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ABSTRACT

Accurate prediction of mouse spinal motoneuron physiological types based on

electrical properties faces challenges due to missing data and imbalanced class dis-

tributions. Technical difficulties, physiological variations, and experimental issues

contribute to data gaps in electrophysiological recordings. Imbalanced class dis-

tributions arise from the rarity of certain motoneuron types. The resulting risk

of biased or unreliable classification models hampers their utility in motor control

studies. Thus, we claim that the electrical properties of mouse spinal motoneurons

can be accurately predicted and classified based on specific, measurable features.

This study focuses on two classification models, a multinomial logistic regres-

sion (MLM) and a Random Forests (RF) model, to predict motoneuron physio-

logical types based on electrical properties since motoneurons’ vital role in signal

transmission relies on diverse electrical properties. Both model types are applicable

to more-than-two-class problems, and MLM excels in subtle pattern identification,

while RF handles complex relationships within the data. We investigate the im-

pact of the threshold choices on the class distribution, class-specific, and overall

prediction accuracy. This analysis showed that the model’s performance in terms

of accuracy depends on the threshold set. Next, we incorporated the over-sampling

technique and hotdeck imputation to compensate for class imbalances and missing

data. While contingent on selecting an appropriate threshold, the results illus-

trate that imputation and oversampling offer notable benefits by preserving data

size, thereby enhancing the accuracy and stability of classification models. Specif-

ically, when we set the contraction time to 20 ms and twitch amplitude to 8m mN,

we demonstrated that incorporating imputation techniques for handling missing

data and utilizing resampling methods to address class imbalances significantly

enhances the overall accuracy of multinomial logistic model to 0.78. Class-specific



accuracy ranges between 0.64 and 0.88, contributing to the robustness of mo-

tor unit classification based on electrical properties. The emphasis on managing

missing data, addressing imbalanced class distributions, and understanding the

predictor-response relationship (Y) guided the preference for MLM. The decision

to exclude other models was based on data characteristics, small sample size, and

specific project goals. This research advances our understanding of motor con-

trol and suggests potential clinical applications in diagnosing and treating motor

neuron diseases, such as amyotrophic lateral sclerosis (ALS). In ALS, determining

physiological types relies on contractile properties rather than traditional measures

like computed twitch contraction or amplitude time.
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CHAPTER 1

Introduction

Accurate prediction of mouse spinal motoneuron physiological types based

on electrical properties faces challenges due to missing data and imbalanced class

distributions. Although motor units are classified based on their contractile proper-

ties, seminal experiments in cats have demonstrated that motoneurons also exhibit

different properties based on their motor unit types [1],[2]. S-type motoneurons are

smaller, require less current for firing, and tend to fire at low frequencies; FF-type

motoneurons are the largest, need the most amount of current, and fire at high

frequencies; FR-type motoneurons have an intermediate profile. More recently, si-

multaneous recordings of motoneuron properties and the force developed by their

motor units have been performed in mice [3],[4], confirming this general trend in

this species, albeit with quantitative differences [1]. However, there are large over-

laps in these properties between motoneurons of different types. Currently, the

only way to reliably identify motor unit type remains to perform experiments dur-

ing which the electrical properties of motoneurons and the forces developed by their

motor unit are recorded simultaneously. These experiments are very challenging.

The number of motoneurons that can be recorded in a single experiment is small.

Furthermore, the time during which each motoneuron can be recorded is highly

variable and unpredictable, which means that, often, only a subset of the electrical

properties of the recorded motoneuron can be obtained before the motoneuron is

lost. Our knowledge of the relationships between the electrical properties of the

motoneurons and the contractile properties of their motor unit is further limited

by the fact that the three types of motor units are present with variable propor-

tions in different muscles [5]. In the muscles of the hind limbs that are commonly
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studied, the number of motoneurons belonging to the FF or S types is very small

compared to the FR motoneurons.

Statistical classification models are essential tools in various domains, from

medical diagnosis to credit risk assessment and natural language processing. These

models encounter significant challenges when dealing with unbalanced class distri-

bution and missing data. Unbalanced design, being a problem in our work, refers

to a situation where the number of observations in different classes is unequal, thus

leading to biased estimates and poor model performance [6]. Various oversampling

and undersampling methods, such as Synthetic Minority Over-sampling Technique

(SMOTE) and Adaptive Synthetic (ADASYN), with 154 instances classified as FR,

16 as S, and 54 as FF, we opted for oversampling to uphold the dataset’s overall

size, thereby averting potential information loss associated with downsampling.

This approach is versatile across different machine learning models, enhancing

compatibility with various algorithms and helping mitigate bias by ensuring the

model allocates appropriate attention to minority class instances.

Similarly, missing data is a problem where some observations lack values for

specific variables, which can also introduce bias and reduce the statistical power

of the models. Imputation methods like single and multiple imputations help fill

in missing values[7]. The rejection of the null hypothesis in the Little’s Missing

Completely at Random (MCAR) test, indicated by a p-value of 0.0002 (≈ 0) being

less than the significance level α of 0.05, prompted the acknowledgment that the

missing data is not MCAR. Consequently, we adopted the assumption of Missing

at Random (MAR) status, recognizing that the missing data depends on observed

variables. In response, we employed hot deck imputation to tackle the missing

values, drawing on schemes that select units based on similarity, as outlined by [8].

This strategic choice was motivated by recognizing that the electrical properties,

2



which are pivotal predictors for motoneuron classification, exhibit inherent similar-

ities and interrelationships. These electrical properties, encompassing membrane

potential dynamics, firing patterns, and responses to stimuli, jointly influence the

classification outcomes, revealing their interconnected nature.

While research on statistical classification models for unbalanced class distri-

bution and missing data shows promise, there is still room for improvement and

a need for more effective methods since there are several reasons to believe that

this field is not yet fully optimized or that current methods may have limitations.

Ensemble methods are machine learning techniques combining the predictions of

multiple base models to produce a more robust and accurate final prediction in-

stead of relying on a single model. Techniques such as random forests, decision

trees, and gradient boosting have been explored to enhance the performance of

classification models by combining multiple base models[9].

Our analysis initially considered several classification methods, including the

Multinomial Logistic Regression models, Decision trees, and Boosting techniques.

However, after careful consideration, we settled on using Multinomial Logistic Re-

gression and Random Forest for specific reasons. Even though many classification

methods focus on multi-class problems, Random Forest features very high accu-

racy, is notably efficient with large data sets, and provides an estimate of important

variables in classification. Random forest generated can be saved and reused and

unlike other models, it does not overfit with more features. The random forest

technique can also handle big data with numerous variables running into thou-

sands. It can automatically balance data sets when a class is more infrequent than

other classes in the data. Hence, this probably is not as sensitive to class imbal-

ance or missingness. On the other hand, multinomial logistic regression is easier to

implement and interpret and very efficient to train. Moreover, it is very fast at clas-
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sifying unknown records and performs well when the dataset is linearly separable.

MLM can interpret model coefficients as indicators of feature importance(unlike

random forest or any other classifiers).

With this insight, our primary goal is to leverage on these statistical models to

address classification challenges related to the motoneuron physiological types in

mice. In neuroscience, motor units serve as the fundamental building blocks of the

skeletal muscle system, responsible for generating force and facilitating movement.

Classically, motor units have been categorized into three main types(Figure2):

Slow-twitch (S), Fast-twitch (FF), and Fast-Fatigue Resistant (FR) [10], [1], [5].

Each motor unit type exhibits distinct properties and functions. The Slow-twitch

(S) motor units comprise type I muscle fibers, characterized by their high oxidative

and low glycolytic capacity. These muscle fibers are well-suited for sustaining low-

intensity activities, such as postural control, as they experience slower fatigue

rates.

In contrast, the Fast-twitch (FF) motor units are larger and more powerful but

also more prone to fatigue. These motor units generate rapid, forceful contractions,

making them prevalent in muscles used for explosive movements and high-force

activities. They rely less on oxidative capacity and have a higher concentration

of glycolytic enzymes, enabling them to break down glycogen for quick energy

production. Consequently, they are efficient in short bursts of intense exertion,

such as sprinting or weightlifting, but exhibit limited endurance. The Fast-Fatigue

Resistant (FR) motor units occupy an intermediate position. These motor units

contract quickly but rely on oxidative respiration to produce energy, making them

relatively fatigue-resistant. Despite their quick response, they tend to develop less

force than FF motor units.

To address these challenges, our project aims to develop a statistical classifica-
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tion model trained on data on motoneuron electrical properties and corresponding

labels for the motoneuron type. We seek to explore the potential of statistical

classification models in resolving issues of unbalanced class distribution and miss-

ing data in neuroscience research. Ultimately, we aspire to accurately predict the

physiological type of motoneurons solely based on their electrical properties, even

when access to force output is restricted. This research has broader implications

for other fields facing similar challenges.
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CHAPTER 2

Review of Literature

2.1 Classification Methods

Classification methods play a pivotal role in various fields, including machine

learning, data mining, and pattern recognition. In our study, our objective for

using classification is to maximize the predictive power of classifying classes based

on their predictors(Electrical Properties). This literature review delves into the

comparative analysis of two prominent classification methods[1][2]: Multinomial

Logistic Regression (MLR) and Random Forests (RFs). MLR, an extension of bi-

nary logistic regression designed to handle scenarios with multiple classes, boasts

strengths in interpretability, statistical rigor, and computational efficiency. How-

ever, it grapples with the assumption of linearity, demanding meticulous feature

engineering, and susceptibility to overfitting in high-dimensional data. On the

other hand, RFs, as ensemble learning methods, harness the collective power of

decision trees to enhance classification accuracy. Their strengths lie in handling

non-linear relationships, robustness to noise, and the provision of feature impor-

tance scores. Yet, RFs pose challenges in terms of interpretability, computational

cost, and potential overfitting[3]. Performance comparisons across various studies

reveal that, in general, RFs tend to surpass MLR in accuracy, particularly when

faced with datasets featuring complex non-linear relationships. However, the choice

between MLR and RFs hinges on the specific characteristics of the dataset and the

interpretability requirements of the classification task, highlighting the need for a

nuanced selection based on the task’s intricacies and objectives.
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2.2 Imbalance Class Distribution

Imbalanced class distribution poses a significant challenge in many classifi-

cation tasks, resulting in unequal representation of data samples across different

classes. This imbalance can lead to biased models that favor the majority class,

causing poor performance for the minority class and leading to misclassification

problems. The issue of class imbalance has become prevalent in various real-world

applications, including fraud detection, medical diagnosis, anomaly detection, face

recognition, email filtering, and environmental monitoring, among others [4].

Researchers have proposed various methods to address the imbalanced class

distribution problem, and these methods can be categorized into three groups:

algorithm-level approaches, data-level techniques, and cost-sensitive methods [5].

Algorithm-level approaches involve modifying existing algorithms to consider the

significance of positive examples and include techniques such as cost-sensitive

learning, threshold-moving, and ensemble learning. Data-level techniques focus

on preprocessing steps to rebalance the data distribution, including oversampling,

undersampling, and hybrid sampling. Cost-sensitive methods combine both algo-

rithm and data-level approaches by incorporating different misclassification costs

for each class during the learning phase [4].

Among the data-level techniques, Synthetic Minority Over-sampling Tech-

nique (SMOTE) has emerged as a prominent method [6]. SMOTE works by gen-

erating synthetic samples of the minority class by interpolating between existing

instances. The algorithm selects a minority class instance and creates a new syn-

thetic instance by randomly selecting one or more of its k-nearest neighbors and in-

terpolating between them. Hence, with 154 instances classified as FR, 16 as S, and

54 as FF, we opted for over-sampling to uphold the dataset’s overall size, thereby

averting potential information loss associated with downsampling.This approach
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effectively increases the number of minority class instances, helping to balance the

class distribution and improve classification performance [6].

Overfitting, where a model learns the training data too well, capturing noise or

random fluctuations in the data as if they were genuine patterns becomes another

concern when dealing with imbalanced class distributions. To address this issue, [7]

proposed a two-stage training approach for convolutional neural networks (CNNs)

[7]. The first stage involves training the CNN with equal samples from each class

to prevent overfitting to the majority class. In the second stage, the model is fine-

tuned with the original imbalanced data. This approach helps improve the model’s

performance on the minority class and prevents overfitting to the majority class

[7]. Additionally, Random Forest (RF) has been shown to be an efficient approach

for handling the overfitting in the presence of imbalanced class distribution [8].

Random forest is one of the ensemble methods, which involve combining de-

cisions from multiple classifiers, and has also gained popularity in tackling the

imbalanced class distribution problem [5]. By training several classifiers and ag-

gregating their outputs, ensemble methods can enhance classification accuracy and

robustness.

Addressing the imbalanced class distribution problem is crucial for achieving

accurate and reliable classification results in various applications. The development

and evaluation of these methods have shown that they outperform traditional

approaches, highlighting the importance of effectively handling imbalanced data

for successful classification tasks[5].

2.3 Missing Data

Missing data is a common challenge statisticians and researchers face when

analyzing datasets [9]. It arises due to various reasons, such as non-response, data

collection errors, and attrition, and can significantly impact the validity and reli-
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ability of statistical analyses. Ignoring missing data may lead to biased estimates

and reduced statistical power. Handling missing data is critical to data analysis

to ensure accurate and robust conclusions.

The problem of missing data is prevalent in many research fields, including

health, social sciences, economics, and engineering [10]. Addressing missing data

involves identifying the type of missingness, which can be categorized into Missing

Completely at Random (MCAR), Missing at Random (MAR), and Not Missing at

Random (NMAR) [11][12][13]. Distinguishing between these types is essential, as

it influences the underlying assumptions of statistical modeling techniques.

Traditional approaches to handling missing data involved editing, deletion,

and mean imputation, provided as options in statistical software packages [14, 15].

However, more advanced approaches, such as regression imputation, imputation

using the EM(Expectation-Maximization) Algorithm, and Multiple Imputation

(MI), have been developed to handle missing data more effectively[16]. Among

these methods, multiple imputation has gained prominence. It replaces each miss-

ing value with M possible values to create M complete datasets, leading to more

robust and accurate analyses [17][12].

Recently, there have been evolving approaches to handling missing values in

data, including methods that ignore missing observations, single imputation meth-

ods, other imputation methods, likelihood-based methods, hot deck imputation,

and indicator methods. Each approach has advantages and disadvantages, and

researchers must carefully consider the characteristics of their data and the goals

of their analysis to select the most appropriate method. Thus, in our analysis,

we used hot deck imputation to handle missing data. Hot deck imputation is one

of the several available approaches to address missing values in datasets, and our

choice was based on several key considerations. Unlike other imputation methods
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that may introduce significant bias, hot deck imputation is designed to minimize

data distortion[16]. However, it also has some drawbacks, such as being subjective

and arbitrary in selecting the donor unit, ignoring the temporal or spatial corre-

lation of the data, and possibly introducing bias or error in the control charts or

other statistical tests. Regardless these drawbacks, it aims to provide a plausible

substitute for missing values while preserving the underlying characteristics of the

data.

In conclusion, addressing missing data is essential for conducting reliable and

informative statistical analyses. Researchers have a range of methods at their

disposal to handle missing data, each with its strengths and limitations. By ap-

propriately addressing missing data, statisticians and non-statisticians can ensure

the validity and accuracy of their data analysis, as we then showed in Hot Deck

Imputation.

2.4 Motoneurons and Motor Units

Motor units are essential components of the neuromuscular system, responsi-

ble for generating force and coordinating muscle movements. Understanding their

properties and classification is vital for unraveling motor control mechanisms and

neuromuscular disorders. Motoneurons within the spinal cord and brainstem act

as the ”final common pathway” of the nervous system [18]. These specialized nerve

cells receive input from various brain regions and integrate these signals to gener-

ate action potentials. Each action potential then travels along the motoneuron’s

axon, ultimately triggering the contraction of muscle fibers.

Motor units, the basic functional units of muscle control, comprise a single

motoneuron and all the muscle fibers it innervates. The number of muscle fibers

within a motor unit varies significantly, impacting the strength and precision of

the contractile force generated. Smaller motor units, with fewer fibers, excel in fine
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and delicate movements, like those required for precise finger control. Conversely,

larger motor units, housing numerous muscle fibers, unleash powerful contractions

for forceful actions, such as lifting heavy objects.

The study of motoneurons and motor units is a crucial step for our understand-

ing of neurological disorders. Many debilitating conditions, including amyotrophic

lateral sclerosis (ALS), Parkinson’s disease, and stroke, disrupt the intricate func-

tion of motoneurons and motor units, leading to muscle weakness, paralysis, and

other movement impairments. Deciphering the workings of these cells offers valu-

able insights into the pathogenesis of such disorders, paving the way for novel

therapeutic interventions.

2.4.1 Motor Unit Contractile Properties

Muscle contraction exhibits remarkable diversity in its properties, allowing

us to perform tasks ranging from delicate finger movements to powerful sprints.

This diversity arises from the intricate interplay between the nervous system and

muscle fibers, primarily through the unique composition of motor units. The

unique expression of myosin isoforms, metabolic enzymes, and calcium handling

proteins in the muscle fibers lead to the distinction of three major motor unit

types: S (slow-twitch), FR (fast-twitch, fatigue-resistant), and FF (fast-twitch,

fatigable).

Slow (s) motor units, as their name implies, exhibit slow contraction speeds

[19], due to the fact that they primarily express myosin isoform MyHC type I,

characterized by low ATPase activity. On the other hand, these muscle fibers have

highly developed sarcoplasmic reticulum with a large capacity to store and release

calcium and are rich in oxidative enzymes and mitochondria, enabling efficient

ATP generation for sustained activity[20]. Consequently, these motor units are

mainly used for maintaining posture and performing low-intensity tasks requiring
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endurance [18].

On the other hand, fast-Fatigable (FF) motor units exhibit the fastest contrac-

tion speed and low fatigue resistance[19]. Their muscle fibers express the myosin

isoform MyHC type IIa, characterized by the highest ATPase activity and fastest

cross-bridge cycling, leading to rapid contraction. However, they primarily rely on

glycolysis for rapid ATP generation, leading to quick fatigue [20]. They are, there-

fore, mainly used to generate high force for explosive movements (e.g., sprinting,

jumping)[18].

Fast, fatigue-resistant (FR) motor units have an intermediate profile with fast

contraction speeds but good fatigue resistance[19]. Their muscle fibers express the

myosin isoform MyHC type IIa, exhibiting faster contraction speed than S fibers

but slower than FF fibers, and a balanced mix of oxidative and glycolytic enzymes,

allowing both sustained and rapid bursts of activity[20]. They are essential for the

production of rapid movement with moderate force and moderate endurance (e.g.,

walking, swimming) [18].

(a) (b)

Figure 1: Twitch force elicited by injecting a series of short pulses of current -
The figure[21] illustrates twitch and motor unit action potential (MUAP) of an
FF motor unit, unfused tetani during a fatigue test, and the decline in twitch
amplitude over time. Similar arrangements are shown for FR and S motor units,
with traces representing averages of 5-10 sweeps.
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Variable Name Description
‘condSpeed‘ measure of the conduction velocity of the antidromic spike along the axon of the recorded motoneuron
‘rheobase‘ the minimum amount of current to unject in the motoneuron to elicit an action potential
‘rmp‘ the membrane potential of the cell in absence of any stimulation
‘spikeOvershoot‘ the membrane potential reached at the peak of the spike
‘spikeHeight‘ the height of the spike, from ‘rmp‘ to ‘spikeOvershoot‘
‘spikeWidth‘ the width of the spike at half it total height
‘ahpAmp‘ the amplitude of the afterhyperpolarization (AHP) following each spike
‘ahpT2P‘ the time between the foot of the spike and the trough of the AHP
‘ahpHalfRelax‘ the time it takes for the AHP to relax to half its amplitude
‘RinPeak‘ the value of the input resistance of the cell measured at the peak of the response
‘RinPlat‘ the value of the input resistance of the cell measured at the plateau of the response
‘SR‘ the sag ratio, calculated as the ratio between ‘RinPlat‘ and ‘RinPeak‘
‘GinPeak‘ the input conductance of the cell (inverse of ‘RinPeak‘)
‘tauM‘ the membrane time constant, a measure of how fast the membrane potential relaxes
‘L‘ the electrotonic length of the neuron
‘Ion‘ the intensity of the current required to elicit firing on the ascending phase of a triangular ramp of current
‘Ioff‘ the intensity of current at the time of the last action potential on the descending phase of a triangular ramp of current
‘△I‘ the difference between ‘Ioff‘ and ‘Ion‘
‘△F ‘ the difference between the instantaneous frequency of the last inter spike interval and the first
‘ascSlope‘ the primary range slope measured on the response to the ascending phase of a triangular ramp of current
‘descSlope‘ the primary range slope measured on the response to the descending phase of a triangular ramp of current
‘Vth‘ the voltage threshold for spiking, measured on the first action potential of the triangular ramp of current

Table 1: Description of the electrical properties measured in the experiments from
the Manuel lab. Full details can be found in [24]. Due to the unpredictable
duration of the recordings, not all of the measures can be obtained in every recorded
motoneurons

2.4.2 Motoneuron Electrical Properties

Motoneurons exhibit a number of electrical properties that have been ex-

tensively studied over the past fifty years in human and animal models[18],[22],

including recently in adult mice[23][24][21]. These properties will form the basis

of our classification and are described in detail in [24].

2.4.3 Motor Unit classification:

Motor units were classified based on the profile of the twitch force elicited by

injecting a series of short pulses of current in the soma of the recorded motoneurons,

thereby triggering single action potentials. The contracting time (‘twCT‘) is the

time between the onset of the contraction and the time of the peak of the twitch.

The twitch amplitude (‘twAmp‘) is the difference between the baseline and the

peak of the twitch. As previously described [21], motor units with a contraction

time ≥ 20ms were classified as S-type. Motor units with a contraction time < 20ms

were classified as fast-twitch. Among those, motor units with a twitch amplitude
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Figure 2: Contractile properties of motor units in (A) wild-type (WT) and (B)
SOD1G93A mice. (A1) Distribution of twitch amplitude (logarithmic scale) vs.
twitch contraction time, with arrows indicating specific motor units. Vertical
dashed line at 20 ms separates fast and slow-contracting units. Horizontal dash-
dotted line at 8 mN distinguishes fatigue-resistant (FR) and fatigable (FF) units.
Filled markers denote units with fatigue index measurement; empty markers lack
fatigue measurement. (A2) Fatigue Index vs. twitch contraction time, with a limit
at 0.5 for categorization. (A3) Fatigue Index vs. twitch amplitude. Similar orga-
nization in (B) for SOD1G93A motor units. [21]

≥ 8mN were considered to be FF, and those with a twitch amplitude < 8mN were

classified as FR. Finally, the work of [21] identified two subpopulations in the FR

group. We, therefore also considered the possibility of splitting the FR motor units

into two groups, the small FR and large FR motor units, based on a cutoff value

of 1.5mN.
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CHAPTER 3

Methodology

3.1 Classification Models

The various classification methods that we will use to solve the to predict the

physiological types based on the electrical properties are as follows:

3.1.1 Multinomial Logistic Model

Multinomial Logistic Regression (MLM) is implemented as an extension of

binary logistic regression, accommodating outcomes with multiple levels. The out-

comes in this study are in a multilevel scale. The outcome variable Y encompasses

a categories, where category S coded as 0, FF as 1 and FR as 3 with p predic-

tor variables. Unlike binary cases, the multinomial model establishes a baseline

selecting Y = 0 and forms a1 logit functions expressing the natural logarithm of

the odds as:

gi(x) = ln

[
Pr(Y = i|x)
Pr(Y = i|x)

]
= βi,0 + βi,1x1 + . . .+ βi,pxp

In the equation above, x represents a vector of p covariates, denoted as x1, x2, ..., xp,

also the parameters included, βi,0 as the intercept and βi,1, ..., βi,p as the coefficients

corresponding to the covariates. Here, i takes values from 2 to a. Therefore, the

conditional probabilities of each category are determined based on the observed

values of the covariates, thus given as:

πi(x) = Pr(Y = i|x)

=
egi(x)∑a
k=1 e

gk(x)

For each i where i ranges from 1 to a and gi(x) = 0, we applied the maximum

likelihood estimation method is used to fit the model and estimate the coefficients,
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using an R package[1]. To formulate the likelihood function, we used the multilevel

response variables Y1 to Ya. These variables are encoded such that if Y = i, then

Yi = 1 and Ys ̸=i = 0, where i, s = 1, 2, . . . , a. Consequently, regardless of the

value Y assumes, the sum of these a variables consistently equals 1. Assuming n

independent observations, the likelihood function is derived accordingly as:

L(β) =
a∏

k=1

[π1(xk)
y1kπ2(xk)

y2k . . . πa(xk)
yak ]

Thus,k = 1, 2, . . . , n, and applying the natural logarithm, we consider the condition∑a
i=1 Yik = 1 for each k, the logarithm of the likelihood function is derived as:

L(β) = X

[
a∑

i=2

yikgi(xk) + . . .+
a∑

i=2

yikgi(xk)− ln
(
1 + eg2(xk) + . . .+ ega(xk)

)]
By computing the partial derivatives of the likelihood function L(β) with respect

to each βij, where i ranges from 1 to n and j ranges from 1 to p,hence the maximum

likelihood estimators are derived. Before drawing inferences from the model, it is

crucial to evaluate both the overall fit and the contribution of each individual ob-

servation to the fit. This assessment becomes more intricate in cases with multiple

outcome levels of the motor units based on the 8 explanatory variables. Nonethe-

less, to estimate gi(x), the Multinomial logistic regression assumes that the choice

of membership in one category is not related to the choice or membership of an-

other category (i.e., the dependent variable), with some basic assumptions to be

met as follows[2]:

1. Observations (Xi, Yi) are independent.

2. Outcome variable categories Y are mutually exclusive and exhaustive.

3. Independence of errors.

4. Absence of multicollinearity.

5. Lack of strongly influential outliers.
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3.1.2 Random Forest

The Random Forest, an ensemble of trees governed by random vectors, en-

hances classification accuracy by collectively voting for the most prevalent class

at input x [3]. This versatile mechanism accommodates both classification and

regression tasks. Our focus in this introduction is on classification, presenting a

concise algorithm within the non-parametric regression framework to clearly un-

derstand the Random Forest’s application in regression analysis. Addressing the

multilevel classification problem discussed in [4], our random response Y takes val-

ues of {0, 1, 3}. Given X, one must guess the value of Y . A classifier, represented

by mn, is consistent if its probability of error L(mn) converges to L∗ as n → ∞

[5].

The Random Forest classifier, obtained via a majority vote among classifica-

tion trees, classifies a randomized tree based on leaf representation. The equation

can be found in [5] [6]. We start with the Ensemble of Trees using the algorithm-

based approach, specifically the Classification and Regression Tree (CART) al-

gorithm. The Random Forest comprises M trees {T1(X), . . . , TM(X)}, where

X = {x1, . . . , xp} is a p-dimensional vector of electrical properties associated with

a system. The ensemble produces M outputs {Ŷ1 = T1(X), . . . , ŶM = TM(X)},

aggregated to produce the final prediction Ŷ . For classification, Ŷ is the majority

vote.

Training Procedure

Given a dataset D of n systems for training, D = {(X1, Y1), . . . , (Xn, Yn)},

where Xi, i = 1, . . . , n, is a vector of electrical properties, and Yi is either the class

label or activity of interest, the training algorithm proceeds as follows:

1. Draw a bootstrap sample from the training data of n systems (randomly

sampled with replacement).
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2. For each bootstrap sample, grow a tree with a modification: choose the best

split among a randomly selected subset of mtry descriptors at each node.

Here, mtry is a tuning parameter.

3. Repeat the above steps until a sufficiently large numberM of trees are grown.

The impact of M is crucial, representing the number of trees in the ensemble. The

choice of mtry controls randomness, influencing tree diversity. When mtry = p,

the algorithm is equivalent to Bagging. The tree-growing algorithm is based on

CART, with alternative methods also considered.

Though the Random Forest (RF) algorithm is computationally efficient, es-

pecially with many descriptors, it tests a subset of descriptors (mtry) at each node,

resulting in faster searches and eliminating the need for pruning. RFs can be

trained faster than a single decision tree in cases with numerous descriptors. Other

ensemble methods like Bagging and Boosting further enhance performance. Em-

pirically, Boosting and Random Forest consistently outperform Bagging. Ideally,

assessing a prediction algorithm demands a substantial independent test dataset

distinct from the training data. Due to data limitations, we frequently resort

to cross-validation, a computationally demanding alternative. However, Random

Forest offers a solution by conducting a form of cross-validation during training

using Out-Of-Bag (OOB) samples[7]. Our analysis compares OOB performance

estimation with k-fold cross-validation, revealing reasonably good agreement.

3.2 Oversampling

Imbalanced classification has been a significant concern. To tackle class im-

balance in our response variable Y (Table 2), particularly in the context of clas-

sification problems, we applied the oversampling method to all classes using the

oversample classes function. This ensured uniform representation of classes
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(at levels 75 and 200 for restricted imputed data) across the dataset with our

oversample classes function.

Table 2: Class distribution of Y in our original and subset(restricted data)

Class Original Data Subset Data

0 16 5
1 154 51
3 46 15

This oversampling procedure involves considering Y as the categorical response

variable with possible classes, where possible classes is a vector containing the

unique classes in Y , and N is the desired number of samples after oversampling.

For each class class Y in possible classes, we performed the following steps:

1. Identify the indices (ind) of instances in Y belonging to the current class

class Y.

2. If the number of instances length(ind) for class Y is greater than or equal

to 2, randomly sample N instances with replacement from (ind) and store

them in s.

3. If there is only one instance for class Y, replicate the single index N times

to create s.

4. If there are no instances for class Y, set s to an empty vector(s is our

sampling index).

5. Append s to the oversampled data (ov).

Our function iterates through all possible classes, creating an oversampled dataset

that addresses the imbalance by duplicating or replicating instances from minority

classes. This samples with replacement from the dominating classes where for the
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restricted(subset) data we have 75 and 200 for the imputed data. This ensures

a more balanced distribution of classes in the restricted(subset data)and imputed

data.

3.3 Imputation

Due to the unpredictable duration of the recordings in the experiments per-

formed by the Manuel lab, the original dataset contains a large number of missing

data. Missing data is a common problem when collecting data for motoneuron

electric characteristics, thus posing significant challenges for data analysis and in-

terpretation(Test of the Missing Data assumed MAR). This is a common issue in

biological, clinical and social research [?]. Imputation is a powerful and versatile

technique to address these issues, providing estimates for missing values based on

observed data. Here, we outline the hot-deck imputation techniques, focusing on

the [5]nearest-neighbor algorithm approach. Using our data, (1) we randomly se-

lect a sample of n out of the N units, (2) we identify r responding units among the

n sampled units, where r < n, (3) label the first n units as sampled and the first r

units as respondents, and (4) finally, standardize or normalize relevant covariates

for all units (both responding and missing). Also, while using the nearest neighbor

hot deck, one defines a distance metric d(i, j) to measure the ”closeness” between

units i and j based on standardized covariates in the data[8]. Possible metrics

include:

1. Equal Probability: d(i, j) = 0 if i and j are in the same adjustment

cell(measures of dissimilarity or distance between two entities i and j), else

1.

2. Maximum Deviation: d(i, j) = maxk |xik−xjk|, where xik and xjk are covari-

ates of units i and j.
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3. Predictive Mean: d(i, j) = [ŷ(xi)− ŷ(xj)]
2, where ŷ(x) is the predicted value

of Y based on covariates x.

By doing this, we consider that for each unit i with a missing value yi, there is a

set of k nearest neighbors j such that d(i, j) is minimized, where k is a pre-defined

number. The imputation works as follows:

1. Randomly select one value yj from the observed k nearest neighbors.

2. Impute the missing value yi with the randomly chosen yj.(We Repeat steps

2 and 3 for all units with missing values).

Though the methodology assumes the availability of relevant covariates for both

responding and missing units, the choice of k can significantly impact the accuracy

of the imputation. Hence, we experiment with different values and choose the one

that optimizes the chosen performance metric.

3.4 Model Selection

During our meticulous model selection process, our primary emphasis was on

comparing the performance of the Multinomial Logistic Model (MLM) and Ran-

dom Forest, with a focus on the dual criteria of accuracy and interpretability. We

rigorously evaluated these models, both with and without oversampling, employ-

ing 5-fold cross-validation to ensure a robust estimation of performance on unseen

data, surpassing the limitations of training data evaluation alone. Our evaluation

criteria included metrics such as accuracy, precision for each class, and overall

model performance, aligning with the methodology outlined by[9].

As our research advanced, interpretability emerged as a pivotal factor. MLM,

with its interpretable coefficients, provided a lucid understanding of the intricate

relationships between electrical properties and physiological types. Conversely,
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Random Forest, being an ensemble method, lacked direct interpretability but con-

tributed valuable insights into critical features for classification, as highlighted by

Song et al. (2013) [10]. In the final analysis, we opted for MLM, balancing per-

formance, interpretability, and complexity. This choice rendered MLM the most

suitable model for accurately classifying physiological motoneuron types in mice

[11].
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CHAPTER 4

Findings

4.1 Data Transformation

The Manuel lab provided the data used in this study, a subset of which was

previously published [1]. Intracellular recordings of Triceps Surae motoneurons

were collected from deeply anesthetized mice. Simultaneously, the force produced

by each individual recorded motoneuron was measured at the tendon by a highly

sensitive force transducer. Initially, the complete data had 37 variables with 216

observations. Upon analysis of this dataset, two issues became readily apparent.

First, the distribution of the three class of motor units was highly unbalanced (??).

In addition a large number of observations contained one or more missing data (3).

The transformation of data from its original form to the imputed dataset involved

several steps, addressing issues of class imbalance and missing data. A concise

overview of the data is presented in Table 4.The subset data, derived using an R

subset function, was the smallest due to a process involving variable importance

testing, correlation matrix examination(Table 5), feature averaging (for dimen-

sionality reduction), and addressing missing data percentages. Thirteen variables

(rheobase, spikeWidth, ahpAmp, ahpT2P, ahpHalfRelax, RinPeak, RinPlat, SR,

GinPeak, tauM, tau1, L, Ion) were considered for the subset data. Also,in the

Factors Original Data Subset Data Imputed Data

Observations 216 71 216
Variables 37 13 21

Table 3: Table illustrating the number of observations and variables in each Data

imputed data, a LittleMCAR test revealed a p-value of 0 ¡ α (0.05), indicating not

MCAR (Missing Completely at Random) data. Thus, assuming Missing at Ran-
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Class Original Data Subset Data Imputed Data

0 16 5 16
1 154 51 154
3 46 15 46

Total 216 71 216

Table 4: Class distribution of Y in our original, subset(restricted) and Imputed
data

Correlation rheobase spikeWidth ahpAmp ahpT2P ahpHalfRelax RinPeak RinPlat SR GinPeak tauM tau1 L Ion twAmp twCT PhysioType3 PhysioType4
rheobase 1.00000000 -0.12153943 -0.258033287 -0.08713017 -0.23861033 -0.6530944 -0.61958571 -0.324372737 0.70721579 -0.41626045 -0.36975672 -0.03960072 0.76084868 0.61430546 -0.31634144 0.59667257 0.70698345
spikeWidth -0.12153943 1.00000000 0.066695310 -0.11224230 0.08663882 0.2202368 0.20077968 0.064562705 -0.20562712 -0.02762926 -0.10175621 -0.13938448 -0.10145275 -0.20723782 -0.09767333 -0.16056764 -0.20907018
ahpAmp -0.25803329 0.06669531 1.000000000 -0.34985492 0.42341743 0.4216640 0.41741395 0.236479895 -0.276768072 0.182705122 0.087955158 -0.086079197 -0.283368589 -0.002514237 0.377768349 -0.141160426 -0.205676201
ahpT2P -0.08713017 -0.11224230 -0.349854919 1.00000000 0.20004254 0.2440232 0.19495725 -0.109327721 -0.17829806 0.38909454 0.23620380 -0.26728482 -0.10332410 -0.26518705 0.25058188 -0.16568480 -0.29686024
ahpHalfRelax -0.23861033 0.08663882 0.423417428 0.20004254 1.00000000 0.3959124 0.37866902 0.145524300 -0.25704397 0.34844699 0.06963327 -0.37422333 -0.30596994 -0.12924786 0.52991892 -0.22663804 -0.33985856
RinPeak -0.65309437 0.22023679 0.421664039 0.24402323 0.39591245 1.0000000 0.98309268 0.533482597 -0.8385821 0.6324045 0.51235380 -0.128045197 -0.7623673 -0.4999449 0.54936593 -0.48841957 -0.6784287
RinPlat -0.61958571 0.20077968 0.417413946 0.19495725 0.37866902 0.9830927 1.00000000 0.645461735 -0.80642283 0.59801183 0.50184968 -0.09927849 -0.73610461 -0.46711003 0.52213568 -0.46338037 -0.63488926
SR -0.32437274 0.06456271 0.236479895 -0.10932772 0.14552430 0.5334826 0.64546173 1.000000000 -0.580093229 0.248484570 0.259048792 -0.008853778 -0.529644273 -0.331237603 0.244590344 -0.403121420 -0.424302007
GinPeak 0.70721579 -0.20562712 -0.276768072 -0.17829806 -0.25704397 -0.8385821 -0.80642283 -0.580093229 1.0000000 -0.53309227 -0.43365873 0.117141599 0.8850692 0.651244348 -0.39862746 0.64966866 0.7774942
tauM -0.41626045 -0.02762926 0.182705122 0.38909454 0.34844699 0.6324045 0.59801183 0.248484570 -0.53309227 1.00000000 0.81163001 -0.195045819 -0.50372074 -0.32890278 0.48510336 -0.31678702 -0.49178715
tau1 -0.36975672 -0.10175621 0.087955158 0.23620380 0.06963327 0.5123538 0.50184968 0.259048792 -0.43365873 0.81163001 1.00000000 0.379497132 -0.3777543 -0.23827541 0.35133400 -0.25745724 -0.3872452
L -0.03960072 -0.13938448 -0.086079197 -0.26728482 -0.37422333 -0.1280452 -0.09927849 -0.008853778 0.158235652 0.100280956 -0.15165657 1.0000000 0.1582357 0.100280956 -0.15165657 0.03771466 0.1074721
Ion 0.76084868 -0.10145275 -0.283368589 -0.10332410 -0.30596994 -0.7623673 -0.73610461 -0.529644273 0.8850692 -0.50372074 -0.37775427 0.158235652 1.0000000 0.646964094 -0.40036505 0.59368380 0.7503886
twAmp 0.61430546 -0.20723782 -0.002514237 -0.26518705 -0.12924786 -0.4999449 -0.46711003 -0.331237603 0.651244348 -0.32890278 -0.23827541 0.100280956 0.6469641 1.000000000 -0.20676622 0.80934956 0.7806772
twCT -0.31634144 -0.09767333 0.377768349 0.25058188 0.52991892 0.5493659 0.52213568 0.244590344 -0.39862746 0.48510336 0.35133400 -0.151656569 -0.4003650 -0.20676622 1.00000000 -0.36917959 -0.5365879
PhysioType3 0.59667257 -0.16056764 -0.141160426 -0.16568480 -0.22663804 -0.4884196 -0.46338037 -0.403121420 0.64966866 -0.31678702 -0.25745724 0.037714661 0.5936838 0.809349562 -0.36917959 1.00000000 0.8482251
PhysioType4 0.70698345 -0.20907018 -0.205676201 -0.29686024 -0.33985856 -0.6784287 -0.63488926 -0.424302007 0.7774942 -0.49178715 -0.38724522 0.107472100 0.7503886 0.780677174 -0.53658792 0.84822510 1.0000000

Table 5: Correlation Matrix for 13 variables (rheobase, spikeWidth, ahpAmp,
ahpT2P, ahpHalfRelax, RinPeak, RinPlat, SR, GinPeak, tauM, tau1, L, Ion)

dom (MAR), oversampling was performed to equalize class counts (75 per class for

restricted and 200 for imputed data). Subsequently, variables with missing data

percentages exceeding 45% were removed, since this can result in bias imputation,

create noise, and to preserve the data quality and reliability[2],thus imputation

was carried out using the Hot Deck Imputation library’s impute. NNHD package

in R.

The missing data percentages in the original data are depicted in Figure 3A,

while Figure 3B illustrates the missing data pattern after removing variables with

missing observation percentages exceeding 45%. Sixteen out of 37 variables were

removed due to high missing data percentages, minimizing noise, overfitting, and

biased estimates. The variables were also averaged based on specified thresholds

for CT (Contraction Time) and Amp (Amplitude) to extracting relevant informa-

tion and enhancing the analysis of physiological data. By carefully choosing the

thresholds and understanding the underlying assumptions, we effectively capture

subtle events, reduce noise, and gain valuable insights into the phenomena. The
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(a) Missing Percentage (b) Missing Data Pattern

Figure 3: A display of the Missing Data Percentages of the Original Data in A,
while after considering the deletion of percentages > 45%, B displays its missing
pattern
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averaging of features for the restricted and imputed data is presented in Figure

4, showcasing the impact of the applied thresholds (CT 20mNs and Amp 8mNs)

on the dataset. Applying these techniques allowed for capturing more pertinent

(a) Restricted (b) Imputed

Figure 4: Averaging the Features of Restricted Data in (a) and (b) Imputed Data
for the set threshold of CT 2OmNs and Amp 8mNs

data points related to specific physiological phenomena, simplifying subsequent

analyses. For example, the variable ”rheobase” exhibited a lower mean in the re-

stricted data compared to the imputed data and also in both data, we realized

that its standard deviation gets higher in most classes, thus indicating that the

data points spread further away from the mean.

4.2 Outcome

Addressing the challenge of imbalanced classes through oversampling appeared

to balance the class distribution, with counts generated independently of the cho-

sen model. However, a closer examination of the baseline revealed the potential

existence of a fourth class within the specified range. This raised whether this

potential class significantly influenced overall accuracy or accuracy by class in the

model.
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Counts Restricted Data & Imputed Data

This shows how the counts are distributed on the respective dataset and

the methods (oversampling) employed. Though there is some similarity on the

heatmap for the Restricted and Imputed Data Figure 5, the sizes are different.

(a) Restricted at 71 (b) Imputation at 216 (c) Oversampled at 75

Figure 5: This heatmap show how the class by counts are distributed by Restricted
on the Subset, Oversampling, Imputation.The analysis involves a sequential thresh-
old range for Contraction Time (CT) from 5mNs to 30mNs and Amplitude (Amp)
from 2mNs to 20mNs, each incremented by 1mNs.

4.2.1 Restricted Data - MLM vs Random Forests

In Figure 6, a heatmap illustrates the overall accuracy for Multinomial Logistic

Model (MLM) and Random Forest (RF) at various threshold values for Contraction

Time (CT) and Amplitude (Amp). RF exhibited a constant accuracy of 1.0 with

O0B rate of 0.0278, which is low, indicating that the model predicts well on unseen

data. Due to its sensitivity to model performance during cross-validation. Figure 6

depicts class-specific accuracy, revealing instances where certain classes, especially

3 and 4, had no predictions for specific thresholds (CT > 20mNs and < 8mNs).

However, adjusting the thresholds, specifically for CT 15mNs & Amp 5mNs, re-

vealed the possibility of predicting a fourth class with a probability of 0.73.

4.2.2 Imputed Data - MLM vs Random Forests

With an equal number of observations (216) as presented in Table 3, oversampling

of 200 observations was applied to balance class distribution, and a 5-Fold Cross
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(a) MLM (b) RF

Figure 6: A heatmap illustrating the Overall Accuracy of Multinomial Logistic
Model (MLM) and Random Forest (RF) on the Restricted Data. The analysis
involves a sequential threshold range for Contraction Time (CT) from 5mNs to
30mNs and Amplitude (Amp) from 2mNs to 20mNs, each incremented by 1mNs.

(a) MLM (b) RF

Figure 7: A heatmap illustrating the Class Specific Accuracy of Multinomial Logis-
tic Model (MLM) and Random Forest (RF) on the Restricted Data. The analysis
involves a sequential threshold range for Contraction Time (CT) from 5mNs to
30mNs and Amplitude (Amp) from 2mNs to 20mNs, each incremented by 1mNs.

32



(a) MLM (b) RF

Figure 8: A heatmap depicting the Overall Accuracy of Multinomial Logistic Model
(MLM) and Random Forest (RF) with Cross-Validation on the Restricted Data.
The analysis involves a sequential threshold range for Contraction Time (CT) from
5mNs to 30mNs and Amplitude (Amp) from 2mNs to 20mNs, each incremented
by 1mNs.

(a) MLM (b) RF

Figure 9: A heatmap depicting the Class-specific Accuracy of Multinomial Logistic
Model (MLM) and Random Forest (RF) with Cross-Validation on the Restricted
Data. The analysis involves a sequential threshold range for Contraction Time
(CT) from 5mNs to 30mNs and Amplitude (Amp) from 2mNs to 20mNs, each
incremented by 1mNs.
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Validation was utilized. Figures 12 to 17 depict well-dispersed overall accuracy

and accuracy by classes across various approaches and thresholds. Focusing on

the CT 20mNs and Amp 8mNs threshold: The overall accuracy of 0.94623

(a) MLM (b) RF

Figure 10: A heatmap illustrating the Overall Accuracy of Multinomial Logistic
Model (MLM) and Random Forest (RF) on the Imputed Data. The analysis
involves a sequential threshold range for Contraction Time (CT) from 5mNs to
30mNs and Amplitude (Amp) from 2mNs to 20mNs, each incremented by 1mNs.

under the cross-validation approach, with class-specific accuracies of 0.9687500,

0.9642857, and 0.9090909, outperformed the MLM with oversampling (overall ac-

curacy: 0.7683; class-specific accuracies: 0.8764, 0.6393, and 0.8128). These dif-

ferences in results may be influenced by the considerations outlined in Table 6.

Influential Change of the Threshold

Changing the threshold values had a notable impact on the overall accuracy and

class-specific accuracy of the models, as presented in Tables 4 and 5. For exam-

ple, at CT 25mNs & Amp 10mNs, MLM with oversampling achieved an overall

accuracy of 1.000, while MLM without oversampling and RF with cross-validation

scored 0.8732 and 0.9785, respectively

The analysis of model performance across different threshold settings under-
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(a) MLM (b) RF

Figure 11: A heatmap illustrating the Class Specific Accuracy of Multinomial
Logistic Model (MLM) and Random Forest (RF) on the Imputed Data. The
analysis involves a sequential threshold range for Contraction Time (CT) from
5mNs to 30mNs and Amplitude (Amp) from 2mNs to 20mNs, each incremented
by 1mNs.

(a) MLM (b) RF

Figure 12: A heatmap illustrating the Overall Accuracy of Multinomial Logistic
Model (MLM) and Random Forest (RF) with Oversampling on the Imputed Data.
The analysis involves a sequential threshold range for Contraction Time (CT) from
5mNs to 30mNs and Amplitude (Amp) from 2mNs to 20mNs, each incremented
by 1mNs.
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(a) MLM (b) RF

Figure 13: A heatmap illustrating the Overall Accuracy of Multinomial Logistic
Model (MLM) and Random Forest (RF) with Cross Validation on the Imputed
Data. The analysis involves a sequential threshold range for Contraction Time
(CT) from 5mNs to 30mNs and Amplitude (Amp) from 2mNs to 20mNs, each
incremented by 1mNs.

(a) MLM (b) RF

Figure 14: heatmap illustrating the Overall Accuracy of Multinomial Logistic
Model (MLM) and Random Forest (RF) with Cross Validation on the Imputed
Data. The analysis involves a sequential threshold range for Contraction Time
(CT) from 5mNs to 30mNs and Amplitude (Amp) from 2mNs to 20mNs, each
incremented by 1mNs.
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Thresholds MLM w/o MLM w MLM cv RF w/o RF w RF cv

CT 25mNs & Amp 10mNs 0.8732 1.000 0.9333 1.0000 1.0000 0.9785
CT 15mNs & Amp 5mNs 0.7042 0.7333 0.6333 1.0000 1.0000 0.9113
CT 20mNs & Amp 10mNs 0.8732 0.9289 0.8889 1.0000 1.0000 0.9247

Table 6: Distribution of Overall Accuracy of the Models: w (with oversampling),
w/o (without oversampling), and cv (cross-validation)

Thresholds Class MLM w/o MLM w MLM cv RF w/o RF w RF cv

0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
CT 25mNs & Amp 10mNs 1 0.9123 1.0000 1.0000 1.0000 1.0000 0.9677

3 0.6667 1.0000 0.8333 1.0000 1.0000 0.9677

0 0.7273 0.7907 0.6667 1.0000 1.0000 1.0000
CT 15mNs & Amp 5mNs 1 0.6563 0.7500 0.7778 1.0000 1.0000 0.7949

3 0.7500 0.6563 0.5455 1.0000 1.0000 1.0000

0 1.0000 1.0000 1.0000 1.0000 1.0000 0.9118
CT 20mNs & Amp 10mNs 1 0.9074 0.9403 0.7778 1.0000 1.0000 0.9286

3 0.6667 0.8554 0.9167 1.0000 1.0000 0.9355

Table 7: Accuracy by Class Influence with Changes in Threshold: w (with over-
sampling), w/o (without oversampling), and cv (cross-validation)

scores the impact of oversampling on accuracy enhancement, showcasing its ef-

fectiveness in addressing class imbalances. Models with oversampling consistently

outperform counterparts without oversampling, as evident in various threshold

combinations, such as CT 25 ms Amp 10 mN, where both MLM and RF models

achieve perfect accuracy for Class 0. This stability persists across different thresh-

olds, emphasizing oversampling’s reliability. Cross-validation results reinforce the

models’ robustness, particularly in scenarios like CT 15 ms Amp 5 mN, where

MLM models, especially the oversampled version, excel in handling imbalanced

classes. The RF algorithm, even without oversampling, maintains high accuracy

across various thresholds, highlighting its inherent ability to handle imbalanced

data. At CT 20 ms Amp 10 mN, oversampling contributes to improved perfor-

mance in Class 1 and Class 3 for both MLM and RF models. The consistent

accuracy enhancement with oversampling, coupled with the stability of the RF al-
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Data Type MLM w/o MLM w MLM cv RF w/o RF w RF cv

Restricted 0.7685 0.9333 0.9778 1.0000 1.0000 1.0000
Imputed 0.7685 0.9333 0.8000 0.9814 0.9935 0.9462

Table 8: Restricted and Imputed Data: Distribution of Overall Accuracy of
the Models: w (with oversampling), w/o (without oversampling), and cv (cross-
validation) with threshold of 20mNs and 8mNs

Data Type Class MLM w/o MLM w MLM cv RF w/o RF w RF cv

0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Restricted 1 0.9123 1.0000 0.9375 1.0000 1.0000 1.0000

3 0.7333 0.9259 0.8333 1.0000 1.0000 1.0000

0 0.5833 0.8367 0.9285 1.0000 1.0000 0.9687
Imputed 1 0.8023 0.5894 0.8000 0.9746 1.0000 0.9643

3 0.6563 0.7383 0.7143 1.0000 0.9810 0.9091

Table 9: Restricted and Imputed Data: Accuracy by Class Influence: w (with
oversampling), w/o (without oversampling), and cv (cross-validation) with thresh-
old of 20mNs and 8mNs

gorithm, positions it as a reliable choice for motoneuron classification tasks across

diverse scenarios, instilling confidence in generalization capabilities.

Analyzing results from Tables 6 and 7 provides additional insights into the

stability and performance of the Random Forests (RF) algorithm. While con-

sistently achieving high accuracy overall and by class, the threshold setting of

15mNs and 5mNs introduces an intriguing observation. At this threshold, the RF

model demonstrates the potential to predict a fourth class with 73% accuracy,

showcasing its effective handling of diverse instances. Low variability in out-of-

bag (OOB) estimates supports the RF model’s reliability, indicating consistent

prediction errors across scenarios and robust performance on unseen data. In con-

trast, the Multilevel Model (MLM) experiences accuracy variations with changes

in thresholds, underscoring sensitivity to adjustments. This observation empha-

sizes the need for careful consideration and selection of threshold values to opti-
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mize MLM performance in motoneuron classification. Nuanced insights from the

RF model, combined with considerations for the MLM, provide a comprehensive

understanding of strengths and potential areas for refinement. Further examina-

Considerations Selection & Reason
Nature of Data MLM
Handling Imbalanced Data Depends
Interpretability MLM
Computational Efficiency MLM

Table 10: Description of Considered Factors and Selected Model

tion of class-specific accuracies at specific thresholds, such as CT 15mNs Amp

5mNs and CT 20mNs Amp 10mNs, offers nuanced perspectives. At CT 15mNs

Amp 5mNs, variations in class-specific accuracies highlight potential trade-offs.

For Class 0, MLM without oversampling scored 0.7273, MLM with oversampling

achieved 0.7907, and RF with cross-validation reached a perfect accuracy of 1.000.

For Class 1, MLM without oversampling scored 0.6563, MLM with oversampling

achieved 0.7500, and RF with cross-validation scored 0.7949. For Class 3, MLM

without oversampling achieved 0.7500, MLM with oversampling scored 0.6563, and

RF with cross-validation reached a perfect accuracy of 1.000. Similar variations

were observed at CT 20mNs Amp 10mNs. Considering these results, the choice

between MLM and RF depends on factors outlined in Table 6, including data na-

ture, interpretability, and computational efficiency, with the selection influenced

by specific requirements for handling imbalanced data.

In summary, the findings indicate that imputation proves beneficial as it pre-

serves data size, leading to more accurate and stable classification models . The

increased sample size from 71 to 216 contributes to improved model performance,

crucial for tasks with diverse class distributions. Imputation also helps reduce bias

introduced by missing data, enhancing the representativeness of each class and fa-

cilitating reliable class statistics. This, in turn, supports more robust downstream
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analyses and generalization of the MLM model. The choice between MLM and

RF should consider the specific nature of the data, interpretability requirements,

and computational efficiency. Therefore, MLM is advantageous due to its ease in

understanding the impact of each predictor on the logit response variable of 0, 1,

3, which is crucial for comprehending the relationship between electrical properties

and the response variable, especially considering our relatively small dataset.
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CHAPTER 5

Conclusions

This study delves into classification methods for predicting classes of motoneu-

rons based on their electrical properties, drawing insights from empirical data ob-

tained in Dr. Manuel’s laboratory experiments. The proposed classification mod-

els, multinomial logistic regression, and random forests, showcase remarkable accu-

racy in classifying Physiological Types. Notably, the proposed analysis combines

these models and effectively addresses class imbalances through the application

of oversampling techniques and handles missing data using hot deck imputation.

In the context of real-world data, the study highlights the non-standardized na-

ture of threshold choices, emphasizing the impact of opting for specific thresholds

such as CT 20mNs and Amp 8mNs, which resulted in enhanced overall accuracy

and accuracy by class, as illustrated in Tables 8 and 9. A similar observation is

made concerning overall accuracy, particularly in the transition from MLM w/o

to MLM w and RF w/o to RF w (Table 6 and 7). For instance, at CT 25mNs

Amp 10mNs, both models exhibit a rise in overall accuracy from 0.8732 to 1.000,

with RF maintaining its accuracy at 1.0. Notably, fixing thresholds within the

ranges of 15mNs and 5mNs led to improved accuracy, potential inclusion of new

variables for imputation, and the intriguing prediction of a fourth class with 73%

accuracy, showcasing effective handling of diverse instances. Additionally, Table

10 provides precision insights, with lower standard errors (e.g., SR, ahpHalfRelax,

and RinPeak), indicating reliable estimates. The exponential values in Table 11

further underscore specific variables’ substantial influence on the response.

In the realm of Random Forest analysis, the identification of the 8 most crucial

variables, especially RinPeak, demonstrates their significance in both restricted and
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imputed data scenarios. Looking ahead, future research should explore advanced

machine learning techniques, including ensemble and deep learning algorithms such

as Gradient Boosting Machines (GBM), XGBoost, Convolutional Neural Networks

(CNN), and Recurrent Neural Networks (RNN)[1]. Emphasizing transfer learning,

feature engineering, and extensive experimentation on diverse datasets is crucial

for validating and enhancing model performance. Additionally, addressing the

absence of significant interaction terms in reported tests should be a focal point

for future investigations, ensuring a comprehensive understanding of the underlying

dynamics.

List of References

[1] P. Ladosz, L. Weng, M. Kim, and H. Oh, “Exploration in deep reinforcement
learning: A survey,” Information Fusion, vol. 85, pp. 1–22, 2022.

42



.1 Appendix A

This shows the other heatmaps or plots of our findings

(a) MLM (b) RF

Figure .15: A heatmap illustrating the Overall Accuracy of Multinomial Logistic
Model (MLM) and Random Forest (RF) with Oversampling on the Restricted
Data. The analysis involves a sequential threshold range for Contraction Time
(CT) from 5 ms to 30 ms and Amplitude (Amp) from 2 mN to 20 mN, each
incremented by 1

List of References
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(a) MLM (b) RF(Both baseline and oversampling)

Figure .16: A heatmap illustrating the Class-specific Accuracy of Multinomial
Logistic Model (MLM) and Random Forest (RF) with Oversampling on the Re-
stricted Data. The analysis involves a sequential threshold range for Contraction
Time (CT) from 5 ms to 30 ms and Amplitude (Amp) from 2 mN to 20 mN, each
incremented by 1

(a) MLM (b) RF

Figure .17: A heatmap illustrating the Class Specific Accuracy of Multinomial
Logistic Model (MLM) and Random Forest (RF) with Oversampling on the Im-
puted Data. The analysis involves a sequential threshold range for Contraction
Time (CT) from 5 ms to 30 ms and Amplitude (Amp) from 2 mN to 20 mN, each
incremented by 1.
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.2 Appendix B

This shows the other tables of our findings:

(Intercept) rheobase ahpAmp ahpHalfRelax RinPeak Ion SR spikeWidth L
1 61.67243 27.76538 1.906413 -13.45122 26.5574 14.06556 -3.596994 74.55216 -73.20303
3 74.46532 28.07269 3.354719 -13.26260 22.7855 14.01311 -15.577276 66.00908 -76.39380

Table .11: Coefficients of MLM
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(Intercept) rheobase ahpAmp ahpHalfRelax RinPeak Ion SR spikeWidth L
1 18.89031 14.82227 14.23583 3.258721 8.618745 37.86559 3.723497 14.13919 12.43165
3 19.00807 14.82507 14.24809 3.261127 8.742742 37.86801 3.807966 14.29871 12.42715

Table .12: Standard Errors of the Coefficient of the MLM

(Intercept) rheobase ahpAmp ahpHalfRelax RinPeak Ion SR spikeWidth L
1 6.081313e+26 1.143801e+12 6.728911 1.439489e-06 341769128001 1284089 2.740598e-02 2.385578e+32 1.615572e-32
3 2.187144e+32 1.555293e+12 28.637548 1.738301e-06 7863489662 1218478 1.717414e-07 4.649222e+28 6.646491e-34

Table .13: Exponentials of Coefficients of the MLM[1]

Variable Importance (%)
RinPeak 100.000
Ion 48.883
ahpHalfRelax 10.896
ahpAmp 9.309
SR 9.045
rheobase 2.416
L 1.752
spikeWidth 0.000

Table .14: Random Forest Variable Importance (Restricted)

Variable Importance (%)
RinPeak 100.00
Ion 68.54
ahpHalfRelax 46.12
rheobase 37.38
ahpAmp 31.47
L 28.94
SR 10.82
spikeWidth 0.00

Table .15: Random Forest Variable Importance (Imputed)
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