from the majority class without considering their importance

or relevance to the classification task. Therefore, it is essential to carefully eval-

uate the trade-offs and potential impact on model performance when employing

random under sampling.

Synthetic Minority Over-sampling Technique or SMOTE

The Synthetic Minority Over-sampling Technique (SMOTE) represents a piv-

otal approach in mitigating class imbalance within machine learning datasets. By

strategically synthesizing new instances for the minority class, SMOTE effectively

addresses the disparity in class distribution. Through a process of feature space

interpolation between existing minority class instances and their nearest neighbors,

SMOTE generates synthetic samples that accurately reflect the underlying charac-

teristics of the minority class. This technique not only rebalances the dataset but

also mitigates the risk of classifier bias towards the majority class. While SMOTE

offers a powerful solution to class imbalance, its efficacy is contingent upon factors

such as dataset structure, feature space dimensionality, and clustering of minor-

ity class instances. Therefore, careful consideration and evaluation of SMOTE’s

impact on model performance are essential to its successful implementation in

machine learning tasks.
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1.2.9 Discretization Methods

Feature discretization enhances the performance of certain classification algo-

rithms by transforming continuous attributes into categorical ones. This process

involves segmenting continuous features into distinct ranges or intervals, effectively

converting numerical data into nominal data. The challenge in feature discretiza-

tion lies in selecting suitable cut points as continuous data can be discretized in

numerous ways. The optimal discretization method strives to identify a minimal

number of cut points that effectively partition the data into meaningful bins. Thus,

the key lies in locating cut points that facilitate accurate representation of the un-

derlying patterns within the data while minimizing computational complexity and

maximizing predictive performance.

1.2.10 Evaluation of Models (Prediction Performance)

In the quest to determine the most suitable model, assessing classifier per-

formance is paramount. Various evaluation metrics are employed to gauge the

effectiveness of machine learning algorithms. This study employs a diverse range

of evaluation techniques, encompassing measures such as prediction accuracy, sen-

sitivity, specificity, and the area under the curve (AUC). By considering multiple

metrics, researchers gain comprehensive insights into classifier performance, en-

abling informed decisions regarding model selection and optimization strategies.

Confusion Matrix

The terms TP, TN, FN, and FP serve as fundamental components in describ-

ing Sensitivity, Specificity, and classification Accuracy. Sensitivity, represented by

the formula Sensitivity = TP / (TP + FN), measures the accuracy of correctly

identifying positive examples (actual events). On the other hand, Specificity, de-

noted by Specificity = TN / (TN + FP), quantifies the proportion of correctly
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identified negative examples (non-actual events). Accuracy, computed as Accu-

racy = (TN + TP) / (TN + TP + FN + FP), provides an overall measure of

correct classifications. An effective classifier must yield highly accurate results for

both Sensitivity and Specificity simultaneously, as they are crucial indicators of a

model’s ability to accurately identify positive and negative instances.

Area Under Receiver Operating Characteristic Curve (AUROC)

The Area Under the Receiver Operating Characteristic (AUROC) curve serves

as a crucial metric for assessing the quality of classification. The Receiver Operat-

ing Characteristic (ROC) curve provides a graphical representation of a predictive

model’s performance, illustrating the relationship between the True Positive Rate

(TPR) and False Positive Rate (FPR) across a spectrum of cutoff points. TPR

and FPR are computed using the equations TPR = TP / (TP + FN) and FPR =

FP / (FP + TN) respectively. AUROC quantifies the accuracy of the classifier by

estimating the probability thresholds for the next event, whether it is positive or

negative. It represents the area beneath the ROC curve geometrically. A higher

AUROC value corresponds to better classification outcomes, while a value less

than 0.5 suggests an ineffective classifier, one that performs worse than random

chance. An AUROC of 0.5 indicates a random classifier, while an AUROC of 1

signifies an ideal classifier.

1.2.11 Hyperparameter Tuning

To mitigate the risks of overfitting and underfitting, it’s imperative to fine-

tune model parameters within stable zones where training and validation scores

exhibit minimal fluctuations. The grid search technique, a prominent tool in the

realm of insurance analytics, serves as a crucial mechanism for optimizing model

parameters. In pursuit of achieving optimal ROC values, GridSearchCV was em-
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ployed. This method systematically explores a range of parameter combinations

to identify the configuration that yields the highest ROC values, ensuring that the

model’s predictive capabilities are maximized while maintaining robustness and

generalizability across different datasets and scenarios.
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CHAPTER 2

Data Achieving and Preprocessing

2.1 The Data

In our investigative analysis of insurance claims, we harnessed three distinct

datasets. The initial two datasets pertain to the occurrences of claims in the realm

of car insurance, while the third dataset specifically focuses on defaulters within the

domain of car insurance. Detailed information about these datasets, along with a

comprehensive description of their variables, can be found in Table 1. Dataset 1 was

originally featured in the Dataverse Hackathon organized by Analytics Vidhya on

November 14, 2022. Dataset 2, was acquired from Kaggle.com. Comprising a total

of 10000 rows and 19 columns. Dataset 3, utilized in this study, was also sourced

from Kaggle.com. It has 79,853 rows and 17 columns. This particular dataset

was previously employed by Hanafi et al. in their research. These datasets are

meticulously maintained with a steadfast commitment to safety and confidentiality.

Client personal information is encrypted to uphold stringent privacy standards.
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Dataset 1 Dataset 2 Dataset 3
The dataset 1 used in this case study was sourced from The dataset 2 The dataset 3
Kaggle.com. There are 58592 rows and 44 features in total. under examination used in this study
Dataset was a part of dataverse hack - hackathon by analytics in this case study, was also collected
vidhya on the 14th of November 2022. The details of all the was procured from from Kaggle.com.
columns in the dataset are as follows: Kaggle.com. 79,853 rows and
(1) policy id- Unique identifier of the policyholder. The dataset 17 columns
(2) policy tenure- Time period of the policy. consists of make up the
(3) age of car- Normalized age of the car in 10000 rows dataset’s total.
years. and 19 columns. The details of all
(4) age of policyholder- Normalized age of policyholder in The details are the columns in
years. as follows: the dataset:
(5) area cluster- Area cluster of the policyholder. (1) ID:Unique (1) id: Unique
(6) population density- Population density of the city Customer Id customer ID.
(Policyholder City). (2) AGE: Age of (2) percent of the
(7) make- Encoded Manufacturer/company of the car. driver(Categorical) premium paid
(8) segment- Segment of the car (A/ B1/ B2/ C1/ C2). (3) GENDER by cash credit.
(9) model- Encoded name of the car. (4) RACE (3) age in days: age
(10) fuel type- Type of fuel used by the car. (5) DRIV-

ING EXPERIENCE
of the customer in

(11) max torque- Maximum Torque generated by the car Years(Categorical) days.
(Nm@rpm). (6) EDUCATION (4) Income:
(12) max power- Maximum Power generated by the car (7) INCOME Income of
(bhp@rpm). (Categorical) the customer.
(13) engine type- Type of engine used in the car. (8) CREDIT SCORE: (5) Count 3-6
(14) airbags- Number of airbags installed in the car. Credit Score of months late:
(15) is esc- Boolean flag indicating whether Electronic the driver. Number of times
Stability Control (ESC) is present in the car or not. (9) VEHI-

CLE OWNERSHIP
premium was paid

(16) is adjustable steering- Boolean flag indicating whether (10) VEHICLE YEAR: 3–6 months late.
the steering wheel of the car is adjustable or not. Manufacturing year (6) Count 6-12
(17) is tpms- Boolean flag indicating whether Tyre Pressure of the vehicle months late:
Monitoring System (TPMS) is present in the car or not. (Categorical). Number of times
(18) is parking sensors- Boolean flag indicating whether (11) MARRIED premium was paid
parking sensors are present in the car or not. (12) Children(Categorical) 6–12 months late.
(19) is parking camera- Boolean flag indicating whether the (13) POSTAL CODE. (7) Count more
parking camera is present in the car or not. (14) ANNUAL MILEAGE than 12 months late:
(20) rear brakes type- Type of brakes used in the rear of the (Numerical) Number of times
car. (15) VEHICLE TYPE premium was paid
(21) displacement- Engine displacement of the car (cc). (16) SPEED-

ING VIOLATIONS:
more than

(22) cylinder- Number of cylinders present in the engine of the Number of 12 months late.
car. speeding violations. (8) Application
(23) transmission type- Transmission type of the car. (17) DUIS: Number of underwriting score:
(24) gear box- Number of gears in the car. DUI. Risk score of
(25) steering type- Type of the power steering present in the (18) PAST ACCIDENTS: customers.
car. Number of (9) number of
(26) turning radius- The space a vehicle needs to make a past accidents. premiums paid:
certain turn (Meters). (19) OUTCOME: Number of
(27) length- Length of the car (Millimetre). The customer has premiums paid
(28) width- Width of the car (Millimetre). claimed or not. till date.
(29) height- Height of the car (Millimetre). (10) sourcing
(30) gross weight- The maximum allowable weight of the channel:Channel
fully-loaded car. through which
(31) including passengers, cargo and equipment (Kg). customer was
(32) is front fog lights- Boolean flag indicating whether front sourced.
fog lights are available in the car or not. (11) residence area
(33) is rear window wiper- Boolean flag indicating whether the type:Residence
rear window wiper is available in the car or not. type of the
(34) is rear window washer- Boolean flag indicating whether customer.
the rear window washer is available in the car or not. (12) premium:
(35) is rear window defogger- Boolean flag indicating Total premium
whether rear window defogger is available in the car or not. amount paid
(36) is brake assist- Boolean flag indicating whether the brake till now.
assistance feature is available in the car or not. (13) default:
(37) is power door lock- Boolean flag indicating whether 0 indicates
a power door lock is available in the car or not. that customer
(38) is central locking- Boolean flag indicating whether has defaulted the
the central locking feature is available in the car or not. premium and 1
(39) is power steering- Boolean flag indicating whether power indicates that
steering is available in the car or not. customer has not
(40) is driver seat height adjustable- Boolean flag indicating defaulted.
whether the height of the driver seat is adjustable or not. (14) Marital Status:
(41) is day night rear view mirror- Boolean flag indicating Married/Unmarried.
whether day & night rearview mirror is present in the car or
not.

(15) Number of vehicles.

(42) is ecw- Boolean flag indicating whether Engine Check
Warning (ECW) is available in the car or not. (16) Number of dependents.
(43) is speed alert- Boolean flag indicating whether the speed (17) Accommodation:
alert system is available in the car or not. Owned /Rented.
(44) ncap rating- Safety rating given by NCAP (out of 5).
(45) is claim- Outcome: Boolean flag indicating whether
the policyholder filed a claim or not.

Table 1: Data Review
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2.2 Exploratory Data Analysis(EDA)

Exploratory data analysis (EDA) serves as the foundational step preceding

the training of predictive models. It involves a comprehensive investigation of

the dataset’s characteristics, aiming to unveil insights crucial for subsequent

modeling decisions. Through EDA, one can delve into summary statistics,

distributions, and relationships among variables, identifying potential outliers

and missing values. This process aids in feature selection by pinpointing the most

influential variables for predictive accuracy while illuminating any redundancies or

irrelevancies. Furthermore, EDA facilitates the detection of patterns and trends,

guiding appropriate model selection and preprocessing strategies. By addressing

data quality issues and assessing model assumptions, EDA ensures the reliability

and validity of the ensuing predictive models.

This section endeavors to extract meaningful insights from each dataset, start-

ing with an analysis of the continuous variables within Dataset 1. We explore the

summary statistics and correlations for numerical variables. Additionally, we jux-

tapose the distributions of categorical variables for overall and claimed instances.

However, we only present variables exhibiting significant differences between the

distributions of the overall dataset and the claimed subset.

Figure 1: Summary of Numerical Variables of Dataset 1.
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Figure 2: Correlatin Matrix of Numerical Variables of Dataset 1

Figure 3: The distribution of Categorical Variables of Dataset 1.

Analyzing Figure 1 and 2 sheds light on the characteristics of continuous

variables in Dataset 1. It is recommended to normalize these variables before

proceeding with subsequent analyses. Additionally, the correlation matrix

unveils interesting patterns, indicating a significant correlation among various

car-related features, while the correlation between policy holder attributes and
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car characteristics remains relatively low.

Another focal point of our inquiry involves a comparative scrutiny of the over-

all distribution and distribution under a claim for categorical variables in Dataset

1. Figure 3 exclusively highlights variables that exhibit substantial differences in

both overall distribution and distribution under a claim. This selective represen-

tation aims to underscore and clarify significant variations within these categorical

variables. Similar exploratory data analyses were conducted for Dataset 2 and

Dataset 3.

Figure 4: Summary of Numerical Variables of Dataset 2.

Figure 5: Correlatin Matrix of Numerical Variables of Dataset 2.

We have also identified noticeable skewness and potential outliers in variables
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such as DUIS, PAST ACCIDENTS, and SPEEDING VIOLATIONS. To address

this, we’ve chosen to discretize these variables into distinct groups. Additionally,

CREDIT SCORE has already been standardized, while ANNUAL MILEAGE has

undergone standardization to mitigate the influence of high-magnitude values. The

distribution of categorical variables, alongside the newly discretized ones, is pre-

sented below for further examination.

Figure 6: The distribution of Categorical Variables of Dataset 2.

Figure 6 illustrates that variables such as AGE, DRIVING EXPERIENCE,

VEHICLE YEAR, and others can exert a notable influence on insurance claims.

We can now move forward with the exploratory data analysis of the predictors
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within data set 3.

Figure 7: Summary of Numerical Variables of Dataset 3

Figure 8: Correlatin Matrix of Numerical Variables of Dataset 3.
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Figure 9: The distribution of Categorical Variables of Dataset 3.

For Dataset 3, the numerical variables like age in days, Income and pre-

mium are discretized. Other numerical variables are normalized. Besides,

the categorical variables like Count 3-6 months late,Count 6-12 months late and

Count more than 12 months late are merged into smaller number of categories to

improve the performance of the predicltive models.

Figure 10: Distribution of response variable.

Moving on to Figure 10, it illustrates the distribution of claim occurrences or
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defaulters across all three datasets. As anticipated, the distributions appear highly

imbalanced, prompting consideration of oversampling or undersampling techniques

before delving into the fitting of various classification models.

2.3 Data Source

Dataset 1: https://www.kaggle.com/datasets/avikumart/analytics-vidhya-nov22

-insurance-claims-dataset

Dataset 2: https://www.kaggle.com/datasets/sagnik1511/car-insurance-data

Dataset 3: https://www.kaggle.com/prakharrathi25/premium-default-prediction

/data
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CHAPTER 3

Methodology

Our study unfolds through a systematic progression comprising 10 key steps. Com-

mencing with the initial stride, we embark on data collection for subsequent analysis. The

three datasets integral to this study have been comprehensively detailed. The procedural

roadmap, elucidated as a visual representation in Figure 11, delineates the multifarious

stages of our analytical journey.

The initial phase involves data cleaning, primarily addressing missing values. Sub-

sequently, categorical variables undergo transformation, while continuous variables un-

dergo normalization, rendering them apt for machine learning algorithms. In our analysis

of Dataset 1 , we opted for Lasso and Random Forest algorithms to pinpoint significant

features. Conversely, for Dataset 2 and 3, feature selection was achieved through the

application of the Lasso, Random Forest and Knockoffs algorithm. The datasets are

then partitioned into training and testing subsets, adhering to a 70:30 split. Recog-

nizing the high imbalance in the target variable, as illustrated in Figure 13, resam-

pling techniques—namely regular oversampling, undersampling, and Synthetic Minority

Over-sampling Technique (SMOTE)—are employed to rectify the imbalance within the

training datasets.

The subsequent steps encompass the fitting of machine learning models, including

K-Nearest Neighbor, Logistic Regression, Decision Tree, Random Forest, and Extreme

Gradient Boosting onto the designated training datasets. Evaluation of these models

is executed using the corresponding test datasets. Ultimately, a comparative analysis

unfolds, scrutinizing the accuracy, sensitivity, specificity,and AUC-ROC score across di-

verse model-performance metrics for each strategy combination. This comprehensive

approach serves to discern and articulate the efficacy of the models under various strate-

gic combinations.
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Figure 11: Working Diagram.

28



CHAPTER 4

Results

Following the outlined methodology, the feature analyis of Dataset 1 with Lasso and

Random Forest algorithms respectively, along with Dataset 2 and 3 using the Lasso, Ran-

dom Forest and Knockoffs algorithm, provided insightful results. After partitioning the

datasets into training and testing subsets, adhering to a 70:30 split, the high imbalance

in the target variable was addressed using resampling techniques such as regular over-

sampling, undersampling, and Synthetic Minority Over-sampling Technique (SMOTE).

We have used a set of abbreviations in our representation. US- Random Under Sam-

pling, OS- Random Over Sampling, SM- SMOTE, FSL- Feature Selection by Lasso,

FSR- Feature Selection by Random Forest, and FSK- Feature Selection by Knockoffs.

Subsequently, a variety of machine learning models including K-Nearest Neighbor,

Logistic Regression, Decision Tree, Random Forest, Extreme Gradient Boosting, and

Naive Bayes were fitted onto the designated training datasets. Through evaluation using

the corresponding test datasets, a comparative analysis unfolded. This analysis scruti-

nized key performance metrics including accuracy, sensitivity, specificity, and AUC-ROC

score across diverse model-performance metrics for each strategy combination.

Upon completing exhaustive computations, we have compiled the outcomes for the

various datasets under consideration. Across these datasets, we have calculated metrics

such as accuracy, sensitivity, specificity, and AUC-ROC score for all conceivable combina-

tions of predictive models and accompanying methods. This meticulous analysis provides

a comprehensive overview of the performance of different models and techniques, facili-

tating informed decisions regarding the most suitable approaches for predictive modeling

in each scenario.
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4.1 Results from Dataset 1

Knockoffs’ Algorithm was not very successful for dataset 1. The reason maybe the

existence of several categorical types in some variables. We have used random forest and

logistic Lasso regularization to identify important features from dataset 1.

LASSO Feature Selection (23) Random Forest Feature Selection
(25)

policy tenure,age of car, policy tenure,age of car,
age of policyholder,population density, age of policyholder, population density
area clusterA2,area clusterA3, area clusterA2,area clusterA3,
area clusterA4, area clusterA4,
fuel typePetrol,height fuel typePetrol,height,
max torquemax torque low max torquemax torque low,
max powermax power low max powermax power low,
max powermax power medium max powermax power medium,
modelM11,modelM2, max torquemax torque medium,

modelM8 ,
is adjustable steeringYes , is adjustable steeringYes,
is parking cameraYes, is parking cameraYes,
steering typePower, steering typePower,
is power door locksYes, is power door locksYes,
is ecwYes, is ecwYes,
rear brakes typeDrum, displacement,ncap rating,
transmission typeManua,l is front fog lightsYes,
gear box6, is brake assistYes,
is central lockingYes steering typeManual,

is day night rear view mirrorYes

Table 2: Important features of Dataset 1.

The results obtained from the respective models for all possible combinations dif-

ferent methods are as follows.
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Figure 12: Accuracy Scores for Dataset 1.

Figure 13: Sensitivity Scores for Dataset 1.
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Figure 14: Specificity Scores for Dataset 1.

Figure 15: ROC AUC Scores for Dataset 1.
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Figure 16: Comparison of best performing combinations from each model for
Dataset 1.

In this context, our primary focus lies on achieving high specificity while maintain-

ing reasonable sensitivity and ROC AUC score. Specificity plays a crucial role as it

indicates the proportion of actually claimed customers correctly predicted as claimed. It

is evident that the best-performing models for dataset 1 are Decision Tree+OS, Random

Forest+US+FSR and XGboost+US+FSR.

4.2 Results from Dataset 2

We have applied the Knockoffs’ Algorithm, random forest and logistic Lasso Reg-

ularization to dataset 2 to identify important features. Features that appeared in more

than 75% of the trials were identified as important features. The important features

selected by all three methods respectively are mentioned below.
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LASSO Feature Selection (18) Random Forest Feature Selection
(20)

Knockoffs’ Feature Selection (16)

AGE26.39, AGE65., GENDERmale, PAST ACCIDENTSNone, VEHICLE YEARbefore.2015,
RACEminority, VEHICLE OWNERSHIP1, VEHICLE OWNERSHIP1,
DRIVING EXPERIENCE10.19y, SPEEDING VIOLATIONSNone, POSTAL CODE92101,
DRIVING EXPERIENCE20.29y, VEHICLE YEARbefore.2015, POSTAL CODE32765,
DRIVING EXPERIENCE30y., DRIVING EXPERIENCE20.29y, POSTAL CODE21217,
INCOMEpoverty, DRIVING EXPERIENCE10.19y, MARRIED1,
INCOMEupper.class, INCOMEupper.class, GENDERmale,
VEHICLE OWNERSHIP1, CREDIT SCORE, DRIVING EXPERIENCE10.19y,
VEHICLE YEARbefore.2015, INCOMEpoverty, DRIVING EXPERIENCE20.29y,
MARRIED1, POSTAL CODE21217, DRIVING EXPERIENCE30y.,
POSTAL CODE21217, DRIVING EXPERIENCE30y., ANNUAL MILEAGE,
POSTAL CODE32765, MARRIED1, AGE26.39, PAST ACCIDENTSNone,
POSTAL CODE92101, GENDERmale, DUISmore than 3 times,
ANNUAL MILEAGE, AGE65., DUISNone, AGE40.64, AGE26.39,
SPEEDING VIOLATIONSNone, ANNUAL MILEAGE, INCOMEpoverty,
PAST ACCIDENTSNone POSTAL CODE32765, CHILDREN1 RACEminority,CHILDREN1

Table 3: Important features of Dataset 2.

The results obtained from the respective models for all possible combinations of

different methods are as follows.

Figure 17: Accuracy Scores for Dataset 2.
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Figure 18: Sensitivity Scores for Dataset 2.

Figure 19: Specificity Scores for Dataset 2.
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Figure 20: ROC AUC Scores for Dataset 2.

Figure 21: Comparison of best performing combinations from each model for
Dataset 2.

In Dataset 2, the majority of models demonstrated strong performance when com-

bined with either under-sampling (US), over-sampling (OS), or SMOTE (SM) alongside

various feature selection methods. The top-performing models in this scenario are Logis-

36



tic+OS+FSK, Random Forest +US + FSK and XGBoost+ US. Notably, the Knockoffs

Algorithm exhibited a significant impact in identifying important features, highlighting

its efficacy in enhancing model performance.

4.3 Results from Dataset 3

Just like Dataset 2, we have applied the Knockoffs’ Algorithm, random forest and

logistic Lasso Regularization to dataset 3 to identify important features. The important

features selected by all three methods respectively are mentioned below.

LASSO Feature Selection (18) Random Forest Feature Selection
(20)

Knockoffs’ Feature Selection (15)

perc premium paid by cash credit, perc premium paid by cash credit, perc premium paid by cash credit,
IncomeMiddle, premiumMiddle, IncomeMiddle, premiumMiddle, IncomeMiddle, premiumMiddle,
premiumUpper, premiumUpper, IncomeUpper, IncomeUpper,
no of premiums paid , no of premiums paid , no of premiums paid ,
Age45 to 64,Age65 and above, Age45 to 64,Age65 and above, Age45 to 64,Age65 and above,

Ageupto 25, Ageupto 25,
No of dep,risk score, No of dep,risk score, risk score,
Marital StatusUnmarried,
sourcing channelC,sourcing channelD, sourcing channelD,
Count 3 6 months late3 to 4 times, Count 3 6 months late3 to 4 times, Count 3 6 months late3 to 4 times,
Count 3 6 months lateNot late, Count 3 6 months lateNot late, Count 3 6 months lateNot late,

Count 3 6 months latemore than 5 Count 3 6 months latemore than 5
times, times,

Count 6 12 months late3 to 4 times, Count 6 12 months late3 to 4 times, Count 6 12 months late3 to 4 times,
Count 6 12 months lateNot late, Count 6 12 months lateNot late, Count 6 12 months lateNot late,

Count 6 12 months latemore than Count 6 12 months latemore than
5 times, 5 times

Count more than 12 months lateNot Count more than 12 months lateNot
late, late,

Count more than 12 months late3 to
4 times

residence area typeUrban

Table 4: Important features of Dataset 3.

The results obtained from the respective models for all possible combinations dif-

ferent methods are as follows.
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Figure 22: Accuracy Scores for Dataset 3.

Figure 23: Sensitivity Scores for Dataset 3.
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Figure 24: Specificity Scores for Dataset 3.

Figure 25: ROC AUC Scores for Dataset 3.
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Figure 26: Comparison of best performing combinations from each model for
Dataset 3.

Once more, a significant number of models showcased strong performance when

paired with either under-sampling (US) or over-sampling (OS), coupled with diverse

feature selection methods. In this case, Random Forest +US+FSL, XGBoost+US+FSL

and Logistic +SM+FSL emerged as the top performer. Surprisingly, the performance of

NB (Naive Bayes) did not meet expectations across various combinations. However, the

Random Forest Algorithm notably demonstrated a remarkable ability to identify crucial

features, underscoring its effectiveness in bolstering overall model performance.
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CHAPTER 5

Conclusion

In this thesis, we embarked on a comprehensive exploration of predictive modeling

techniques, leveraging a diverse array of machine learning algorithms and methodologies

to analyze three distinct datasets. Through meticulous adherence to a structured

methodology, encompassing the application of Lasso, Random Forest, and Knockoffs

algorithms, along with strategic dataset partitioning and resampling techniques, we

endeavored to unravel valuable insights into predictive modeling across varied scenarios.

The initial phase of our study involved preprocessing the datasets and addressing

the challenge of class imbalance through resampling techniques such as oversampling,

undersampling, and SMOTE. Subsequently, a suite of machine learning models spanning

K-Nearest Neighbor, Logistic Regression, Decision Tree, Random Forest, Extreme Gra-

dient Boosting, and Naive Bayes were trained and evaluated on designated training and

test datasets. This rigorous evaluation was characterized by a comprehensive analysis

of key performance metrics, including accuracy, sensitivity, specificity, and AUC-ROC

score, enabling a nuanced understanding of model efficacy under different conditions.

The culmination of our efforts yielded a rich tapestry of findings across the three

datasets. In Dataset 1, while the Knockoffs Algorithm exhibited limited success, likely

due to the presence of categorical variables with diverse types, Random Forest and

logistic Lasso regularization proved instrumental in identifying important features.

Notably, the Decision Tree+OS, Random Forest+US+FSR and XGboost+US+FSR

combinations emerged as the top performer, underscoring the importance of feature

selection and resampling strategies in enhancing model performance.

Transitioning to Dataset 2, the incorporation of Knockoffs’ Algorithm, alongside
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Random Forest and logistic Lasso Regularization, facilitated the identification of

crucial features. Here, the Logistic+OS+FSK, Random Forest +US + FSK and XG-

Boost+ US combinations demonstrated superior performance, underscoring the efficacy

of advanced feature selection methodologies in optimizing predictive modeling outcomes.

Dataset 3, subjected to rigorous analysis employing the Knockoffs’ Algorithm,

showcased promising results, with Random Forest +US+FSL, XGBoost+US+FSL

and Logistic +SM+FSL emerging as the optimal combination. Notwithstanding, the

exploration of feature selection methods underscored the pivotal role of innovative

techniques such as Knockoffs in bolstering model performance, even in scenarios where

it may not emerge as the top performer.

Reflecting on our findings, it is evident that the choice of feature selection method

and resampling strategy significantly impacts model efficacy. The successful integration

of Knockoffs’ Algorithm, particularly in datasets with diverse data types, highlights its

potential for advancing predictive modeling capabilities. However, challenges persist,

as evidenced by the limitations encountered in applying Knockoffs to Dataset 1,

necessitating further refinement and adaptation to accommodate categorical variables

with multiple types.

Looking ahead, the identified areas for improvement, including enhancing the

applicability of Knockoffs Algorithm to datasets with heterogeneous data types, pave

the way for future research endeavors. Moreover, our study underscores the importance

of methodological rigor and innovation in navigating the complexities of predictive

modeling, offering valuable insights for practitioners and researchers alike.

In essence, this thesis represents a significant contribution to the field of predictive

analytics, offering a nuanced understanding of model performance under diverse
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conditions and charting a course for future advancements in predictive modeling

In light of our findings, there exists a clear avenue for future improvement concerning

the application of the Knockoffs feature selection method, particularly in Dataset 1.

Unfortunately, we encountered limitations in utilizing this method due to its inability to

effectively evaluate knockoffs for predictors with mixed data types. It appears that the

presence of numerous categorical variables with diverse category types posed a significant

challenge for the algorithm and the associated R package.

To address this issue and enhance the applicability of the Knockoffs Algorithm,

modifications are necessary. By refining the algorithm to better handle datasets with

mixed data types, particularly those containing a multitude of categorical variables,

its effectiveness can be significantly enhanced. Without such improvements, leveraging

the Knockoffs Algorithm for large datasets characterized by a plethora of categorical

variables will remain a daunting task.

Therefore, future research efforts should focus on refining and adapting the Knock-

offs Algorithm to accommodate the complexities inherent in datasets with diverse data

types. By overcoming these challenges, researchers can unlock the full potential of the

Knockoffs feature selection method, thereby expanding its utility and applicability in

predictive modeling tasks across various domains.
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