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ABSTRACT 

 

Randomized Control Trials (RCTs) are widely used in behavioral and 

health-related studies to evaluate the effectiveness of intervention strategies; 

however, missing data in RCTs are almost inevitable. In many RCT studies, 

the key focus is to examine the average treatment effect (ATE) within an entire 

population. Heterogenous treatment effects, often reflected in moderation 

effects of baseline personal attributes, do not typically get included in 

analyses. To handle missing data in RCTs, multiple imputation (MI) or inverse 

probability weighting (IPW) could be used. MI, although often preferred over 

IPW, may lead to biased ATE results when the probability of missingness 

depends on a moderator and the moderation effect is omitted from the 

imputation process. In contrast, IPW may produce imprecise results when the 

sample size is small. This study aims to evaluate the performance of MI via 

joint modeling (MI-JM), MI via chained equations (MI-CE), and IPW in 

estimating the ATE in RCTs with missing data and omitted moderation effects. 

A Monte Carlo simulation study is conducted to compare methods under 

various scenarios. Findings suggest that the use of MI-CE would be 

recommended across all study conditions with the presence of incomplete 

outcomes but fully observed covariates. IPW could be utilized with relatively 

large sample sizes and relatively a small number of covariates. Listwise 

deletion and MI-JM are not recommended for use in RCTs with missing data 

and omitted moderation effects. 
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CHAPTER 1 

 

INTRODUCTION 
 

 Randomized Controlled Trials 
 

Randomized Controlled Trials (RCTs) are commonly used in 

psychological studies to estimate the effectiveness of intervention strategies. 

For instance, Bjureberg et Al. (2022) utilized RCT to evaluate the effect of 

emotion regulation interventions on maladaptive anger, Bisby et. al. (2022) 

utilized a RCT to evaluate differences between therapist-guided and self-

guided online treatments for anxiety and depression, and Brincks et al. (2022) 

utilized a RCT to evaluate a family-based intervention as a prevention method 

for adolescent alcohol use among Hispanic populations.  

In a typical two-group pretest-posttest RCT, participants are randomly 

assigned either to a treatment group to receive the new treatment of interest or 

to a control group where they receive no treatment, placebo, or standard 

treatment. In many RCT applications, the primary goal is to estimate the 

average treatment effect (ATE) aggregated across an entire target population 

(Gerber & Green, 2012; Gomila & Clark, 2022; Holland, 1986), such as all 

adults in the United States with the opioid use disorder. The ATE is defined as 

the difference between the treatment and control groups in the mean 

treatment outcomes at posttest, while controlling for pretest outcome scores 

and other baseline covariates. Analysis of Covariance (ANCOVA) is a widely 

used method to estimate the ATE in RCTs (Howell, 2009; Maxwell, Delaney & 

Kelley, 2018). The ANCOVA model can be expressed as: 
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𝑌𝑖 = β0 + β1𝑇𝑅𝐸𝐴𝑇𝑖 + β21𝑋1𝑖 + β22𝑋2𝑖 + ⋯ + β2𝑝𝑋𝑝𝑖 + ε𝑖                (1) 

where Yi represents the treatment outcome score of the ith person measured at 

posttest, TREATi  is a binary indicator of the treatment assignment for the ith 

person (1=treatment group and 0=control group), and [X1i, X2i, …, Xpi] is a set of 

covariates measured at pretest for the ith person, such as the pretest outcome 

score, age, gender, race/ethnicity, and other personal characteristics. The 

regression coefficient β1 represents the ATE and is the key parameter of 

interest, [β21, β22, …, β2p] represent covariate effects on the posttest outcome, 

and εi is the error term. By including covariates highly predictive of the 

treatment outcome, the ANCOVA model allows researchers to detect the ATE 

more efficiently with greater statistical power (Maxwell, Delaney & Kelley, 

2018).  

Omitted Moderation Effects 
 

In psychological studies, it is not uncommon that the treatment may 

work better for some individuals than others (Lee et. al., 2019; Marquardt et. 

al., 2022; Wachs et. al., 2022). For instance, less acculturated individuals may 

be less responsive to an intervention to reduce problematic drinking than 

those more acculturated. Such heterogeneous treatment effects, or in other 

words, moderation effects of treatment, could be captured by adding an 

interaction term — between the treatment indicator (TREAT) and the covariate 

as potential moderator — to the original ANCOVA model. If complete data are 

obtained for every person in an RCT, omitting such interaction effects in an 

ANCOVA model does not raise issues when estimating the ATE. However, 
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when missing data are present and the probability of missingness is 

determined by the covariates that involve omitted moderation effects, the ATE 

estimates could be substantially biased if the missing data are not properly 

handled.    

Missing Data Issues in Randomized Controlled Trials 
 

Missing data are almost inevitable in RCTs and may occur for a variety 

of reasons. For example, participants may be unwilling to provide answers to 

some survey questions, miss an assessment session, or completely drop out 

of a study, thereby posing issues when analyzing collected incomplete data 

and drawing research conclusions (Schafer & Graham, 2002). To describe 

how missingness is potentially related to the data, Rubin (1976) classified the 

missing data mechanisms into three types, including missing completely at 

random (MCAR), missing at random (MAR), and missing not at random 

(MNAR).  

MCAR occurs when the probability of having a missing value does not 

depend on the primary research question or study variable values (e.g., 

participant falls ill during the study unrelated to any study measure). MAR 

occurs when the probability of missingness is not related to the unseen values 

of the incomplete variable itself but does depend on observed values of other 

measures in the study (e.g., individuals with higher observed scores of 

emotion dysregulation are more likely to skip questions in a personality scale). 

MNAR occurs when the probability of missingness depends on the unseen 

values of the incomplete variable itself or other unobserved variables related 
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to the study variables (e.g., participants not filling out a substance use 

questionnaire due to current engagement with substances).  

The current study will focus on analyzing MAR data where the 

probability of having a missing posttest outcome score depends on one or 

more measured covariates that potentially moderate the treatment effects, but 

the moderation effects (i.e., interaction terms) are not included in the primary 

analysis that examines the ATE.  

Statistical Methods to Handle Missingness 
 

 Various methods of handling missing data can be utilized depending on 

the amount and type of missingness. For the purpose of this study, three 

methods will be evaluated, including inverse probability weighting (IPW), 

multiple imputation via joint modeling (MI-JM), and multiple imputation via 

chained equations (MI-CE). 

Inverse Probability Weighting (IPW)  
 

Until the development of more modern methods, psychologists often 

used ad hoc methods, such as complete-case analysis, to deal with missing 

data. An individual is considered as a “complete case” if their data on all the 

variables involved in the analysis (e.g., outcome and all the covariates in an 

ANCOVA model) are fully observed. Complete-case analysis is also referred 

to as the listwise deletion (LD) method because any records containing 

missing data are deleted entirely from the analysis. Complete-case analysis is 

the default method in most regression analysis software (White & Carlin, 

2008), but it usually produces biased results unless the missingness 
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mechanism is MCAR or the missingness depends entirely on covariates and 

the regression model is correctly specified (Little, Carpenter, & Lee, 2022; 

Johnson & Young, 2011; Schafer & Graham, 2002). To handle MAR data in 

RCTs, the IPW approach could be implemented, which still uses complete 

cases but gives more weight to some cases than others in the regression (e.g, 

ANCOVA) model (Little et al., 2022).  

 IPW involves providing weight to cases based upon the probability of 

them being complete (Seaman & White, 2011). Specifically, individuals with a 

higher probability of being a complete case will receive less weight than those 

with a lower probability of being complete. In Step 1 of the IPW approach, the 

probability of the ith person being a complete case, namely Pi, is calculated 

using a logistic regression model: 

𝑃𝑖 =  
exp (𝛾0+𝛾1𝑇𝑅𝐸𝐴𝑇𝑖+𝜸𝟐𝑿𝒊+𝜸𝟑𝑇𝑅𝐸𝐴𝑇𝑖𝑿𝒊)

1+exp (𝛾0+𝛾1𝑇𝑅𝐸𝐴𝑇𝑖+𝜸𝟐𝑿𝒊+𝜸𝟑𝑇𝑅𝐸𝐴𝑇𝑖𝑿𝒊)
                                           (2)     

where Xi = [X1i, X2i, …, Xpi] is a column vector of covariates measured at pretest 

for the ith person, and TREATi Xi = [TREATiX1i, TREATiX2i, …, TREATiXpi] is a 

column vector of interaction terms between TREAT and each covariate. In 

addition, γ𝟐 = [γ21, γ22, … , γ2𝑝] is a row vector of regression coefficients for 𝑋𝒊 

and γ𝟑 = [γ31,γ32, … γ3𝑝] is a row vector of regression coefficients for the 

interaction terms between TREAT and each covariate. If the logistic regression 

model is mis-specified (e.g., the interaction term TREATi Xi  is omitted), IPW 

may yield biased results.  The weight for person i is then computed using the 

inverse probability formula: 

𝑤𝑖 =
1

𝑃𝑖
                                                               (3) 
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In Step 2 of the IPW approach, a weighted regression model is fitted 

with only complete cases. The regression model uses the same specification 

as the ANCOVA model shown in Equation 1, except that each complete case 

is given the weight calculated in Step 1 of the IPW approach (Gomila & Clark, 

2020).  

Multiple Imputation (MI) 

  
The MI approach has been increasingly used to deal with missing data 

in psychological studies in the past two decades (Schafer & Graham, 2002). 

MI is separated into two phases, namely an imputation phase and an analysis 

and pooling phase (Enders, 2010). The imputation phase involves using the 

distribution of the observed data to simulate multiple plausible values for each 

missing value, resulting in K versions of a complete dataset that replace (i.e., 

impute) missing values with simulated plausible values. In the analysis and 

pooling phase, each imputed data set is analyzed using the same complete-

data inference model, and results from the K data sets are then combined via 

Rubin’s Rules (Rubin, 1987) to obtain the overall estimates and standard 

errors of the parameters (e.g., ATE), which represent both the sample 

variation and the uncertainty surrounding missingness. Compared to 

complete-case analysis, MI has been found to produce less biased parameter 

estimates when data are MAR (Enders, 2010; Lieberman-Betz, et. al, 2014; 

Schafer & Graham, 2002). In addition, MI often yields more precise estimates 

than IPW, because the former includes all individuals (even those with partially 

missing data) whereas the latter only includes complete cases in the analyses. 
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However, as discussed in Seaman & White (2013), MI may yield biased 

results if the imputation model is mis-specified. The current study will examine 

the performance of two types of MI, namely joint modeling and chained 

equations, given a potential source of imputation model misspecification 

commonly encountered in RCTs, that is, when moderation effects are omitted 

from the inferential analysis model.  

 Multiple Imputation via Joint Modeling (MI-JM). MI-JM assumes all 

the variables included in the missing data imputation model follow a common 

joint distribution. In the context of RCT and ANCOVA, it is assumed that all the 

covariates and outcome are jointly normally distributed within the treatment (or 

control) group. Consequently, a multivariate normal distribution is used to 

predict/impute missing values in all incomplete variables simultaneously, 

based on the observed values of all variables. To illustrate, consider an RCT 

with an incomplete outcome Y and a completely observed covariate X, the joint 

imputation model can be expressed as  

    (
𝑌𝑖,𝑚𝑖𝑠

𝑋𝑖
) ~𝑀𝑉𝑁 (

𝛼10,𝑦 + 𝛼11,𝑦𝑇𝑅𝐸𝐴𝑇𝑖

𝛼10,𝑥 + 𝛼11,𝑥𝑇𝑅𝐸𝐴𝑇𝑖
, Σ𝑒)                                       (4) 

where 𝑌𝑖,𝑚𝑖𝑠 represents the missing value of Y  for the ith person and Σ𝑒 is the 

covariance matrix between Y and X. Of note, although this study focuses on 

normally distributed variables, the MI-JM approach can be readily extended to 

accommodate categorical variables by assuming an underlying normally 

distributed latent trait for discrete responses. As shown in Equation (4), in the 

joint modeling imputation model, while the means of X and Y are allowed to 

vary between the treatment and control groups, the covariance structure of X 
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and Y  (i.e., Σ𝑒) are assumed equal between the two groups. In other words, 

the relationship between X and Y  is assumed equal between groups, and 

nonlinear terms such as moderation effects (where X moderates the effect of 

treatment on Y ) cannot be included in the imputation. Therefore, omitting 

moderation effects would result in mis-specified imputation model and 

potentially biased treatment effect estimates (Little et al., 2022).  

Multiple Imputation via Chained Equations (MI-CE). MI-CE allows 

for more flexibility as compared to MI-JM due to its ability to include 

moderation effects or interaction terms into the imputation model. A key 

distinction between MI-JM and MI-CE is that the former draws replacement 

values for all incomplete variables from a common multivariate distribution, 

whereas the latter cycles through incomplete variables one at a time, drawing 

replacement values from a series of univariate conditional distributions. At 

each iteration step of the imputation process, missing values for a particular 

variable are filled in by drawing plausible values from a univariate conditional 

distribution, based on a regression model that uses the incomplete variable as 

outcome and all other variables as predictors (including filled-in values of 

predictor variables from a previous step). To illustrate, consider an RCT with 

an incomplete outcome Y and a completely observed covariate X. If the 

probability of missing an outcome value depends on the covariate and there is 

an interaction effect between the covariate and the treatment assignment, then 

the imputation model can be expressed as  

𝑌𝑖,𝑚𝑖𝑠𝑠~𝑁(𝛼20 + 𝛼21𝑇𝑅𝐸𝐴𝑇𝑖 + 𝛼22𝑋𝑖 + 𝛼23𝑇𝑅𝐸𝐴𝑇𝑖𝑋𝑖, 𝜎𝑒
2).         (5) 
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Despite the increased flexibility, under certain conditions (i.e., small sample 

sizes, large number of interaction terms), MI-CE may produce imprecise 

results with large standard errors (Little et al., 2022). 

Study Aims 

There has been a dearth of investigation focusing on the performance of 

MI and IPW in RCTs with omitted moderation effects as well as the key factors 

influencing their performance. Consequently, the current study aimed to 

compare the performance of three methods in estimating ATE in RCTs with 

MAR data and omitted moderation effects, given various sample sizes and 

analysis/imputation model complexity levels. The three methods include:  

1. the IPW approach that includes all possible moderation effects when 

computing the probability of being complete,   

2. the MI approach via joint modeling (MI-JM) which does not include 

moderation effects when imputing missing values, and  

3. the MI approach via chained equations (MI-CE) which includes all pos-

sible moderation effects when imputing missing values. 

The results of this study will provide support for which of the three proposed 

methods performs the best under which conditions. It is hypothesized that IPW 

or MI-CE will outperform MI-JM, when the sample size is relatively large and 

the moderation effects are strong.  
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CHAPTER 2 
 

METHODOLOGY 
 

A Monte Carlo simulation study was conducted to investigate the 

performance of IPW, MI-JM, and MI-CE methods in estimating the average 

treatment effect in RCTs with MAR data and omitted moderation effects. In 

addition, to facilitate the comparisons, analyses based on the full complete 

dataset before generating any missing values (i.e., the Complete method) and 

the listwise deletion (LD) method were used to demonstrate the “best case 

scenario” and the “worst case scenario”, respectively.  

Monte Carlo simulations are commonly used to investigate the 

magnitude of bias in parameter estimates (e.g., whether a statistical method 

consistently under- or over-estimate the population value of treatment effect), 

to determine whether a method maintains the Type I error rate at the desired 

level, and to examine statistical power. These evaluation goals cannot be 

achieved in empirical data analyses, where parameters (e.g., treatment 

effects) are estimated using real-world data collected from participants and the 

true values of parameters are unknown. Consequently, researchers cannot tell 

how close the estimated treatment effect from a sample is to the actual 

population value of treatment effect. In contrast, in simulation studies, 

parameters are estimated using a large number of simulated data sets where 

the true values of the population parameters are known, and hence 
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researchers can determine whether and to what extent sample results are 

consistently below or above the population values.  

Simulation Study Design 
 

Complete Data Generation 
 

Data was generated to simulate a RCT with two groups (a treatment 

group and a control group) and five covariates. Under each simulated 

condition, complete datasets with no missing data were generated using the 

following model: 

𝑌𝑖 = β0 + β1𝑇𝑅𝐸𝐴𝑇𝑖 + β21𝑋1𝑖 + β22𝑋2𝑖 + β23𝑋3𝑖 + β24𝑋4𝑖 + β25𝑋5𝑖 + 

         β31𝑇𝑅𝐸𝐴𝑇𝑖𝑋1𝑖 + β32𝑇𝑅𝐸𝐴𝑇𝑖𝑋2𝑖 + β33𝑇𝑅𝐸𝐴𝑇𝑖𝑋3𝑖 + β34𝑇𝑅𝐸𝐴𝑇𝑖𝑋4𝑖 +

         β35𝑇𝑅𝐸𝐴𝑇𝑖𝑋5𝑖 +εi                                                                                                                   (6) 

where the ATE, or β1, was fixed at either 0 or 0.5 to represent no treatment 

effect or a medium-sized treatment effect that is commonly found in 

psychological studies. Without loss of generality, the variances of the error 

term ε and the five covariates X1 to X5 were set to 1; the intercept of Y (β0)was 

set to 3; the means of covariates X1 to X5 in both groups were set to 0. To 

ensure that bias would result if the moderation effect pertaining to a covariate 

is omitted from the analysis model, a medium sized correlation was set 

between each covariate and the outcome (Collins et al., 2001), with 𝛽21 to 𝛽25 

set to 0.4. To investigate how the number of omitted moderation effects impact 

the analysis results, three conditions, with 1, 3, or 5 moderation effects, were 

examined. Under the condition with one moderation effect, only the first 

interaction term (β31TREATiX1i) in Equation 6 was included to generate data 
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and β32𝑇𝑅𝐸𝐴𝑇𝑖𝑋2𝑖 to β35𝑇𝑅𝐸𝐴𝑇𝑖𝑋5𝑖 were removed from the data generation 

model. Similarly, under the conditions with 3 and 5 moderation effects, the first 

three interaction terms and all five interaction terms in Equation 6, 

respectively, were included. Without loss of generality, treatment and control 

groups were equally sized. For each person, the covariate values (𝑋1𝑖 to 𝑋5𝑖) 

were generated first, followed by the generation of the residual term (εi). 

Lastly, the corresponding outcome value (𝑌𝑖) was computed based on 

Equation 6. Data was generated using the statistical software R (R Core 

Team, 2021). 

Missing Data Generation 
 
 Missing data was generated assuming MAR. The probability of missing 

the posttest outcome Y for the ith person was dependent on all the five 

covariates and can be expressed as  

𝑃𝑟(𝑅𝑖 = 1)  = Φ(𝜂 0 +  𝜂1𝑋1𝑖
∗  + 𝜂2𝑋2𝑖

∗  +  𝜂3𝑋3𝑖
∗  +  𝜂4𝑋4𝑖

∗  +  𝜂5𝑋5𝑖
∗                (7) 

where Φ represents the probit function, 𝑋1𝑖
∗  to 𝑋1𝑖

∗  are standardized scores of X1 

to X5 (so that the variable representing the sum of X1 to X5 has a variance of 1), 

and 𝑅𝑖 is a binary indicator with a value of 1 indicating 𝑌 value was missing 

and 0 indicating Y  was observed. The coefficients 𝜂1 to 𝜂5 were set at 1.815 to 

allow a 0.5 correlation between the covariates and the probability of missing 

the outcome; 𝜂0 was set at -3.22 or -1.31 to generate 10% or 30% of missing 

data in the outcome Y. A missing data rate of 10% to 30% was commonly 

seen in psychological studies, as reported in previous literature (e.g., Little et 

al., 2014). To determine if a person has missing Y value, the probability of 
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missing Y for this person was first specified using Equation 7, and the missing 

indicator R for this person was then generated from a binomial distribution with 

success rate equal to their probability of missing Y. For persons with 𝑅𝑖 = 1 , 

their Y values were set to missing in the final generated data set. 

Influencing factors examined in the simulation study 
 
 Five factors were manipulated in the simulations to investigate their 

impact on the ATE estimation. The factors included (1) population value of 

ATE (𝛽1 = 0 or 0.5), (2) number of omitted moderation effects (1, 3, or 5), (3) 

magnitude of omitted moderation effects (𝛽31 𝑡𝑜 𝛽35 = 0.1, 0.3, or 0.5), (4) 

sample size (n = 50, 100, 200, or 400), and (5) proportion of missing data in 

the outcome pmiss = 10% or 30%. A total of 2 × 3 × 3 × 4 × 2 = 144 conditions 

were examined. For each condition, 1,000 datasets were generated.  

Methods used to analyze data 
 

After generating the data, the ANCOVA model in Equation 1 was fitted 

to each dataset to estimate the ATE using the three methods of interest: IPW, 

MI-JM, and MI-CE, as well as the two additional comparison methods: 

Complete and LD. Inferential analyses were conducted using the lm function in 

R, the probability of being complete (when implementing IPW) was calculated 

using the glm function in R, and the multiple imputation was conducted using 

the R jomo package (Quartagno, 2022) for MI-JM and the R mice package 

(Van Buuren & Groothuis-Oudshoorn, 2011) for MI-CE.   

Evaluation Statistics 
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The ATE was the primary parameter of interest for evaluating the estimation 

and inference process. Estimation bias of ATE was evaluated for all methods 

across all the simulation conditions and Type I error rate was evaluated when 

ATE = 0. The absolute bias, defined as the deviation of the estimated ATE — 

averaged across the 1,000 simulated datasets — from its true population 

value, was computed when ATE was zero, whereas relative bias, defined as 

the ratio of absolute bias to the true value of ATE (expressed in a percent 

format), was examined given nonzero ATE. A relative bias greater than 10% is 

typically considered as not acceptable (Finch et al., 1997; Kaplan, 1988). The 

empirical Type I error rate is defined as the proportion of significant ATE 

estimates among the 1,000 simulated datasets when the true ATE is zero. 

Given a nominal alpha level of 0.05, a Type I error rate higher than 0.075 is 

often considered as inflated, and a rate lower than 0.025 considered as 

deflated. 

  



 

15 
 

CHAPTER 3 

 

FINDINGS 
 

The results from the simulation study are organized as follows. The 

estimation bias of ATE across the five methods are presented first, followed by 

the Type I error rates obtained from the zero treatment effect conditions.  

Estimation bias for average treatment effect 

Bias with 10% Missing Data and ATE=0.5 

Tables 1 to 3 present the summary information of relative bias for the ATE 

estimates from the five methods when the true treatment effect was nonzero 

(i.e., 0.5) and the proportion of missing data was 10%, with the magnitude of 

omitted moderation effects equal to 0.1, 0.3, and 0.5, respectively. In each 

table, results are stratified by sample size and number of omitted moderators. 

Relative biases in regard to estimating the ATE were small or negligible and 

never exceeded the threshold of 10%, regardless of the method, the sample 

size, the number of omitted moderators, or the magnitude of moderation 

effects evaluated. 

Bias with 30% Missing Data and ATE=0.5 

Tables 4 to 6 present the summary information of relative bias for the ATE 

estimates from the five methods when the true treatment effect was nonzero 

(i.e., 0.5) and the proportion of missing data was 30%, with small, medium, 

and large moderation effects (i.e., the magnitude of omitted moderation effects 

equal to 0.1, 0.3, and 0.5), respectively. Results are stratified by sample size 

and number of omitted moderators. As shown in Table 4, given small 
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moderation effects, relative biases in regard to estimating ATE were negligible 

and never exceeded the threshold of 10%, regardless of the method, sample 

size, or number of omitted moderators evaluated. 

Given medium-sized moderation effects (see Table 5), relative biases in 

estimating the ATE were minimal when the number of omitted moderators was 

one. However, when the number of omitted moderators was 3 or 5, LD and 

MI-JM resulted in biased ATE estimates, with relative biases greater than 10% 

across all four sample sizes.  

When the omitted moderation effects were large (see Table 6), relative 

biases in estimating the ATE were still negligible when there was only one 

omitted moderator. However, when the number of omitted moderators was 3 

or 5, LD and MI-JM resulted in severely biased ATE estimates across all four 

sample sizes, with approximately 40% relative biases when using MI-JM. In 

addition, ATE estimates via IPW showed relative biases greater than 10% 

when the sample size was small (n=50) and many moderators (5) were 

omitted from the inferential analyses.  

Overall, as the number of omitted moderators increased or as the 

magnitude of the moderation effects increased, the bias in estimating the ATE 

became more pronounced when using LD or MI-JM. As the sample size 

decreased, the bias in estimating the ATE became more pronounced when 

using IPW but remained similar when using LD or MI-JM.  Across conditions, 

MI-CE performed relatively well, producing minimal biases.  
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Given that absolute biases in estimating the ATE were similar when ATE = 

0 and when ATE = 0.5, the results from the former are omitted here. 

Type I Error for Detecting Average Treatment Effect 

Type I Error Rates with 10% Missing Data 

Tables 7 to 9 show the empirical Type I error rates in detecting the ATE, 

across the five methods, when the proportion of missing data was 10% and 

the magnitude of the omitted moderation effects was small (0.1), medium 

(0.3), and large (0.5), respectively. In each table, results are stratified by 

sample size and number of omitted moderators. With only 10% of missing 

data, Type I error rates were close to the nominal level of 0.05 across varying 

sample sizes and numbers of omitted moderators. The only exception was 

that in the presence of small sample size (n=50) and a single omitted 

moderator that had strong moderation effect, MI-JM led to inflated Type I error 

rate (0.077, see Table 9).  

Type I Error Rates with 30% Missing Data 

Tables 10 to 12 show the empirical Type I error rates in detecting the ATE, 

across the five methods, when the proportion of missing data was 30% and the 

magnitude of the omitted moderation effects was small (0.1), medium (0.3), and 

large (0.5), respectively. In each table, results are stratified by sample size and 

number of omitted moderators. With small moderation effects, the Type I error 

rates remained close to the nominal level of 0.05 across various methods. With 

medium and large moderation effects, as sample size and number of omitted 

moderators increased, LD and MI-JM resulted in more inflated Type I error rates 
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(>0.075, see Table 11 and Table 12, respectively). With medium moderation 

effects, small sample size (n=50) and 1 or 3 omitted moderators, IPW resulted 

in inflated Type I error rates (0.077 and 0.075, respectively, see Table 11). With 

large moderation effects, small sample size (n=50) and 3 omitted moderators, 

IPW resulted in inflated Type I error rates (0.077, see Table 12). 
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CHAPTER 4 

 

DISCUSSION 
 

With regard to the bias in estimating the ATE, LD and MI-JM led to 

increased biases as the number of omitted moderators and the magnitude of 

moderation increased, IPW produced more pronounced biases with smaller 

sample sizes (i.e., n=50), and MI-CE consistently resulted in minimal biases. 

As sample size and number of omitted moderators and magnitude of 

moderation increased, LD and MI-JM led to more severely inflated Type I error 

rates. 

In the presence of only 10% missing data, all methods showed minimal 

biases and Type I error rates close to the nominal level of 0.05. This is 

consistent with previous literature stating that MI provides negligible benefits 

as compared to LD, given less than 5% missing data (Schafer, 1999), and 

substantial bias likely occurs in analyses with more than 10% missingness 

(Dong & Pend, 2013). 

As expected, LD led to substantial biases and inflated Type I error rates 

with 30% missing data. In this study, the treatment effect was set to vary 

depending on the observed scores of the moderator(s), and the probability of 

missing the outcome Y was higher for individuals with higher scores of the 

moderator(s). Thus forth, the complete cases tend to be individuals with lower 

scores of the moderator(s), and the ATE was biased towards the treatment 

effect given lower scores of the moderator(s).  
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Similarly, MI-JM resulted in substantial biases and inflated Type I error 

rates. Given that MI-JM assumes multivariate normality and equal relationship 

between the covariates (e.g., potential moderators) and the outcome for the 

treatment and control groups, it was unable to incorporate moderation effect(s) 

into the imputation model, leading to biases and inflated Type I error rates. Of 

note, when the sample size was small (n=50), the Type I error rate resulting 

from the use of MI-JM was even higher than that from the use of LD. Despite 

multiple imputation typically being recommended over LD, if the imputation 

model is mis-specified, MI could be potentially more problematic than LD. 

As the number of omitted moderators increased and moderation effects 

strengthened, the pitfalls of using LD and MI-JM became more salient, in 

regards to both bias and Type I error. When using LD or MI-JM, the magnitude 

of biases remained similar as the sample size increased; however, the Type I 

error rate became more severely inflated with larger sample sizes. 

On the other hand, by giving more weight to cases that had a higher 

chance of being incomplete, IPW corrected the biases resulting from LD. 

Additionally, MI-CE exhibited minimal biases because it imputed the missing 

outcome values based on a correctly specified imputation model that included 

the omitted moderation effect(s). 

The study was not without limitations. By only considering missing data in 

the outcome and assuming fully observed covariates and moderators, the 

performance of missing data handling methods given incomplete covariates 

was not examined. In addition, the impact of having a large number of 
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covariates or moderators (e.g., more than 10) on the performance of MI and 

IPW was not investigated. Future research should aim to evaluate the 

performance of missing data handling methods when missing values are 

present in the covariates. Specifically, when covariates pertaining to the 

omitted moderation effects are partially missing, the MI-CE method may not 

perform as well as in the current study (Enders, Mistler & Keller, 2016; Enders, 

Hayes, & Du, 2018). As discussed in previous literature (Enders, Du & Keller, 

2020; Lüdtke, Robitzsch, & West, 2020), with incomplete covariates that 

involve nonlinear effects, a substantive-model-compatible (SMC) imputation 

approach would be needed. The exploration of various MI approaches, 

including SMC imputations, could provide a more comprehensive comparison 

and useful guidance on which missing data handling method(s) should be 

used in RCTs with omitted moderation effects. Additionally, the performance of 

the IPW and MI methods in the context of small sample sizes (e.g., n=50) and 

a large number of covariates or omitted moderators (e.g., more than 10 

covariates or moderators) warrants further investigation. 
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Table 1 

Relative Bias of Average Treatment Effect Estimates with 10% Missing Data, 

ATE=0.5, Small Moderation Effects (𝛽31 𝑡𝑜 𝛽35 = 0.1), by Number of Omitted 

Moderators, Sample Size, and Method 

Omitted 

Moderators 

Method % Relative Bias 

n=50 n=100 n=200 n=400 

1 Complete 0.60 0.97 -1.30 -0.18 

LD 0.02 0.80 -1.79 -0.46 

IPW 0.29 1.16 -1.47 -0.17 

MI-CE 0.51 0.87 -1.48 -0.18 

MI-JM -0.01 0.82 -1.85 -0.46 

3 Complete -0.93 0.36 0.74 0.56 

LD -1.63 -0.55 -0.10 -0.29 

IPW -1.42 -0.16 0.88 0.65 

MI-CE -0.78 0.27 0.91 0.60 

MI-JM -1.61 -0.48 -0.13 -0.25 

5 Complete -0.45 -0.49 -0.24 -0.21 

LD -2.17 -2.18 -1.90 -1.89 

IPW -1.80 -0.96 -0.49 -0.40 

MI-CE -0.89 -0.55 -0.25 -0.43 

MI-JM -2.28 -2.14 -1.91 -1.91 

Note: Complete = complete-data (pre-deletion) analysis; LD = listwise deletion; IPW = inverse 

probability weighting; MI-JM= multiple imputation via joint modeling; MI-CE= multiple 

imputation via chained equations; n= sample size; Relative Bias= the ratio of absolute bias to 

the true value in percentage format (relative bias >10% bolded). 
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Table 2 

Relative Bias of Average Treatment Effect Estimates with 10% Missing Data, 

ATE=0.5, Medium Moderation Effects ( 𝛽31 𝑡𝑜 𝛽35 = 0.3), by Number of 

Omitted Moderators, Sample Sizeand Method 

Omitted 

Moderators 

Method % Relative Bias 

n=50 n=100 n=200 n=400 

1 Complete 0.56 -1.68 0.50 -1.12 

LD 0.16 -2.29 -0.71 -2.17 

IPW 0.23 -1.69 0.28 -1.25 

MI-CE 1.02 -1.28 0.19 -1.23 

MI-JM 0.15 -2.32 -0.65 -2.23 

3 Complete -4.09 -0.32 0.59 0.39 

LD -6.71 -3.26 -2.55 -2.51 

IPW -6.05 -1.30 0.07 0.32 

MI-CE -3.79 -0.39 0.32 0.31 

MI-JM -6.42 -3.22 -2.58 -2.47 

5 Complete 2.71 0.37 -1.57 1.10 

LD -1.12 -4.12 -6.20 -3.53 

IPW -0.20 -1.25 -1.90 1.03 

MI-CE 3.88 0.53 -1.57 1.11 

MI-JM -1.06 -4.13 -6.22 -3.53 

Note: Complete = complete-data (pre-deletion) analysis; LD = listwise deletion; IPW = inverse 

probability weighting; MI-JM= multiple imputation via joint modeling; MI-CE= multiple 

imputation via chained equations; n= sample size; Relative Bias= the ratio of absolute bias to 

the true value in percentage format (relative bias >10% bolded). 
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Table 3 

Relative Bias of Average Treatment Effect Estimates with 10% Missing Data, 

ATE=0.5, Large Moderation Effects (𝛽31 𝑡𝑜 𝛽35 = 0.5), by Number of Omitted 

Moderators, Sample Size, and Method 

Omitted 

Moderators 

Method % Relative Bias 

n=50 n=100 n=200 n=400 

1 Complete -3.54 -0.44 -0.49 0.65 

LD -5.23 -2.96 -1.95 -0.94 

IPW -5.26 -1.80 -0.58 0.58 

MI-CE -4.30 -1.57 -0.42 0.58 

MI-JM -5.17 -2.97 -1.99 -0.88 

3 Complete 0.41 -0.47 -0.25 0.02 

LD -3.39 -4.95 -4.76 -4.87 

IPW -2.50 -2.00 -0.58 -0.26 

MI-CE 1.16 -0.19 -0.28 -0.19 

MI-JM -3.36 -4.94 -4.76 -4.88 

5 Complete 0.12 0.35 2.19 0.86 

LD -6.68 -6.79 -5.65 -7.16 

IPW -5.28 -1.82 1.55 0.68 

MI-CE 0.40 0.87 2.33 0.68 

MI-JM -6.69 -6.82 -5.72 -7.14 

Note: Complete = complete-data (pre-deletion) analysis; LD = listwise deletion; IPW = inverse 

probability weighting; MI-JM= multiple imputation via joint modeling; MI-CE= multiple 

imputation via chained equations; n= sample size; Relative Bias= the ratio of absolute bias to 

the true value in percentage format (relative bias >10% bolded). 
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Table 4 

Relative Bias of Average Treatment Effect Estimates with 30% Missing Data, 

ATE=0.5, Small Moderation Effects (𝛽31 𝑡𝑜 𝛽35 = 0.1), by Number of Omitted 

Moderators, Sample Size, and Method 

Omitted 

Moderators 

Method % Relative Bias 

n=50 n=100 n=200 n=400 

1 Complete -2.82 1.92 0.14 0.83 

LD -4.32 1.56 -1.28 -1.20 

IPW -3.14 3.22 0.04 0.47 

MI-CE -2.78 2.85 0.03 0.47 

MI-JM -4.49 1.58 -1.12 -1.17 

3 Complete 3.44 0.57 0.11 0.69 

LD -1.90 -3.40 -5.46 -4.10 

IPW 0.81 0.88 -1.04 0.43 

MI-CE 3.46 1.49 -0.91 0.46 

MI-JM -2.32 -3.43 -5.35 -4.25 

5 Complete 1.74 0.08 0.05 0.06 

LD -6.52 -7.89 -7.91 -7.81 

IPW -1.99 -0.44 -0.23 -0.04 

MI-CE 0.96 -0.03 0.04 0.07 

MI-JM -6.28 -7.70 -7.92 -7.78 

Note: Complete = complete-data (pre-deletion) analysis; LD = listwise deletion; IPW = inverse 

probability weighting; MI-JM= multiple imputation via joint modeling; MI-CE= multiple 

imputation via chained equations; n= sample size; Relative Bias= the ratio of absolute bias to 

the true value in percentage format (relative bias >10% bolded). 
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Table 5 

Relative Bias of Average Treatment Effect Estimates with 30% Missing Data, 

ATE=0.5, Medium Moderation Effects (𝛽31 𝑡𝑜 𝛽35 = 0.3), by Number of Omitted 

Moderators, Sample Size, and Method 

Omitted 

Moderators 

Method % Relative Bias 

n=50 n=100 n=200 n=400 

1 Complete -1.44 0.67 -0.80 -0.29 

LD -7.33 -3.27 -4.58 -4.99 

IPW -3.78 1.24 -0.10 -0.31 

MI-CE -2.95 0.95 -0.17 -0.34 

MI-JM -7.28 -3.32 -4.49 -5.08 

3 Complete 0.19 2.85 -0.54 0.43 

LD -15.59 -10.49 -14.68 -13.42 

IPW -6.52 2.89 -0.80 0.57 

MI-CE -0.62 3.82 -0.75 0.57 

MI-JM -15.79 -10.49 -14.67 -13.35 

5 Complete 6.37 -0.61 -1.89 -0.27 

LD -19.53 -23.71 -24.68 -22.86 

IPW -3.38 -1.89 -1.95 0.12 

MI-CE 5.15 0.77 -1.22 0.26 

MI-JM -19.57 -23.49 -24.60 -22.82 

Note: Complete = complete-data (pre-deletion) analysis; LD = listwise deletion; IPW = inverse 

probability weighting; MI-JM= multiple imputation via joint modeling; MI-CE= multiple 

imputation via chained equations; n= sample size; Relative Bias= the ratio of absolute bias to 

the true value in percentage format (relative bias >10% bolded) 
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Table 6 

Relative Bias of Average Treatment Effect Estimates with 30% Missing Data, 

ATE=0.5, Large Moderation Effects ( 𝛽31 𝑡𝑜 𝛽35 = 0.5), by Number of Omitted 

Moderators, Sample Size, and Method 

Omitted 

Moderators 

Method % Relative Bias 

n=50 n=100 n=200 n=400 

1 Complete 1.65 1.80 -0.49 -1.39 

LD -6.27 -5.83 -8.31 -9.59 

IPW -1.69 0.95 -1.09 -1.95 

MI-CE 2.26 2.07 -0.64 -1.77 

MI-JM -6.22 -5.57 -7.98 -9.60 

3 Complete -1.52 3.53 0.07 -0.61 

LD -23.88 -19.87 -22.93 -23.66 

IPW -9.51 1.71 -0.64 -0.63 

MI-CE -1.79 3.69 0.00 -0.56 

MI-JM -23.44 -19.73 -22.97 -23.71 

5 Complete 2.68 -1.24 -1.78 -0.13 

LD -38.39 -40.09 -39.83 -39.11 

IPW -11.87 -4.35 -2.31 -0.19 

MI-CE 3.53 -1.26 -1.31 0.16 

MI-JM -37.54 -40.15 -39.93 -39.09 

Note: Complete = complete-data (pre-deletion) analysis; LD = listwise deletion; IPW = inverse 

probability weighting; MI-JM= multiple imputation via joint modeling; MI-CE= multiple 

imputation via chained equations; n= sample size; Relative Bias= the ratio of absolute bias to 

the true value in percentage format (relative bias >10% bolded). 
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Table 7 

Type 1 Error Rate of Detecting Average Treatment Effect with 10% Missing 

Data, ATE=0, Small Moderation Effects (𝛽31 𝑡𝑜 𝛽35 = 0.1), by Number of 

Omitted Moderators, Sample Size and Method 

Omitted 

Moderators 

Method Type 1 Error Rate 

n=50 n=100 n=200 n=400 

1 Complete 0.062 0.061 0.048 0.049 

LD 0.056 0.056 0.047 0.049 

IPW 0.057 0.061 0.042 0.048 

MI-CE 0.056 0.053 0.044 0.049 

MI-JM 0.062 0.058 0.049 0.051 

3 Complete 0.052 0.057 0.047 0.052 

LD 0.049 0.053 0.048 0.058 

IPW 0.050 0.054 0.047 0.060 

MI-CE 0.048 0.052 0.044 0.057 

MI-JM 0.053 0.059 0.049 0.058 

5 Complete 0.051 0.054 0.037 0.056 

LD 0.051 0.050 0.042 0.049 

IPW 0.051 0.053 0.041 0.051 

MI-CE 0.048 0.053 0.042 0.047 

MI-JM 0.065 0.054 0.047 0.050 

Note: Complete = complete-data (pre-deletion) analysis; LD = listwise deletion; IPW = inverse 

probability weighting; MI-JM= multiple imputation via joint modeling; MI-CE= multiple 

imputation via chained equations; n= sample size; Type 1 Error rates higher than 0.075 are 

presented in bold and Type 1 error rates lower than 0.025 are presented in italic and bold. 
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Table 8 

Type 1 Error of Average Treatment Effect Estimates with 10% Missing Data, 

ATE=0, Medium Moderation Effects (𝛽31 𝑡𝑜 𝛽35 = 0.3), by Number of Omitted 

Moderators, Sample Size, and Method 

Omitted 

Moderators 

Method Type 1 Error Rate 

n=50 n=100 n=200 n=400 

1 Complete 0.046 0.055 0.062 0.052 

LD 0.051 0.054 0.066 0.049 

IPW 0.052 0.054 0.066 0.049 

MI-CE 0.047 0.055 0.064 0.051 

MI-JM 0.058 0.058 0.066 0.050 

3 Complete 0.056 0.044 0.057 0.047 

LD 0.053 0.051 0.056 0.046 

IPW 0.052 0.053 0.062 0.046 

MI-CE 0.048 0.047 0.058 0.049 

MI-JM 0.061 0.052 0.060 0.051 

5 Complete 0.046 0.057 0.049 0.051 

LD 0.052 0.058 0.055 0.055 

IPW 0.049 0.061 0.051 0.053 

MI-CE 0.045 0.057 0.049 0.054 

MI-JM 0.061 0.062 0.055 0.055 

Note: Complete = complete-data (pre-deletion) analysis; LD = listwise deletion; IPW = inverse 

probability weighting; MI-JM= multiple imputation via joint modeling; MI-CE= multiple 

imputation via chained equations; n= sample size; Type 1 Error rates higher than 0.075 are 

presented in bold and Type 1 error rates lower than 0.025 are presented in italic and bold. 
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Table 9 

Type 1 Error of Average Treatment Effect Estimates with 10% Missing Data, 

ATE=0, Large Moderation Effects (𝛽31 𝑡𝑜 𝛽35 = 0.5), by Number of Omitted 

Moderators, Sample Size, and Method 

Omitted 

Moderators 

Method Type 1 Error Rate 

n=50 n=100 n=200 n=400 

1 Complete 0.061 0.059 0.044 0.044 

LD 0.067 0.061 0.048 0.044 

IPW 0.066 0.065 0.047 0.044 

MI-CE 0.068 0.059 0.043 0.046 

MI-JM 0.077 0.069 0.050 0.042 

3 Complete 0.048 0.051 0.049 0.045 

LD 0.047 0.050 0.050 0.048 

IPW 0.045 0.047 0.042 0.045 

MI-CE 0.047 0.050 0.043 0.042 

MI-JM 0.059 0.061 0.051 0.051 

5 Complete 0.054 0.057 0.042 0.045 

LD 0.053 0.059 0.038 0.063 

IPW 0.052 0.053 0.041 0.047 

MI-CE 0.051 0.053 0.041 0.051 

MI-JM 0.057 0.061 0.041 0.062 

Note: Complete = complete-data (pre-deletion) analysis; LD = listwise deletion; IPW = inverse 

probability weighting; MI-JM= multiple imputation via joint modeling; MI-CE= multiple 

imputation via chained equations; n= sample size; Type 1 Error rates higher than 0.075 are 

presented in bold and Type 1 error rates lower than 0.025 are presented in italic and bold. 
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Table 10 

Type 1 Error of Average Treatment Effect Estimates with 30% Missing Data, 

ATE=0, Small Moderation Effects (𝛽31 𝑡𝑜 𝛽35 = 0.1), by Number of Omitted 

Moderators, Sample Size, and Method 

Omitted 

Moderators 

Method Type 1 Error Rate 

n=50 n=100 n=200 n=400 

1 Complete 0.053 0.050 0.046 0.066 

LD 0.053 0.051 0.054 0.051 

IPW 0.067 0.056 0.056 0.047 

MI-CE 0.032 0.043 0.048 0.052 

MI-JM 0.058 0.057 0.053 0.049 

3 Complete 0.054 0.044 0.047 0.052 

LD 0.044 0.046 0.051 0.048 

IPW 0.049 0.059 0.056 0.057 

MI-CE 0.033 0.046 0.050 0.049 

MI-JM 0.056 0.046 0.054 0.050 

5 Complete 0.053 0.057 0.053 0.049 

LD 0.048 0.058 0.057 0.063 

IPW 0.048 0.065 0.053 0.043 

MI-CE 0.038 0.054 0.047 0.043 

MI-JM 0.053 0.063 0.062 0.060 

Note: Complete = complete-data (pre-deletion) analysis; LD = listwise deletion; IPW = inverse 

probability weighting; MI-JM= multiple imputation via joint modeling; MI-CE= multiple 

imputation via chained equations; n= sample size; Type 1 Error rates higher than 0.075 are 

presented in bold and Type 1 error rates lower than 0.025 are presented in italic and bold. 
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Table 11 

Type 1 Error of Average Treatment Effect Estimates with 30% Missing Data, 

ATE=0, Medium Moderation Effects (𝛽31 𝑡𝑜 𝛽35 = 0.3), by Number of Omitted 

Moderators, Sample Size, and Method 

Omitted 

Moderators 

Method Type 1 Error Rate 

n=50 n=100 n=200 n=400 

1 Complete 0.065 0.052 0.051 0.050 

LD 0.064 0.048 0.056 0.065 

IPW 0.077 0.058 0.051 0.056 

MI-CE 0.048 0.046 0.048 0.054 

MI-JM 0.070 0.051 0.055 0.068 

3 Complete 0.063 0.052 0.049 0.047 

LD 0.062 0.047 0.081 0.094 

IPW 0.075 0.051 0.057 0.048 

MI-CE 0.039 0.041 0.059 0.043 

MI-JM 0.077 0.053 0.081 0.089 

5 Complete 0.040 0.055 0.058 0.050 

LD 0.066 0.078 0.103 0.155 

IPW 0.061 0.054 0.053 0.042 

MI-CE 0.040 0.050 0.054 0.048 

MI-JM 0.068 0.089 0.118 0.158 

Note: Complete = complete-data (pre-deletion) analysis; LD = listwise deletion; IPW = inverse 

probability weighting; MI-JM= multiple imputation via joint modeling; MI-CE= multiple 

imputation via chained equations; n= sample size; Type 1 Error rates higher than 0.075 are 

presented in bold and Type 1 error rates lower than 0.025 are presented in italic and bold. 
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Table 12 

Type 1 Error of Average Treatment Effect Estimates with 30% Missing Data, 

ATE=0, Large Moderation Effects (𝛽31 𝑡𝑜 𝛽35 = 0.5), by Number of Omitted 

Moderators, Sample Size, and Method 

Omitted 

Moderators 

Method Type 1 Error Rate 

n=50 n=100 n=200 n=400 

1 Complete 0.044 0.043 0.056 0.054 

LD 0.043 0.051 0.054 0.062 

IPW 0.054 0.048 0.045 0.052 

MI-CE 0.036 0.045 0.041 0.050 

MI-JM 0.049 0.053 0.053 0.059 

3 Complete 0.052 0.039 0.040 0.041 

LD 0.074 0.063 0.080 0.148 

IPW 0.077 0.051 0.039 0.037 

MI-CE 0.051 0.046 0.044 0.040 

MI-JM 0.084 0.067 0.081 0.150 

5 Complete 0.038 0.041 0.059 0.042 

LD 0.057 0.092 0.143 0.219 

IPW 0.057 0.041 0.046 0.038 

MI-CE 0.037 0.037 0.046 0.048 

MI-JM 0.075 0.094 0.147 0.220 

Note: Complete = complete-data (pre-deletion) analysis; LD = listwise deletion; IPW = inverse 

probability weighting; MI-JM= multiple imputation via joint modeling; MI-CE= multiple 

imputation via chained equations; n= sample size; Type 1 Error rates higher than 0.075 are 

presented in bold and Type 1 error rates lower than 0.025 are presented in italic and bold. 
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