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Abstract
Phytoplankton exhibit diverse physiological responses to temperature which influ-
ence their fitness in the environment and consequently alter their community struc-
ture. Here, we explored the sensitivity of phytoplankton community structure to 
thermal response parameterization in a modelled marine phytoplankton community. 
Using published empirical data, we evaluated the maximum thermal growth rates 
(μmax) and temperature coefficients (Q10; the rate at which growth scales with tem-
perature) of six key Phytoplankton Functional Types (PFTs): coccolithophores, cy-
anobacteria, diatoms, diazotrophs, dinoflagellates, and green algae. Following three 
well-documented methods, PFTs were either assumed to have (1) the same μmax and 
the same Q10 (as in to Eppley, 1972), (2) a unique μmax but the same Q10 (similar to 
Kremer et al., 2017), or (3) a unique μmax and a unique Q10 (following Anderson et al., 
2021). These trait values were then implemented within the Massachusetts Institute 
of Technology biogeochemistry and ecosystem model (called Darwin) for each PFT 
under a control and climate change scenario. Our results suggest that applying a μmax 
and Q10 universally across PFTs (as in Eppley, 1972) leads to unrealistic phytoplankton 
communities, which lack diatoms globally. Additionally, we find that accounting for 
differences in the Q10 between PFTs can significantly impact each PFT's competitive 
ability, especially at high latitudes, leading to altered modeled phytoplankton com-
munity structures in our control and climate change simulations. This then impacts 
estimates of biogeochemical processes, with, for example, estimates of export pro-
duction varying by ~10% in the Southern Ocean depending on the parameterization. 
Our results indicate that the diversity of thermal response traits in phytoplankton not 
only shape community composition in the historical and future, warmer ocean, but 
that these traits have significant feedbacks on global biogeochemical cycles.
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1  |  INTRODUC TION

Phytoplankton are principal contributors to the global carbon cycle 
(Falkowski et al., 1998) and form the base of most marine food webs 
(Sherr & Sherr, 1991). They comprise several phylogenetically diverse 
Phytoplankton Functional Types (PFTs), defined as groups of phyto-
plankton that share unique physiological and morphological traits 
(Reynolds et al., 2002), such as silica utilization by diatoms (Litchman 
& Klausmeier, 2008). These traits contribute to PFT fitness, leading 
to distinct phytoplankton assemblages across the world's oceans. 
Which PFTs are present largely determines marine ecosystem struc-
ture and function (Le Quéré et al., 2005), as well as the flux of ele-
ments to the ocean interior from the surface (Falkowski et al., 2003; 
Uitz et  al.,  2010). However, most Earth system models (which in-
clude the coupling between the atmosphere, the ocean, and the 
land) such as those used in the Intergovernmental Panel on Climate 
Change Coupled Model Intercomparison Projects still include only 
a few (typically two to three) PFTs (Laufkotter et  al.,  2015). Yet, 
there is an increasing recognition and desire to capture the varied 
roles and contributions of PFTs to biogeochemical cycling, and in 
ocean-only biogeochemical models, more PFTs are being resolved 
than ever before (e.g., MARBL-SPECTRA, with nine phytoplankton 
from three PFTs, Negrete-García et al., 2022; and Darwin with up to 
350 phytoplankton from six PFTs, Dutkiewicz et al., 2020; Follows 
et al., 2007).

Recent analyses of empirically derived phytoplankton growth 
rates suggest PFTs may also be uniquely characterized by their tem-
perature response traits (Anderson et al., 2021; Kremer et al., 2017), 
which alter their fitness in different thermal environments. Through 
over a billion years of evolution (Keeling,  2010), PFTs have differ-
entiated their maximum growth rates and their thermal niches, or 
the temperatures at which they are viable (Thomas et  al.,  2016). 
These differences are partially driven by environmental variability, 
with thermal traits becoming more divergent between PFTs as tem-
perature variation increases (i.e., poleward; Thomas et  al.,  2016). 
These thermal trait differences influence PFT biogeography in the 
contemporary ocean and could lead to altered community structure 
with anthropogenic climate change (Anderson et al., 2021), possibly 
impacting global primary production (Dutkiewicz et  al.,  2013) and 
nutrient cycling (Toseland et  al.,  2013). However, resolving many 
PFTs, each with distinctive thermal traits, can be computationally 
difficult. Instead, most models apply a single thermal trait parame-
terization universally across all modeled phytoplankton (Laufkotter 
et  al.,  2015), which may limit their ability to capture finer ecosys-
tem dynamics. New analyses of thermal traits among PFTs (e.g., 
Anderson et al., 2021) provide an opportunity to evaluate how mea-
sured thermal trait variability impacts phytoplankton community 
structure and estimates of export processes in a modeled ocean.

Here, we evaluated the importance of accounting for these 
thermal traits in a dynamic ecosystem model where phytoplankton 
species compete for resources. We focused on two key parame-
ters shown to vary between PFTs: the maximum growth rate (μmax) 
and the temperature coefficient (Q10), or the rate at which the μmax 

scales with each 10°C of temperature change (slope). Diverging from 
previous studies which have used disparate datasets to estimate 
thermal parameters (e.g., Buitenhuis et al., 2013), here we utilized 
a single comprehensive phytoplankton growth dataset (Anderson 
et al., 2021) and three well-established procedures to evaluate phy-
toplankton thermal responses, allowing for consistency and com-
parison between methods. PFTs in empirical analyses were either: 
(1) evaluated as a single entity resulting in a constant μmax and Q10 
across all phytoplankton (similar to what was done in Eppley, 1972), 
(2) assessed with PFTs weighted as a factor leading to varied μmax but 
a constant Q10 for all phytoplankton (similar to Kremer et al., 2017), 
or (3) analyzed independently resulting in a unique μmax and Q10 for 
each PFT (following Anderson et al., 2021). We then explored how 
each of these approaches altered estimates of model phytoplank-
ton community structure, as well as several key biogeochemical 
processes, both in a pre-industrial (1860–1880) and a future ocean 
(2080–2100).

From our analyses, we found that the parameterization of the 
μmax and Q10 did not have a strong effect on low latitude biogeo-
chemical cycling, but did impact the modeled phytoplankton com-
munity structures underlying these processes. Our simulations 
suggested that a high μmax is necessary for the diatoms, while the Q10 
is most important at high latitudes, where phytoplankton encoun-
ter their thermal minima and where changes in competitive abilities 
are most pronounced. Thus, the way in which the μmax and the Q10 
are parameterized can impact modeled phytoplankton community 
structures, especially at high latitudes, and in turn, estimates of bio-
geochemical processes. Though we cannot directly validate the dis-
tribution of all PFTs produced by these methods, as we do not have 
the observational data needed for such analyses, we provide illustra-
tive examples of each parameterization in our global simulations and 
outline when thermal traits may be more important for structuring 
ecosystem models. This will allow greater certainty in thermal pa-
rameterizations, leading to more realistic global ecosystem models.

2  |  MATERIAL S AND METHODS

2.1  |  Global plankton community, biogeochemical, 
and circulation models

We used a modified version of the plankton community model out-
lined in Follett et al. (2022) to evaluate the impact of thermal traits 
on estimates of global phytoplankton community composition and 
biogeochemical processes. The model includes 31 phytoplankton 
phenotypes from six PFTs (Dutkiewicz et al., 2021): 2 cyanobacteria, 
2 green algae (picoeukaryotes), 5 coccolithophores, 5 diazotrophs, 9 
diatoms, and 8 mixotrophic dinoflagellates (Figure S1). Collectively, 
the phytoplankton phenotypes cover 14 size classes ranging from 0.6 
to 104 μm equivalent spherical diameter (ESD) and are distributed 
evenly on a logarithmic scale following established practices (e.g., 
Ward et al., 2012), so that the large range of sizes that phytoplank-
ton cover can be captured. The model also includes heterotrophic 
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bacteria (Follett et  al.,  2022), and zooplankton that graze on prey 
following a Holling II function (Holling,  1965). In addition to the 
biological components, the model simulates biogeochemical cy-
cling of C, N, P, Si and Fe through inorganic and organic forms, as 
phytoplankton take up nutrients and heterotrophic bacteria recycle 
them through remineralization (Dutkiewicz, Hickman, et  al.,  2015; 
Follett et  al.,  2022). Each of these biological and biogeochemi-
cal components are advected and mixed by the three-dimensional 
Massachusetts Institute of Technology general circulation model 
(MITgcm; Marshall et al., 1997). This configuration has a coarse res-
olution of 2° by 2.5° horizontally and 22 vertical levels that range 
from 10 m at the surface to 500 m at depth (Monier et al., 2018).

2.2  |  Model thermal growth parameters

Phytoplankton growth rates within the plankton community model 
are calculated as a function of nutrient (N) acquisition traits unique 
to each PFT (Dutkiewicz et al., 2020), irradiance (I), and temperature 
dependency (T) according to the following equation:

The maximum growth rates (μmax) are scaled allometrically 
(Table  S1: a_PCmax, allometrically scaled carbon-specific growth 
maximum), as a power law function of cell biovolume based on mod-
eled ESD (Figure S1), where phytoplankton growth rate decreases 
with size for phenotypes larger than 3 μm, and increases with size 
for phenotypes smaller than 3 μm (Dutkiewicz et al., 2020; Follett 
et al., 2022). This unimodal distribution has been observed in lab-
oratory studies (e.g., Marañón et al., 2013) and is likely caused by 
non-scalable components of the cell (see discussions in Raven, 1994; 

Ward et al., 2017). For this iteration of the model, we modified the 
temperature-growth relationship (γT), by altering each PFT's tem-
perature coefficient (Q10), as well as their maximum growth rates 
(μmax), following the three methodologies discussed below. By alter-
ing these parameters, we were able to evaluate the impact of thermal 
traits on estimates of global phytoplankton community composition 
and biogeochemical processes. Because the Q10 is boundless, we 
also compared the μmax at a single temperature, here 20°C (μmax20; 
Table 1), though this selection is purely illustrative.

2.3  |  Model parameterization using empirical data

To parameterize the temperature coefficients of each PFT, we 
compiled empirical growth measurements from coccolithophores 
(n = 202), cyanobacteria (n = 502), diatoms (n = 1794), diazotrophs 
(n = 144), dinoflagellates (n = 748), and green algae (n = 175). We 
began with the thermal growth rate compilation by Anderson 
et al. (2021), and added data from Kremer et al. (2017) to represent 
green algae and diazotrophs. We then evaluated the Q10 by fitting 
99th quantile regressions to log-transformed growth rates to capture 
the growth maxima, as is commonly implemented in phytoplankton 
biology (Bissinger et al., 2008; Kremer et al., 2017). In curve fitting, 
we followed three separate methods to assess the importance of 
varied Q10 and μmax on phytoplankton community composition 
and productivity. First, in the “Eppley” method (Eppley,  1972), we 
evaluated the thermal dependencies of all phytoplankton as a sin-
gle entity, fitting a 99th quantile regression (Bissinger et al., 2008) 
to all log-transformed growth rates, which resulted in one Q10 and 
one μmax across all PFTs (Table 1; Figure 1a). Next, in the “Kremer” 
method (Kremer et  al.,  2017), we treated each PFT as a factor in 
model fitting. This resulted in one Q10 across all phytoplankton, but 

(1)� = �max ⋅ �T ⋅ �N ⋅ � I.

TA B L E  1 For each method and Phytoplankton Functional Type (PFT), the number of strains examined (n) and total number of discrete 
growth measurements used in curve fitting (N) are shown. The y-intercept for each exponential temperature dependency is determined by 
a, and b characterizes the rate at which μmax scales with temperature. The y-intercept (converted to growth per day), temperature coefficient 
(Q10), and growth maximum at 20°C (μmax20) are also shown. Note that the Kremer method used a single b and Q10 value across all PFTs.

Method PFT n N a b Q10 y-intercept μmax20

Eppley All PFTs 265 3565 −0.1614 0.0382 1.46 0.851 1.8269

Kremer Coccolithophores 30 202 −0.6443 0.0575 1.7772 0.5250 1.6581

Cyanobacteria 32 502 −1.2341 0.2911 0.9193

Diatoms 135 1794 −0.3560 0.7005 2.2122

Diazotrophs 7 144 −1.9337 0.1446 0.4567

Dinoflagellates 46 748 −1.3490 0.2595 0.8195

Green algae 15 175 −0.5119 0.5994 1.8929

Anderson Coccolithophores 30 202 −0.3005 0.0353 1.4191 0.7408 1.4920

Cyanobacteria 32 502 −1.6614 0.0758 2.1383 0.1899 0.8685

Diatoms 135 1794 −0.2263 0.0438 1.5527 0.7977 1.9232

Diazotrophs 7 144 −1.9337 0.0575 1.7772 0.1446 0.4567

Dinoflagellates 46 748 −1.2356 0.0512 1.6653 0.2905 0.8057

Green algae 15 175 −0.6671 0.0635 1.8867 0.5132 1.8274
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unique μmax's for each PFT (Figure 1b; Figure S2). We adjusted the 
original method outlined in Kremer et  al.  (2017), which weighted 
thermal growth rates by phytoplankton strain to account for differ-
ences in the number of growth measurements between strains, and 
instead weighted by PFT, so no single PFT had a greater influence on 
the resulting Q10. This better addressed our specific experimental 
goal of evaluating PFTs and accounted for diatoms being overrepre-
sented in the dataset. Lastly, in the “Anderson” method (Anderson 
et  al.,  2021), we assessed thermal growth rates separately for 
each PFT, which lead to unique estimates of the Q10 and μmax for 
each PFT (Figure 1c; Figure S3; Table 1). For diazotrophs, the data 
were deemed insufficient for model fitting (Figure  S3d; Anderson 
et al., 2021), so Q10 and μmax values were repeated from the Kremer 
method.

2.4  |  Model simulations

Our study was designed to consider the impact of different as-
sumptions about temperature-growth parameterizations on phy-
toplankton community structure and productivity in the modeled 
historical and future ocean. The simulations were performed in 
“offline” mode, in that the physical fields (circulation, mixing, salin-
ity and temperature) were taken from a pre-existing set of Earth 
system model simulations using a simpler biogeochemical mod-
ule (Monier et  al.,  2013) and the Darwin ecosystem component 
was forced with these. In this offline mode there is no feedback 
between alteration in the biology, as simulated in this study with 
Darwin, and the physical fields. These offline fields have been 
used in several previous studies (Cael et  al.,  2021; Dutkiewicz 
et al., 2019; Henson et al., 2021).

Here, we present a series of sensitivity experiments (see 
Table  S2; Anderson, 2023) examining each of the three thermal 

parameterizations (Eppley, Kremer, and Anderson), under three 
different ocean environments: a control (based on Greenhouse 
concentrations in 1860), an ocean warming scenario where tem-
perature (but not the rest of the physics) is as projected for 2080 
to 2100 (following the procedure used in Dutkiewicz, Morris, 
et  al.,  2015) and a climate change scenario from 2080 to 2100 
in which all physical parameters are impacted, including tem-
perature, salinity, and circulation (meridional, zonal, and vertical 
velocity) under a high emissions scenario. While we focused on 
the results from the control and climate change simulations, we 
included the ocean warming only simulation to better distinguish 
the effects of temperature on phytoplankton community compo-
sition from that of other physical parameters which may be altered 
with climate change, addressing our specific interests in thermal 
trait parameterization. Each simulation was started from the same 
initial conditions and run for 20 years; we provide results based on 
the mean of the last 10 years. Given the number of simulations and 
the exploratory nature of this study we did not run full 1860 to 
2100 simulations. Thus, in the climate change scenarios we will not 
capture some of the transient features. Instead, we are capitalizing 
on the large differences in the physical conditions of the control 
(1860) and the end of century (2080–2100). These differences in-
clude large shifts in temperature (up to 5°C difference in sea sur-
face temperature in some locations) and changes in stratification 
and circulation that lead to significant differences in the supply of 
nutrients to the euphotic zone.

2.5  |  Phytoplankton diversity

We assessed the diversity of the modeled phytoplankton com-
munity in the euphotic zone (here presumed to be the uppermost 
240 m), averaged over 10 years. We calculated the richness as the 

F I G U R E  1 Exponential curves characterizing the thermal dependencies of phytoplankton growth according to three documented 
methods: (a) Eppley (1972), (b) Kremer et al. (2017), and (c) Anderson et al. (2021). Points are empirically derived discrete growth 
measurements that are the same in each panel but colored based on whether Phytoplankton Functional Types were analyzed together 
(black, Eppley) or separately (colored, Kremer & Anderson).
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number of phenotypes comprising greater that 0.001% of the total 
averaged phytoplankton biomass within a grid cell, as done previ-
ously (Barton et al., 2010; Clayton et al., 2013). Evenness (E), which 
describes the distribution of phenotypes within the phytoplankton 
community, was then discerned using Pielou's evenness metric ac-
cording to the following equation:

where the proportion of each phenotype in a community is given by 
pi with R denoting the maximum richness (here, 31 phenotypes). This 
provided a value between 0 to 1, with 0 indicating an uneven commu-
nity dominated by a single phenotype and 1 indicating a community 
with equal proportions of all phenotypes represented.

For the Anderson and Kremer simulations, we also characterized 
phytoplankton community differences between parameterizations 
(Anderson and Kremer), as well as between time periods (control 
and climate change scenario) for each parameterization using Bray–
Curtis dissimilarity. Here Bray–Curtis (BC) is calculated for each grid 
cell using the average PFT biomass (mg C m−3) in the upper 240 m 
from each simulation (a and b) and each PFT (i), according to the fol-
lowing equation (Bray & Curtis, 1957):

We used PFT biomass rather than phenotype biomass for this 
analysis to better capture the change in PFT composition that re-
sulted from adjusting PFT thermal parameters within the model. 
We also did not include the Eppley simulations in this latter anal-
ysis after finding that the Eppley parameterizations produced 
phytoplankton community structures, which mostly lacked dia-
toms in the global ocean. Model output from these simulations 
are archived on the Harvard Dataverse (Anderson, 2023) and code 
to reproduce these analyses are archived at Zenodo (Anderson & 
Fronda, 2023).

3  |  RESULTS

3.1  |  Thermal trait evaluations

The Eppley parameterization method produced a single μmax and 
Q10 that was generally lower than either the Kremer or Anderson 
methods (Table 1). When differentiating between PFTs, as in the 
Kremer and Anderson methods, the data suggest that diatoms ex-
hibit the highest growth rates (e.g., μmax20), while the diazotrophs 
and dinoflagellates have the lowest, consistent with previous find-
ings (Anderson et  al., 2021; Thomas et  al., 2016). Following the 
Anderson method, the data indicate that cyanobacteria may ex-
hibit the greatest response to temperature change, as evidenced 
by their high Q10 and steep curve slope (Figure  1c), while coc-
colithophores may exhibit the shallowest slope and lowest Q10. 
This difference in slope signifies that the cyanobacteria would be 
able to increase their growth at a greater rate than the coccolitho-
phores, making them increasingly strong competitors with each 
degree of temperature increase. This slope variability also results 
in different PFTs exhibiting growth dominance at different points 
along the temperature gradient, as evidenced by thermal depend-
ency curve intersections within the Anderson parameterization 
(Figure 1c).

3.2  |  Estimates of primary production

Differences in parameterized thermal traits between control simula-
tions resulted in changes to community structure and biogeochemi-
cal processes. At low latitudes, each parameterization produced 
comparable estimates of total phytoplankton biomass and primary 
production in the upper 240 m (Figure  2). However, discrepancies 
emerged at mid and high latitudes (30–90° N/S), with the Eppley 
parametrization having higher biomass by an average of 25.5% 
when compared with the Kremer simulation, and 14.7% when com-
pared with the Anderson simulation (Figure 2a; Figure S5a). These 

(2)E =
−

∑R

i=1
pi ln pi

lnR
,

(3)BCab =
Σi

|
||
PFT

a

i
− PFT

b

i

|
||

Σi

(
PFT

a

i
+ PFT

b

i

) .

F I G U R E  2 Depth-integrated biomass 
g C m−2; (a) and primary production 
g C m−2 year−1; (b) over the upper 240 m 
from each control simulation averaged 
over the final 10 years (1870–1880). 
Lines denote zonal means and shading 
corresponds to variation across each 
latitude (±1 SD). Horizontal dashed line 
indicates the equator.

(a) (b)
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differences in biomass resulted in subsequent variability in our pri-
mary production estimates (Figure  2b), as primary production in 
the Darwin model is calculated as a factor of biomass and growth 
rate (Dutkiewicz et al., 2020). At mid- and high latitudes, the Eppley 
parameterization led to primary production being higher by 24.5% 
when compared with Kremer, and 7.45% when compared with 
Anderson (Figure 2b; Figure S5b,d).

3.3  |  Phytoplankton community structure

The phytoplankton community structures that resulted from each 
parameterization were more disparate than the bulk estimates of 
biomass and production in the control simulations. The Eppley 
simulation differed from both the Kremer and Anderson simula-
tions substantially and was characterized by lower species richness 
(Figure 3a) and community evenness (Figure 3b), with significant 
differences at midlatitudes (30–60° N/S; one-way ANOVA, rich-
ness: p < .001, evenness: p < .001). Additionally, the PFT composi-
tion differed measurably between simulations, with the greatest 
variability in the Southern Ocean. There, the Eppley parameteriza-
tions produced a community dominated by dinoflagellates and coc-
colithophores, with roughly 8 times greater dinoflagellate biomass 
(mg C m−3) at 50° S than either the Kremer (7.77×) or Anderson 
(8.12×) simulations (Figure  4). In comparison, the Kremer and 
Anderson simulations produced a phytoplankton community 
dominated by diatoms (Figure 3c), which were outcompeted glob-
ally in the Eppley simulations, as evidenced by their relatively low 

biomass (Figure 4a). Green algae also had narrower spatial distri-
butions in the Eppley simulations, with the greatest biomass oc-
curring 8–10° further equatorward in the Southern Hemisphere 
than in the Kremer or Anderson simulations (38° S vs. 48 or 46° S, 
respectively; Figure 4).

Between the Kremer and Anderson parametrizations, there 
were also distinct differences in community structure. For exam-
ple, the global spatial distribution of cyanobacteria was 7.47% or 
26 million km2 smaller in the Anderson simulations than the Kremer 
simulations (Figure  4b,c), with cyanobacteria not extending South 
of 64° S. Conversely, the latitudinal extent of coccolithophores was 
1.04% (3.5 million km2) greater in the Anderson simulations, with 
coccolithophores exhibiting higher biomass in the Southern Ocean 
(Figure 4c). These differences produced a more even community in 
the Southern Ocean under the Anderson parameterization, but a 
less even community in the Arctic Ocean than the Kremer simula-
tion (Figure 3b). Variability in community structure altered estimates 
of biogeochemical processes at high latitudes (Figure  5a,d,g). For 
example, the Anderson simulation estimated greater particulate in-
organic carbon (PIC) by 0.55 mg C m−3 (9.83%) in the control scenario 
(Figure 5g).

3.4  |  Community projections for the future

Using altered temperatures and physical forcing representative of 
the end of the century under a high emission scenario, we simulated 
climate change in our model ocean to understand how differences 

F I G U R E  3 Zonal means (lines) 
and variation (±1 SD, shading) of 
phytoplankton community richness (a) and 
evenness (b) calculated from biomass in 
the upper 240 m in the control scenario 
averaged over the final 10 years (1870–
1880). Only phytoplankton representing 
at least 0.001% of the total phytoplankton 
biomass were considered in calculations, 
following the methods of Barton 
et al. (2010) and Clayton et al. (2013). (c) 
The dominant Phytoplankton Functional 
Type at each location is indicated by 
colors (legend), with grey shading 
denoting unresolved or ice-covered 
regions within the model.

(a)

(b)

(c)
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    |  7 of 16ANDERSON et al.

in temperature-growth parameterizations might alter projections 
of phytoplankton communities and export in a future ocean. For 
this analysis, we focused on the Kremer and Anderson methods, 
as the Eppley method produced a phytoplankton community which 
unrealistically lacked diatoms globally (Figure  4a). We assessed 
differences in community structure using Bray–Curtis dissimilar-
ity between the Kremer and Anderson methods using the average 
PFT biomass over the final 10 years of the control (1860–1880) and 
climate change simulation (2080–2100). Bray–Curtis dissimilar-
ity considers both PFT presence/absence and biomass, and scores 

communities on a scale from 0 to 1, with ‘0’ indicating identical 
communities and a ‘1’ indicating completely different communities 
(no analogous PFTs). At low latitudes, the Kremer and Anderson 
parameterizations predicted similar alterations to the phytoplank-
ton community with climate change (low Bray–Curtis dissimilarity; 
Figure 6a). However, the phytoplankton communities in the con-
trol and climate change scenarios varied substantially between the 
Kremer and Anderson simulations (Figure 6b) and were greater than 
within each simulation due to climate change (1860 and 2100 physi-
cal conditions, Figure 6a).

F I G U R E  4 Mean biomass over the upper 240 m for each Phytoplankton Functional Type under each model parameterization (a–c) in the 
control simulation averaged over 10 years (1870–1880). Zonal mean and standard deviation are shown for each simulation (d).

(a) (b) (c) (d)
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These disparities in phytoplankton communities were primarily 
driven by differences in PFT proportions (evenness). For example, 
in the control scenario, evenness varied between the Kremer and 
Anderson simulations at high latitudes (Figure  3b) because of dif-
ferences in PFT biomass (Figure 4), especially for coccolithophores 
and cyanobacteria. The coccolithophores also exhibited the greatest 
differences in biomass change (1860–2100) between simulations, 
with biomass change ~20× less with the Anderson parameteriza-
tions at Southern mid-latitudes than in the Kremer parameteriza-
tions (Figure  7a; Figure S6), due primarily to the coccolithophores 
having the lowest Q10 in the Anderson simulation, relative to the 
other PFTs. This resulted in large differences in our estimates of 
calcium carbonate (PIC) alterations with climate change, with the 
Kremer simulation predicting increases in PIC and the Anderson 
method predicting decreases in PIC at the poles (Figure  5h,i, re-
spectively). Though the community differences were large between 
the Anderson and Kremer scenarios, the directionality of biomass 
change, with PFT biomass either increasing or decreasing between 
the control and 2100 environment, agreed between simulations in 
most regions (Figure 7). Notably, both parameterizations suggest a 
decrease in cyanobacteria in the gyres (Figure 7b; Figure S6), but an 
increase at higher latitudes, while diatoms are suggested to decrease 
almost everywhere (except in the Southern Ocean; Figure 7c). This 
consensus in biomass change also resulted in a general agreement 
between simulations for how export production might be altered by 
2100 (Figure 5).

4  |  DISCUSSION

Over 50 years ago, Eppley first documented the response of phy-
toplankton growth to changes in temperature (Eppley,  1972). The 
canonical Q10 = 1.88 has been, and continues to be, used in many 
models, including those providing estimates of the impact of climate 
change on the ocean's biogeochemistry (Bopp et al., 2013; Laufkotter 
et al., 2015). However, as these models added even modest increases 
in plankton diversity (e.g., two rather than one PFT), it became clear 
that uniform traits were unrealistic. Most models now include at least 
a fast-growing diatom and a slower growing smaller phytoplankton 
with varied μmax (similar to the Kremer method), or implicit func-
tions like calcification, though few include mixotrophy (Laufkotter 
et  al.,  2015). Despite this added diversity, the method of choosing 
Q10 and μmax varies from model to model with most models electing 
to apply a single Q10 universally among PFTs. However, recent obser-
vations suggest that PFTs exhibit unique responses to temperature 
(Anderson et al., 2021; Kremer et al., 2017) and employing a single 
universal thermal trait, as in the Eppley method, may result in coarse 
estimations of ecological processes in the global ocean. Using a single 
empirical dataset, we evaluated three methods of parameterizing the 
Q10 and μmax to provide an outline of the strengths and limitations 
of each method. Our robust framework allowed us to compare the 
ecological and biogeochemical consequences of different thermal 
response trait parameterizations, which will help strengthen the pre-
dictive capacity of biogeochemical and ecosystem models.

F I G U R E  5 Difference in silica export (a–c; g Si m−2 year−1), export production (d–f; g C m−2 year−1), and particulate inorganic carbon (PIC; 
g–i; mg C m−3) at 115 m between models, averaged over the final 10 years of each simulation. The difference between the Anderson and 
Kremer parameterizations (Anderson–Kremer) in the control [mean (1870–1880)] is shown in (a, d, g) and the change in export processes 
with climate change [mean (2090–2100) – mean (1870–1880)] is characterized for Kremer (b, e, h) and Anderson (c, f, i).

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
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    |  9 of 16ANDERSON et al.

4.1  |  Simulating diverse phytoplankton 
communities

One of the principal findings of our control simulations was the 
difference in community structures produced by each parameteri-
zation. The Eppley formulation in particular produced an ocean 
almost entirely absent of diatoms. This differs significantly from 
satellite-based estimations of phytoplankton community structure, 
which characterize diatoms as the dominant PFT in the Southern 
Ocean during austral summer (Figure  S7a; Alvain et  al.,  2008; Xi 
et al., 2020), as well as empirical observations which note considera-
ble diatom biomass throughout the world's oceans, and especially in 
the Southern Ocean (Figure S8; Leblanc et al., 2012). The absence of 
diatoms in the Eppley simulation was due in part to the way in which 
growth rates were parameterized, with all PFTs characterized by the 
same μmax, contradicting evidence that diatoms can be strong com-
petitors in high nutrient regimes and have some of the fastest phyto-
plankton growth rates (Alexander et al., 2015; Anderson et al., 2021; 
Tang, 1995). Global biogeochemical and plankton community mod-
els have generally parameterized higher growth rates for diatoms 
based on these empirical observations of greater nutrient uptake 
(Aumont & Bopp, 2006; Follows et al., 2007; Gregg & Casey, 2007; 

Negrete-García et al., 2022; Stock et al., 2014) and are often able to 
reproduce substantial diatom communities in the Southern Ocean 
(Bopp et  al.,  2005). However, rarely is the μmax also temperature-
dependent, with some exceptions (Shigemitsu et al., 2012), or evalu-
ated using as rigorous of a methodology as provided here. We find 
that without employing a higher μmax, and with diatoms' higher nutri-
ent requirements (due to their larger size), diatoms are outcompeted 
in the simulated global ocean. In the Eppley simulation, dinoflagel-
lates were the main competitor of the diatoms and excelled given 
their ability to supplement their nutrient requirements with grazing 
(mixotrophy). These results highlight the limitations of parameter-
izing ecosystem models strictly according to the Eppley method, 
as simulations produced phytoplankton community structures that 
contradict observations from the natural world (Alvain et al., 2008; 
Leblanc et al., 2012; Soppa et al., 2014; Xi et al., 2020).

While many ocean plankton community models have included 
different μmax between PFTs, they generally utilize a single Q10 (Bopp 
et  al.,  2013; Laufkotter et  al.,  2015). As such, most models (Bopp 
et  al.,  2013; Follows et  al.,  2007; Laufkotter et  al.,  2015) follow 
an approach closer to our Kremer method, with some exceptions 
(Buitenhuis et al., 2013). However, the choice of different Q10's be-
tween PFTs has typically not been rigorously differentiated for many 

F I G U R E  6 Bray–Curtis dissimilarity from 1860 to 2100 (a) for the Kremer and Anderson parameterizations under a climate change 
scenario (e.g., nutrient concentrations, circulation etc. changing), versus a community comparison between models at each time point (b; 
1870–1880 (control) or 2090–2100 (climate change)). A ‘0’ indicates no change in phytoplankton community and a ‘1’ indicates a community 
with no analogous Phytoplankton Functional Types (PFTs). Zonal means (lines) and standard deviations (shading) are also shown (c). Only 
PFTs representing at least 0.001% of the total phytoplankton biomass were considered.

(a) (b) (c)
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10 of 16  |     ANDERSON et al.

PFTs, using a single coherent dataset, and is not normally based on 
thermal growth curves as is done here. By estimating both the μmax 
and the Q10 in a consistent manner, we were able to characterize 
each PFT's thermal dependency and compare parameterization 
methods. From this analysis, we found that parameterizing PFTs 
with a unique μmax while holding the Q10 constant (Kremer) or al-
lowing it to vary (Anderson), better simulated natural phytoplank-
ton assemblages than the Eppley method. In lower latitudes, the 

two parameterizations had similar community structures. In these 
regions, smaller phytoplankton adapted to low nutrient conditions 
dominate, as nutrient affinity is a more important factor in determin-
ing competitive ability than differences in Q10. But poleward, there 
are notable differences between these two parameterizations. For 
instance, the poleward extent of cyanobacteria was reduced in the 
Anderson simulation, better reflecting global cyanobacteria distri-
butions. Abundance patterns of the cyanobacteria Synechococcus 

F I G U R E  7 Average change in biomass for each Phytoplankton Functional Type (PFT; a–f), over the upper 240 m between the final 
10 years of the control (1870–1880) and climate change scenario (2090–2100) for the Kremer (blue) and Anderson (green) parameterizations. 
PFT changes over time were binned into high (60–90°), mid (30–60°), and low (0–30°) latitudes.

(a) (b) (c) (d) (e) (f)

F I G U R E  8 Difference in growth rate 
(per day) between cyanobacteria and 
coccolithophores (a, b) and diatoms and 
dinoflagellates (c, d) in a simplified Kremer 
(a, c) or Anderson (b, d) model where 
growth depends only on temperature 
and nutrient availability (Equation 4). 
Phytoplankton Functional Type (PFT) 
icons indicate which conditions lead to 
one PFT exhibiting a higher growth rate 
over another (red or blue).(a) (b)

(c) (d)
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    |  11 of 16ANDERSON et al.

and Prochlorococcus, collected via cruise transects, often charac-
terize a clear drop in cyanobacteria density approaching the poles 
(Flombaum et al., 2013; Follett et al., 2022), resembling that of the 
Anderson simulation. This decrease in abundance can partially be 
explained via the increase in shared predation of cyanobacteria and 
heterotrophic bacteria at higher latitudes, which are similar in size 
(Follett et al., 2022). However, as our iteration of the Darwin model 
includes heterotrophic bacteria in both the Kremer and Anderson 
simulations, we can also hypothesize that the varied temperature 
coefficients (Q10) in the Anderson parameterization contribute to 
the observed differences in cyanobacteria biomass. In particular, the 
steeper Q10 for cyanobacteria reduces their competitive ability at 
low temperatures.

Coccolithophores were another PFT whose geographical range 
varied between control simulations, with a greater poleward extent 
exhibited in the Anderson simulation. Coccolithophores are calcify-
ing phytoplankton that comprise the Southern Ocean Great Calcite 
Belt which extends as far South as 65° (Holligan et al., 2010). The 
calcium carbonate (PIC) that they produce is visible via satellite and 
is at its highest concentration at high latitudes (Mitchell et al., 2017). 
Though in-situ observations are sparse for the coccolithophores 
(Figure S8), they are thought to contribute considerably to total an-
nual production in the Southern Ocean (Nissen et al., 2018), again 
supporting coccolithophore presence in polar regions. This distribu-
tion pattern is captured in the Darwin model only when the cocco-
lithophores are parameterized with a lower Q10, supporting the use 
of the Anderson formulation in high latitude ecosystem models.

To further demonstrate and highlight the impact of these varied 
Q10's on PFT competitive abilities, we provide a simplified illustrative 
example of the temperature-nutrient growth relationship under the 
Kremer and Anderson parameterizations (Figure 8). Here, we eval-
uate the growth of just two representative phenotypes (Figure S1), 
the fastest grower from each PFT (Figure S4, Methods). Growth (μ) 
is dependent only on temperature (T) and nitrogen (N; the full model 
includes other elements as well as a light-dependency) according to 
the following equation (expanded from Equation 1), where the max-
imum growth at T = 0°C (μmax[0]) scales with temperature at a rate of 
b and nutrient concentration [N] based on a half-saturation constant 
of nitrate KNO3

 (Table S3):

We show the differences in growth rates for PFTs that have very 
different Q10's, cyanobacteria and coccolithophores (Figure  8a,b), 
and for PFTs that have similar Q10's, diatoms and dinoflagellates 
(Figure  8c,d), both when the Q10 is held constant (Kremer) and 
when it is differentiated (Anderson). When PFTs have similar Q10's, 
we expect similar competitive abilities as we transition across en-
vironmental gradients, regardless of how the Q10's are parameter-
ized (Figure 8c,d). However, PFTs with large differences in their Q10 

are significantly impacted by Q10 parameterization. In the Kremer 
simulation, cyanobacteria only outcompete coccolithophores in 
low-nutrient environments (Figure  8a), whereas in the Anderson 
simulation, this competitive relationship is more nuanced, with cya-
nobacteria growing faster in both nutrient-limited systems and high 
temperature regimes, and coccolithophores exceling in nutrient-
replete, colder environments (Figure  8b). By parameterizing PFTs 
with unique Q10's, we are thus adjusting how phytoplankton com-
pete across the world's oceans.

4.2  |  Projecting into the future

These differences in modeled competitive abilities extended into 
the future with climate change. Our results demonstrated that 
model parameterization substantially impacts the starting phyto-
plankton community assemblage, which is then carried forward in 
climate change scenarios, consequently impacting estimates of ex-
port processes. Though some studies have examined phytoplank-
ton diversity and PFT turnover with climate change (e.g., Henson 
et al., 2021), few have estimated how the biomass of specific PFTs 
might be altered in the future (Le Quéré et al., 2005) and that has 
contributed to a lack of consensus for each PFT's relative contribu-
tions to primary (Laufkotter et al., 2015) and secondary production 
(Dutkiewicz et al., 2021).

Between the Kremer and Anderson methods, there was con-
sensus regarding the directionality of change (either positive or 
negative) expected for each PFT at each latitude with climate 
change (Figure 7). Both parameterizations showed the expansion 
of the oligotrophic gyres (Figure S9) and the dominance of smaller 
phytoplankton (Figure S10) predicted by many previous modelling 
studies (e.g., Bopp et al., 2005; Marinov et al., 2010). They also both 
predicted an increase in diatom abundance in the Southern Ocean 
(Figure  7c), which would increase the Southern Ocean's role as 
the ‘silicon trap’, or the region of the greatest silica export (Holzer 
et  al.,  2014), which may be partially due to light limitation being 
alleviated as ice extent is reduced. These similar projected changes 
in PFT biomass led to parallel projections for export production 
(Figure  5e,f). However, there was disagreement on the magni-
tude of biomass change to be expected for each PFT (Figure  7), 
which lead to discrepancies in estimates of other export processes, 
like PIC (Figure  5h,i). For example, in the Anderson simulation 
(Figure 5i), PIC is projected to decrease due to a reduction in cocco-
lithophore biomass. Observations in the natural world suggest this 
may already be occurring, with documented declines in the pole-
ward extent of coccolithophore blooms in recent years, attributed 
to increases in sea-surface temperature (Uz et al., 2013). Although 
on a different timeframe, the Anderson simulation similarly finds 
this decline in coccolithophore biomass which is not captured in 
the Kremer simulations.

To explore the differences in PFTs further, we ran a warming-
only simulation, in which nutrient and physical dynamics were as 

(4)�[T ,N] = �max[0] ⋅ e
(b⋅T)

⋅

[
N
]

[
N
]
+ KNO3

.
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for the control, but temperature changed. With warming alone, 
the phytoplankton communities under the Kremer parameter-
ization remained relatively constant through time (Figure  S11), 
whereas the communities in the Anderson simulations exhibited 
large changes, especially at the poles. Returning to our illustra-
tive example (Figure 8), this would be similar to moving along the 
temperature axis only, rather than dynamically in temperature/
nutrient space, as would be expected in a full climate change sce-
nario. This suggests that by applying a Q10 universally, as in the 
Kremer method, PFT competitive abilities become largely tem-
perature independent, masking important inter-group dynamics 
and overturn.

In summary, we found that using the same μmax and Q10 across 
all modeled PFTs (Eppley) did not lead to a realistic phytoplankton 
community structure, but resulted in estimates of primary pro-
duction that were comparable to Kremer and Anderson in lower 
latitudes, though not at higher. Our findings also demonstrated 
how the phytoplankton assemblage is impacted by varied Q10's, 
especially at higher latitudes. At lower latitudes, nutrient limita-
tion was often a more important control on community structure 
but with higher nutrient concentrations further poleward, the 
temperature effect became more important. Thus, we found that 
the Kremer (same Q10) and Anderson (unique Q10) methods pro-
duced similar communities at low latitudes, but the Q10 parameter-
ization substantially impacted each PFTs competitive abilities at 
higher latitudes. This was most pronounced with climate change, 
as warming led to substantial changes in phytoplankton diversity 
with the Anderson but not the Kremer parameterization. Though 
observational data is not currently sufficient to discern whether 
the Kremer or Anderson method results in a more realistic control 
phytoplankton community (Figure S8), the lack of diversity change 
in the Kremer simulations under ocean warming (Figure S11) sug-
gests that the Anderson method would be preferential when ex-
amining future high latitude communities, even though it requires 
greater model complexity, as temperature-related competition is 
likely to impact phytoplankton community structure with climate 
change (Table 2).

4.3  |  Study limitations

The MIT biogeochemistry and ecosystem model, Darwin, resolves 
PFTs at finer physiological scale than most ecological models. 
However, like all models, it cannot capture all the complexity we 
know to exist in the natural world. Given the model's current pa-
rameterization, the temperature dependence of nutrient uptake and 
growth are assumed the same. Yet, some research on diatoms sug-
gests that nutrient uptake processes may each have their own opti-
mal temperature (Baker et al., 2016). Similarly, nutrient availability 
may also alter the thermal response, with the μmax, Q10, and thermal 
optimum, the temperature that produces the greatest growth, shift-
ing based on nutrient availability (Marañón et al., 2018). Light avail-
ability may have a similar effect, altering the temperature sensitivity 
of phytoplankton (Edwards et  al.,  2016). For these relationships 
to be characterized and accounted for in ecosystem models, more 
laboratory experiments across a diverse range and concentration of 
environmental drivers and using multiple PFTs are needed (Collins 
et al., 2022).

On a broader scale, there is also some debate about whether the 
exponential curve, first described by Eppley to portray the μmax re-
lationship with temperature and characterize the Q10 (Eppley, 1972), 
accurately depicts the phytoplankton response to temperature at the 
thermal extremes (low and high temperatures). Some data suggest 
that the exponential temperature-growth relationship may break 
down at higher temperatures (Anderson et al., 2021), potentially in-
dicating a limit to the thermal dependency. This may be caused by 
thermodynamic constraints, like enzyme structure and membrane 
fluidity, both of which have thermal limits (Willmer et  al.,  2004) 
leading to negatively skewed thermal performance curves in indi-
vidual phytoplankters (a rapid decline in growth above the thermal 
optima, Thomas et  al.,  2012). Thus, fitting exponential curves to 
thermally constrained growth rates may not be representative of the 
temperature-growth relationship and could lower the resulting Q10. 
While the goal of this study was to evaluate the parameterization of 
the Q10 and not the exponential relationship from which it is derived, 
defining a new function that would better describe the thermal de-
pendency remains an active area of research worth pursuing to fur-
ther improve our ecosystem models.

At last this modeling study is highly simplified for demonstra-
tive purposes. Though we aimed to characterize the effect of ther-
mal traits on phytoplankton community composition, we could not 
include all of the features that delineate PFTs, such as cell shape 
(Margalef, 1978; Naselli-Flores et  al., 2021), nor could we capture 
all of the diversity, complexity of organismal interactions, potential 
for trait evolution, or transient processes which may have impacted 
competition and therefore community structure historically or which 
will alter communities with climate change (Bishop et  al.,  2022; 
Padfield et  al., 2016). Additionally, due to the model's global scale 
and course resolution, plankton are advected and mixed within the 
flow field, but smaller scale features (e.g., eddies, turbulence) are 
not explicitly included. Instead, we designed this experiment to ex-
plore the impacts of different thermal trait parameterizations in an 

TA B L E  2 The growth parameters which significantly impacted 
estimates of biogeochemical processes at each latitude. Listed 
in parentheses are the methods that differentiated between 
Phytoplankton Functional Types for these parameters (K: Kremer; 
A: Anderson), potentially increasing model realism. Where we state 
‘Ambiguous’ we indicate that results were comparable between all 
methods.

Low latitudes High latitudes

Primary production Ambiguous (all 
comparable)

μmax (K, A)

Community structure μmax (K, A) μmax & Q10 (A)

Export processes μmax (K, A) μmax & Q10 (A)

Climate change μmax & Q10 (A) μmax & Q10 (A)
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idealized, model setting. Though we have begun to disentangle the 
value of increased PFT thermal trait differentiation in ocean-only 
biogeochemical models, comparing modeled PFT distribution from 
each simulation with empirical knowledge and observations (satel-
lite and in situ sampling), we cannot explicitly state that the Kremer 
method produces more realistic phytoplankton communities than 
the Anderson method, or vice versa, as we do not have the observa-
tional data and global coverage needed to support such a conclusion. 
We also cannot validate each simulation's primary production esti-
mates, as satellite derived estimates of net primary production are 
highly variable depending on the algorithms employed, varying more 
than the differences between our model experiments (Stock, 2019). 
However, we can highlight how each method may lead to different 
understandings of certain PFTs or regions (e.g., high latitudes) or 
cause predictions for a future ocean to vary so widely between Earth 
system models (Kwiatkowski et al., 2020; Laufkotter et al., 2015).

5  |  CONCLUSIONS

This work illustrated the impacts of phytoplankton thermal trait 
parameterization on estimates of phytoplankton community 
structure and biogeochemical cycling in a historical and climate 
change scenario. Several studies have estimated the Q10 from 
thermal growth data obtained from laboratory studies (Anderson 
et  al.,  2021; Bissinger et  al.,  2008; Eppley,  1972; Kremer 
et al., 2017); however, our study is unique in that it used a single 
empirically derived temperature-growth dataset, with differing 
assumptions about whether PFTs should be analyzed separately, 
to more consistently calculate the Q10 and μmax (Table 1). We then 
investigated how these different assumptions impacted commu-
nity structure, competition, and productivity in a global ecosystem 
model. The Eppley method of assuming all PFTs have the same Q10 
and μmax provided productivity estimates that matched observa-
tions in low latitudes, but hindered diatoms, eliminating them from 
the global ocean. For studies interested in diversity, food web 
structures, or export processes, both the Kremer and Anderson 
methods should be preferentially employed for their higher ca-
pacity to recreate natural community structures. Between these 
methods, the Anderson formulation captures variability in the 
temperature coefficients (Q10) of each PFT, resulting in key differ-
ences in competition and export, especially at high latitudes, while 
the Kremer method provides a simpler approach which produces 
comparable phytoplankton communities at low latitudes, where 
nutrient limitation plays a larger role in determining which PFTs 
can survive. Though the Kremer and Anderson methods had sig-
nificant differences in historical community structure, they both 
showed similar directionality of PFT biomass change in the future 
ocean. However, there were important differences in the magni-
tudes of these changes, especially in key PFTs and along the edges 
of expanding gyre boundaries.

This assessment serves as an illustrative guide for parameter-
izing phytoplankton ecosystem models, showcasing the strengths 

and weaknesses of three key methodologies. This study also em-
phasizes how the parameterization of the μmax and Q10 can alter 
our understanding of phytoplankton community structure, with 
a steeper or shallower thermal dependency curve impacting the 
range of temperatures and regions where one PFT may outcom-
pete another, thus altering projections for the future in Earth sys-
tem models.
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