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Abstract
Phytoplankton exhibit diverse physiological responses to temperature which influ-
ence their fitness in the environment and consequently alter their community struc-
ture. Here, we explored the sensitivity of phytoplankton community structure to 
thermal response parameterization in a modelled marine phytoplankton community. 
Using published empirical data, we evaluated the maximum thermal growth rates 
(μmax) and temperature coefficients (Q10; the rate at which growth scales with tem-
perature) of six key Phytoplankton Functional Types (PFTs): coccolithophores, cy-
anobacteria, diatoms, diazotrophs, dinoflagellates, and green algae. Following three 
well-	documented	methods,	PFTs	were	either	assumed	to	have	(1)	the	same	μmax and 
the same Q10 (as in to Eppley, 1972), (2) a unique μmax but the same Q10 (similar to 
Kremer et al., 2017), or (3) a unique μmax and a unique Q10	(following	Anderson	et	al.,	
2021).	These	trait	values	were	then	implemented	within	the	Massachusetts	Institute	
of Technology biogeochemistry and ecosystem model (called Darwin) for each PFT 
under	a	control	and	climate	change	scenario.	Our	results	suggest	that	applying	a	μmax 
and Q10 universally across PFTs (as in Eppley, 1972) leads to unrealistic phytoplankton 
communities,	which	 lack	diatoms	globally.	Additionally,	we	 find	 that	accounting	 for	
differences in the Q10 between PFTs can significantly impact each PFT's competitive 
ability, especially at high latitudes, leading to altered modeled phytoplankton com-
munity structures in our control and climate change simulations. This then impacts 
estimates of biogeochemical processes, with, for example, estimates of export pro-
duction varying by ~10%	in	the	Southern	Ocean	depending	on	the	parameterization.	
Our	results	indicate	that	the	diversity	of	thermal	response	traits	in	phytoplankton	not	
only shape community composition in the historical and future, warmer ocean, but 
that these traits have significant feedbacks on global biogeochemical cycles.

K E Y W O R D S
export processes, global change, marine biogeochemistry, marine ecology, model 
parameterization, phytoplankton, thermal traits
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1  |  INTRODUC TION

Phytoplankton are principal contributors to the global carbon cycle 
(Falkowski et al., 1998) and form the base of most marine food webs 
(Sherr & Sherr, 1991). They comprise several phylogenetically diverse 
Phytoplankton Functional Types (PFTs), defined as groups of phyto-
plankton that share unique physiological and morphological traits 
(Reynolds et al., 2002), such as silica utilization by diatoms (Litchman 
& Klausmeier, 2008). These traits contribute to PFT fitness, leading 
to distinct phytoplankton assemblages across the world's oceans. 
Which PFTs are present largely determines marine ecosystem struc-
ture and function (Le Quéré et al., 2005), as well as the flux of ele-
ments to the ocean interior from the surface (Falkowski et al., 2003; 
Uitz et al., 2010). However, most Earth system models (which in-
clude the coupling between the atmosphere, the ocean, and the 
land)	such	as	those	used	in	the	Intergovernmental	Panel	on	Climate	
Change	Coupled	Model	 Intercomparison	Projects	still	 include	only	
a few (typically two to three) PFTs (Laufkotter et al., 2015). Yet, 
there is an increasing recognition and desire to capture the varied 
roles and contributions of PFTs to biogeochemical cycling, and in 
ocean-	only	biogeochemical	models,	more	PFTs	are	being	 resolved	
than	ever	before	(e.g.,	MARBL-	SPECTRA,	with	nine	phytoplankton	
from	three	PFTs,	Negrete-	García	et	al.,	2022; and Darwin with up to 
350 phytoplankton from six PFTs, Dutkiewicz et al., 2020; Follows 
et al., 2007).

Recent analyses of empirically derived phytoplankton growth 
rates suggest PFTs may also be uniquely characterized by their tem-
perature	response	traits	(Anderson	et	al.,	2021; Kremer et al., 2017), 
which alter their fitness in different thermal environments. Through 
over a billion years of evolution (Keeling, 2010), PFTs have differ-
entiated their maximum growth rates and their thermal niches, or 
the temperatures at which they are viable (Thomas et al., 2016). 
These differences are partially driven by environmental variability, 
with thermal traits becoming more divergent between PFTs as tem-
perature variation increases (i.e., poleward; Thomas et al., 2016). 
These thermal trait differences influence PFT biogeography in the 
contemporary ocean and could lead to altered community structure 
with	anthropogenic	climate	change	(Anderson	et	al.,	2021), possibly 
impacting global primary production (Dutkiewicz et al., 2013) and 
nutrient cycling (Toseland et al., 2013). However, resolving many 
PFTs, each with distinctive thermal traits, can be computationally 
difficult.	Instead,	most	models	apply	a	single	thermal	trait	parame-
terization universally across all modeled phytoplankton (Laufkotter 
et al., 2015), which may limit their ability to capture finer ecosys-
tem	 dynamics.	 New	 analyses	 of	 thermal	 traits	 among	 PFTs	 (e.g.,	
Anderson	et	al.,	2021) provide an opportunity to evaluate how mea-
sured thermal trait variability impacts phytoplankton community 
structure and estimates of export processes in a modeled ocean.

Here, we evaluated the importance of accounting for these 
thermal traits in a dynamic ecosystem model where phytoplankton 
species compete for resources. We focused on two key parame-
ters shown to vary between PFTs: the maximum growth rate (μmax) 
and the temperature coefficient (Q10), or the rate at which the μmax 

scales with each 10°C of temperature change (slope). Diverging from 
previous studies which have used disparate datasets to estimate 
thermal parameters (e.g., Buitenhuis et al., 2013), here we utilized 
a	 single	 comprehensive	 phytoplankton	 growth	 dataset	 (Anderson	
et al., 2021)	and	three	well-	established	procedures	to	evaluate	phy-
toplankton thermal responses, allowing for consistency and com-
parison between methods. PFTs in empirical analyses were either: 
(1) evaluated as a single entity resulting in a constant μmax and Q10 
across all phytoplankton (similar to what was done in Eppley, 1972), 
(2) assessed with PFTs weighted as a factor leading to varied μmax but 
a constant Q10 for all phytoplankton (similar to Kremer et al., 2017), 
or (3) analyzed independently resulting in a unique μmax and Q10 for 
each	PFT	(following	Anderson	et	al.,	2021). We then explored how 
each of these approaches altered estimates of model phytoplank-
ton community structure, as well as several key biogeochemical 
processes,	both	in	a	pre-	industrial	(1860–1880)	and	a	future	ocean	
(2080–2100).

From our analyses, we found that the parameterization of the 
μmax and Q10 did not have a strong effect on low latitude biogeo-
chemical cycling, but did impact the modeled phytoplankton com-
munity	 structures	 underlying	 these	 processes.	 Our	 simulations	
suggested that a high μmax is necessary for the diatoms, while the Q10 
is most important at high latitudes, where phytoplankton encoun-
ter their thermal minima and where changes in competitive abilities 
are most pronounced. Thus, the way in which the μmax and the Q10 
are parameterized can impact modeled phytoplankton community 
structures, especially at high latitudes, and in turn, estimates of bio-
geochemical processes. Though we cannot directly validate the dis-
tribution of all PFTs produced by these methods, as we do not have 
the observational data needed for such analyses, we provide illustra-
tive examples of each parameterization in our global simulations and 
outline when thermal traits may be more important for structuring 
ecosystem models. This will allow greater certainty in thermal pa-
rameterizations, leading to more realistic global ecosystem models.

2  |  MATERIAL S AND METHODS

2.1  |  Global plankton community, biogeochemical, 
and circulation models

We used a modified version of the plankton community model out-
lined in Follett et al. (2022) to evaluate the impact of thermal traits 
on estimates of global phytoplankton community composition and 
biogeochemical processes. The model includes 31 phytoplankton 
phenotypes from six PFTs (Dutkiewicz et al., 2021): 2 cyanobacteria, 
2 green algae (picoeukaryotes), 5 coccolithophores, 5 diazotrophs, 9 
diatoms,	and	8	mixotrophic	dinoflagellates	(Figure S1). Collectively, 
the	phytoplankton	phenotypes	cover	14	size	classes	ranging	from	0.6	
to	104 μm equivalent spherical diameter (ESD) and are distributed 
evenly on a logarithmic scale following established practices (e.g., 
Ward et al., 2012), so that the large range of sizes that phytoplank-
ton cover can be captured. The model also includes heterotrophic 
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bacteria (Follett et al., 2022), and zooplankton that graze on prey 
following	 a	 Holling	 II	 function	 (Holling,	 1965).	 In	 addition	 to	 the	
biological components, the model simulates biogeochemical cy-
cling	of	C,	N,	P,	Si	and	Fe	through	 inorganic	and	organic	forms,	as	
phytoplankton take up nutrients and heterotrophic bacteria recycle 
them through remineralization (Dutkiewicz, Hickman, et al., 2015; 
Follett et al., 2022). Each of these biological and biogeochemi-
cal	components	are	advected	and	mixed	by	the	three-	dimensional	
Massachusetts	 Institute	 of	 Technology	 general	 circulation	 model	
(MITgcm;	Marshall	et	al.,	1997). This configuration has a coarse res-
olution of 2° by 2.5° horizontally and 22 vertical levels that range 
from	10 m	at	the	surface	to	500 m	at	depth	(Monier	et	al.,	2018).

2.2  |  Model thermal growth parameters

Phytoplankton growth rates within the plankton community model 
are calculated as a function of nutrient (N) acquisition traits unique 
to each PFT (Dutkiewicz et al., 2020), irradiance (I), and temperature 
dependency (T) according to the following equation:

The maximum growth rates (μmax) are scaled allometrically 
(Table S1:	 a_PCmax,	 allometrically	 scaled	 carbon-	specific	 growth	
maximum), as a power law function of cell biovolume based on mod-
eled ESD (Figure S1), where phytoplankton growth rate decreases 
with	size	 for	phenotypes	 larger	 than	3 μm, and increases with size 
for	phenotypes	smaller	 than	3 μm (Dutkiewicz et al., 2020; Follett 
et al., 2022). This unimodal distribution has been observed in lab-
oratory studies (e.g., Marañón et al., 2013) and is likely caused by 
non-	scalable	components	of	the	cell	(see	discussions	in	Raven,	1994; 

Ward et al., 2017). For this iteration of the model, we modified the 
temperature-	growth	 relationship	 (γT), by altering each PFT's tem-
perature coefficient (Q10), as well as their maximum growth rates 
(μmax), following the three methodologies discussed below. By alter-
ing these parameters, we were able to evaluate the impact of thermal 
traits on estimates of global phytoplankton community composition 
and biogeochemical processes. Because the Q10 is boundless, we 
also compared the μmax at a single temperature, here 20°C (μmax20; 
Table 1), though this selection is purely illustrative.

2.3  |  Model parameterization using empirical data

To parameterize the temperature coefficients of each PFT, we 
compiled empirical growth measurements from coccolithophores 
(n = 202),	 cyanobacteria	 (n = 502),	 diatoms	 (n = 1794),	 diazotrophs	
(n = 144),	 dinoflagellates	 (n = 748),	 and	 green	 algae	 (n = 175).	 We	
began	 with	 the	 thermal	 growth	 rate	 compilation	 by	 Anderson	
et al. (2021), and added data from Kremer et al. (2017) to represent 
green algae and diazotrophs. We then evaluated the Q10 by fitting 
99th	quantile	regressions	to	log-	transformed	growth	rates	to	capture	
the growth maxima, as is commonly implemented in phytoplankton 
biology (Bissinger et al., 2008; Kremer et al., 2017).	In	curve	fitting,	
we followed three separate methods to assess the importance of 
varied Q10 and μmax on phytoplankton community composition 
and productivity. First, in the “Eppley” method (Eppley, 1972), we 
evaluated the thermal dependencies of all phytoplankton as a sin-
gle entity, fitting a 99th quantile regression (Bissinger et al., 2008) 
to	all	 log-	transformed	growth	rates,	which	resulted	in	one	Q10 and 
one μmax across all PFTs (Table 1; Figure 1a).	Next,	in	the	“Kremer”	
method (Kremer et al., 2017), we treated each PFT as a factor in 
model fitting. This resulted in one Q10 across all phytoplankton, but 

(1)� = �max ⋅ �T ⋅ �N ⋅ � I.

TA B L E  1 For	each	method	and	Phytoplankton	Functional	Type	(PFT),	the	number	of	strains	examined	(n) and total number of discrete 
growth measurements used in curve fitting (N) are shown. The y-	intercept	for	each	exponential	temperature	dependency	is	determined	by	
a, and b characterizes the rate at which μmax scales with temperature. The y-	intercept	(converted	to	growth	per	day),	temperature	coefficient	
(Q10), and growth maximum at 20°C (μmax20)	are	also	shown.	Note	that	the	Kremer	method	used	a	single	b and Q10 value across all PFTs.

Method PFT n N a b Q10 y- intercept μmax20

Eppley All	PFTs 265 3565 −0.1614 0.0382 1.46 0.851 1.8269

Kremer Coccolithophores 30 202 −0.6443 0.0575 1.7772 0.5250 1.6581

Cyanobacteria 32 502 −1.2341 0.2911 0.9193

Diatoms 135 1794 −0.3560 0.7005 2.2122

Diazotrophs 7 144 −1.9337 0.1446 0.4567

Dinoflagellates 46 748 −1.3490 0.2595 0.8195

Green algae 15 175 −0.5119 0.5994 1.8929

Anderson Coccolithophores 30 202 −0.3005 0.0353 1.4191 0.7408 1.4920

Cyanobacteria 32 502 −1.6614 0.0758 2.1383 0.1899 0.8685

Diatoms 135 1794 −0.2263 0.0438 1.5527 0.7977 1.9232

Diazotrophs 7 144 −1.9337 0.0575 1.7772 0.1446 0.4567

Dinoflagellates 46 748 −1.2356 0.0512 1.6653 0.2905 0.8057

Green algae 15 175 −0.6671 0.0635 1.8867 0.5132 1.8274

 13652486, 2024, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/gcb.17093 by B

ristol C
om

m
unity C

ollege, W
iley O

nline L
ibrary on [23/10/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://onlinelibrary.wiley.com/action/rightsLink?doi=10.1111%2Fgcb.17093&mode=


4 of 16  |     ANDERSON et al.

unique μmax's for each PFT (Figure 1b; Figure S2). We adjusted the 
original method outlined in Kremer et al. (2017), which weighted 
thermal growth rates by phytoplankton strain to account for differ-
ences in the number of growth measurements between strains, and 
instead weighted by PFT, so no single PFT had a greater influence on 
the resulting Q10. This better addressed our specific experimental 
goal of evaluating PFTs and accounted for diatoms being overrepre-
sented	in	the	dataset.	Lastly,	 in	the	“Anderson”	method	(Anderson	
et al., 2021), we assessed thermal growth rates separately for 
each PFT, which lead to unique estimates of the Q10 and μmax for 
each PFT (Figure 1c; Figure S3; Table 1). For diazotrophs, the data 
were deemed insufficient for model fitting (Figure S3d;	Anderson	
et al., 2021), so Q10 and μmax values were repeated from the Kremer 
method.

2.4  |  Model simulations

Our	 study	was	 designed	 to	 consider	 the	 impact	 of	 different	 as-
sumptions	about	 temperature-	growth	parameterizations	on	phy-
toplankton community structure and productivity in the modeled 
historical and future ocean. The simulations were performed in 
“offline” mode, in that the physical fields (circulation, mixing, salin-
ity	and	temperature)	were	taken	from	a	pre-	existing	set	of	Earth	
system model simulations using a simpler biogeochemical mod-
ule (Monier et al., 2013) and the Darwin ecosystem component 
was	forced	with	these.	 In	this	offline	mode	there	 is	no	feedback	
between alteration in the biology, as simulated in this study with 
Darwin, and the physical fields. These offline fields have been 
used in several previous studies (Cael et al., 2021; Dutkiewicz 
et al., 2019; Henson et al., 2021).

Here, we present a series of sensitivity experiments (see 
Table S2;	 Anderson,	2023) examining each of the three thermal 

parameterizations	 (Eppley,	 Kremer,	 and	 Anderson),	 under	 three	
different ocean environments: a control (based on Greenhouse 
concentrations	 in	1860),	an	ocean	warming	scenario	where	tem-
perature	(but	not	the	rest	of	the	physics)	is	as	projected	for	2080	
to 2100 (following the procedure used in Dutkiewicz, Morris, 
et al., 2015)	 and	 a	 climate	 change	 scenario	 from	 2080	 to	 2100	
in which all physical parameters are impacted, including tem-
perature, salinity, and circulation (meridional, zonal, and vertical 
velocity) under a high emissions scenario. While we focused on 
the results from the control and climate change simulations, we 
included the ocean warming only simulation to better distinguish 
the effects of temperature on phytoplankton community compo-
sition from that of other physical parameters which may be altered 
with climate change, addressing our specific interests in thermal 
trait parameterization. Each simulation was started from the same 
initial	conditions	and	run	for	20 years;	we	provide	results	based	on	
the	mean	of	the	last	10 years.	Given	the	number	of	simulations	and	
the	exploratory	nature	of	 this	 study	we	did	not	 run	 full	1860	 to	
2100 simulations. Thus, in the climate change scenarios we will not 
capture	some	of	the	transient	features.	Instead,	we	are	capitalizing	
on the large differences in the physical conditions of the control 
(1860)	and	the	end	of	century	(2080–2100).	These	differences	in-
clude large shifts in temperature (up to 5°C difference in sea sur-
face temperature in some locations) and changes in stratification 
and circulation that lead to significant differences in the supply of 
nutrients to the euphotic zone.

2.5  |  Phytoplankton diversity

We assessed the diversity of the modeled phytoplankton com-
munity in the euphotic zone (here presumed to be the uppermost 
240 m),	 averaged	over	10 years.	We	calculated	 the	 richness	 as	 the	

F I G U R E  1 Exponential	curves	characterizing	the	thermal	dependencies	of	phytoplankton	growth	according	to	three	documented	
methods: (a) Eppley (1972), (b) Kremer et al. (2017),	and	(c)	Anderson	et	al.	(2021). Points are empirically derived discrete growth 
measurements that are the same in each panel but colored based on whether Phytoplankton Functional Types were analyzed together 
(black,	Eppley)	or	separately	(colored,	Kremer	&	Anderson).
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number of phenotypes comprising greater that 0.001% of the total 
averaged phytoplankton biomass within a grid cell, as done previ-
ously (Barton et al., 2010; Clayton et al., 2013). Evenness (E), which 
describes the distribution of phenotypes within the phytoplankton 
community, was then discerned using Pielou's evenness metric ac-
cording to the following equation:

where the proportion of each phenotype in a community is given by 
pi with R denoting the maximum richness (here, 31 phenotypes). This 
provided a value between 0 to 1, with 0 indicating an uneven commu-
nity dominated by a single phenotype and 1 indicating a community 
with equal proportions of all phenotypes represented.

For	the	Anderson	and	Kremer	simulations,	we	also	characterized	
phytoplankton community differences between parameterizations 
(Anderson	 and	 Kremer),	 as	well	 as	 between	 time	 periods	 (control	
and	climate	change	scenario)	for	each	parameterization	using	Bray–
Curtis	dissimilarity.	Here	Bray–Curtis	(BC)	is	calculated	for	each	grid	
cell	using	 the	average	PFT	biomass	 (mg	C m−3)	 in	 the	upper	240 m	
from each simulation (a and b) and each PFT (i), according to the fol-
lowing equation (Bray & Curtis, 1957):

We used PFT biomass rather than phenotype biomass for this 
analysis to better capture the change in PFT composition that re-
sulted from adjusting PFT thermal parameters within the model. 
We also did not include the Eppley simulations in this latter anal-
ysis after finding that the Eppley parameterizations produced 
phytoplankton community structures, which mostly lacked dia-
toms in the global ocean. Model output from these simulations 
are	archived	on	the	Harvard	Dataverse	(Anderson,	2023) and code 
to	reproduce	these	analyses	are	archived	at	Zenodo	(Anderson	&	
Fronda, 2023).

3  |  RESULTS

3.1  |  Thermal trait evaluations

The Eppley parameterization method produced a single μmax and 
Q10	that	was	generally	lower	than	either	the	Kremer	or	Anderson	
methods (Table 1). When differentiating between PFTs, as in the 
Kremer	and	Anderson	methods,	the	data	suggest	that	diatoms	ex-
hibit the highest growth rates (e.g., μmax20), while the diazotrophs 
and dinoflagellates have the lowest, consistent with previous find-
ings	 (Anderson	 et	 al.,	2021; Thomas et al., 2016). Following the 
Anderson	method,	 the	data	 indicate	 that	 cyanobacteria	may	ex-
hibit the greatest response to temperature change, as evidenced 
by their high Q10 and steep curve slope (Figure 1c), while coc-
colithophores may exhibit the shallowest slope and lowest Q10. 
This difference in slope signifies that the cyanobacteria would be 
able to increase their growth at a greater rate than the coccolitho-
phores, making them increasingly strong competitors with each 
degree of temperature increase. This slope variability also results 
in different PFTs exhibiting growth dominance at different points 
along the temperature gradient, as evidenced by thermal depend-
ency	 curve	 intersections	 within	 the	 Anderson	 parameterization	
(Figure 1c).

3.2  |  Estimates of primary production

Differences in parameterized thermal traits between control simula-
tions resulted in changes to community structure and biogeochemi-
cal	 processes.	 At	 low	 latitudes,	 each	 parameterization	 produced	
comparable estimates of total phytoplankton biomass and primary 
production	 in	 the	 upper	 240 m	 (Figure 2). However, discrepancies 
emerged	 at	 mid	 and	 high	 latitudes	 (30–90° N/S),	 with	 the	 Eppley	
parametrization having higher biomass by an average of 25.5% 
when compared with the Kremer simulation, and 14.7% when com-
pared	with	the	Anderson	simulation	 (Figure 2a; Figure S5a). These 

(2)E =
−

∑R

i=1
pi ln pi

lnR
,

(3)BCab =
Σi

|
||
PFT

a

i
− PFT

b

i

|
||

Σi

(
PFT

a

i
+ PFT

b

i

) .

F I G U R E  2 Depth-	integrated	biomass	
g	C m−2; (a) and primary production 
g	C m−2 year−1;	(b)	over	the	upper	240 m	
from each control simulation averaged 
over	the	final	10 years	(1870–1880).	
Lines denote zonal means and shading 
corresponds to variation across each 
latitude (±1 SD).	Horizontal	dashed	line	
indicates the equator.

(a) (b)
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6 of 16  |     ANDERSON et al.

differences in biomass resulted in subsequent variability in our pri-
mary production estimates (Figure 2b), as primary production in 
the Darwin model is calculated as a factor of biomass and growth 
rate (Dutkiewicz et al., 2020).	At	mid-		and	high	latitudes,	the	Eppley	
parameterization led to primary production being higher by 24.5% 
when compared with Kremer, and 7.45% when compared with 
Anderson	(Figure 2b; Figure S5b,d).

3.3  |  Phytoplankton community structure

The phytoplankton community structures that resulted from each 
parameterization were more disparate than the bulk estimates of 
biomass and production in the control simulations. The Eppley 
simulation	 differed	 from	both	 the	Kremer	 and	Anderson	 simula-
tions substantially and was characterized by lower species richness 
(Figure 3a) and community evenness (Figure 3b), with significant 
differences	 at	 midlatitudes	 (30–60° N/S;	 one-	way	 ANOVA,	 rich-
ness: p < .001,	evenness:	p < .001).	Additionally,	the	PFT	composi-
tion differed measurably between simulations, with the greatest 
variability	in	the	Southern	Ocean.	There,	the	Eppley	parameteriza-
tions produced a community dominated by dinoflagellates and coc-
colithophores,	with	roughly	8	times	greater	dinoflagellate	biomass	
(mg	 C m−3)	 at	 50° S	 than	 either	 the	 Kremer	 (7.77×)	 or	 Anderson	
(8.12×) simulations (Figure 4).	 In	 comparison,	 the	 Kremer	 and	
Anderson	 simulations	 produced	 a	 phytoplankton	 community	
dominated by diatoms (Figure 3c), which were outcompeted glob-
ally in the Eppley simulations, as evidenced by their relatively low 

biomass (Figure 4a). Green algae also had narrower spatial distri-
butions in the Eppley simulations, with the greatest biomass oc-
curring	 8–10°	 further	 equatorward	 in	 the	 Southern	 Hemisphere	
than	in	the	Kremer	or	Anderson	simulations	(38° S	vs.	48	or	46° S,	
respectively; Figure 4).

Between	 the	 Kremer	 and	 Anderson	 parametrizations,	 there	
were also distinct differences in community structure. For exam-
ple, the global spatial distribution of cyanobacteria was 7.47% or 
26	million	km2	smaller	in	the	Anderson	simulations	than	the	Kremer	
simulations (Figure 4b,c), with cyanobacteria not extending South 
of	64° S.	Conversely,	the	latitudinal	extent	of	coccolithophores	was	
1.04% (3.5 million km2)	 greater	 in	 the	Anderson	 simulations,	with	
coccolithophores	exhibiting	higher	biomass	in	the	Southern	Ocean	
(Figure 4c). These differences produced a more even community in 
the	 Southern	Ocean	 under	 the	 Anderson	 parameterization,	 but	 a	
less	even	community	 in	the	Arctic	Ocean	than	the	Kremer	simula-
tion (Figure 3b).	Variability	in	community	structure	altered	estimates	
of biogeochemical processes at high latitudes (Figure 5a,d,g). For 
example,	the	Anderson	simulation	estimated	greater	particulate	in-
organic	carbon	(PIC)	by	0.55 mg	C m−3	(9.83%)	in	the	control	scenario	
(Figure 5g).

3.4  |  Community projections for the future

Using altered temperatures and physical forcing representative of 
the end of the century under a high emission scenario, we simulated 
climate change in our model ocean to understand how differences 

F I G U R E  3 Zonal	means	(lines)	
and variation (±1 SD,	shading)	of	
phytoplankton community richness (a) and 
evenness (b) calculated from biomass in 
the	upper	240 m	in	the	control	scenario	
averaged	over	the	final	10 years	(1870–
1880).	Only	phytoplankton	representing	
at least 0.001% of the total phytoplankton 
biomass were considered in calculations, 
following the methods of Barton 
et al. (2010) and Clayton et al. (2013). (c) 
The dominant Phytoplankton Functional 
Type at each location is indicated by 
colors (legend), with grey shading 
denoting	unresolved	or	ice-	covered	
regions within the model.

(a)

(b)

(c)
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    |  7 of 16ANDERSON et al.

in	 temperature-	growth	 parameterizations	 might	 alter	 projections	
of phytoplankton communities and export in a future ocean. For 
this	 analysis,	we	 focused	 on	 the	Kremer	 and	Anderson	methods,	
as the Eppley method produced a phytoplankton community which 
unrealistically lacked diatoms globally (Figure 4a). We assessed 
differences	 in	 community	 structure	 using	 Bray–Curtis	 dissimilar-
ity	between	the	Kremer	and	Anderson	methods	using	the	average	
PFT	biomass	over	the	final	10 years	of	the	control	(1860–1880)	and	
climate	 change	 simulation	 (2080–2100).	 Bray–Curtis	 dissimilar-
ity considers both PFT presence/absence and biomass, and scores 

communities on a scale from 0 to 1, with ‘0’ indicating identical 
communities and a ‘1’ indicating completely different communities 
(no	 analogous	 PFTs).	 At	 low	 latitudes,	 the	 Kremer	 and	 Anderson	
parameterizations predicted similar alterations to the phytoplank-
ton	community	with	climate	change	(low	Bray–Curtis	dissimilarity;	
Figure 6a). However, the phytoplankton communities in the con-
trol and climate change scenarios varied substantially between the 
Kremer	and	Anderson	simulations	(Figure 6b) and were greater than 
within	each	simulation	due	to	climate	change	(1860	and	2100	physi-
cal conditions, Figure 6a).

F I G U R E  4 Mean	biomass	over	the	upper	240 m	for	each	Phytoplankton	Functional	Type	under	each	model	parameterization	(a–c)	in	the	
control	simulation	averaged	over	10 years	(1870–1880).	Zonal	mean	and	standard	deviation	are	shown	for	each	simulation	(d).

(a) (b) (c) (d)
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8 of 16  |     ANDERSON et al.

These disparities in phytoplankton communities were primarily 
driven by differences in PFT proportions (evenness). For example, 
in the control scenario, evenness varied between the Kremer and 
Anderson	 simulations	 at	 high	 latitudes	 (Figure 3b) because of dif-
ferences in PFT biomass (Figure 4), especially for coccolithophores 
and cyanobacteria. The coccolithophores also exhibited the greatest 
differences	 in	 biomass	 change	 (1860–2100)	 between	 simulations,	
with biomass change ~20×	 less	 with	 the	 Anderson	 parameteriza-
tions	 at	 Southern	mid-	latitudes	 than	 in	 the	 Kremer	 parameteriza-
tions (Figure 7a; Figure S6), due primarily to the coccolithophores 
having the lowest Q10	 in	 the	Anderson	 simulation,	 relative	 to	 the	
other PFTs. This resulted in large differences in our estimates of 
calcium	 carbonate	 (PIC)	 alterations	 with	 climate	 change,	 with	 the	
Kremer	 simulation	 predicting	 increases	 in	 PIC	 and	 the	 Anderson	
method	 predicting	 decreases	 in	 PIC	 at	 the	 poles	 (Figure 5h,i, re-
spectively). Though the community differences were large between 
the	Anderson	and	Kremer	 scenarios,	 the	directionality	of	biomass	
change, with PFT biomass either increasing or decreasing between 
the control and 2100 environment, agreed between simulations in 
most regions (Figure 7).	Notably,	both	parameterizations	suggest	a	
decrease in cyanobacteria in the gyres (Figure 7b; Figure S6), but an 
increase at higher latitudes, while diatoms are suggested to decrease 
almost	everywhere	(except	in	the	Southern	Ocean;	Figure 7c). This 
consensus in biomass change also resulted in a general agreement 
between simulations for how export production might be altered by 
2100 (Figure 5).

4  |  DISCUSSION

Over	 50 years	 ago,	 Eppley	 first	 documented	 the	 response	 of	 phy-
toplankton growth to changes in temperature (Eppley, 1972). The 
canonical Q10 = 1.88	 has	 been,	 and	 continues	 to	 be,	 used	 in	many	
models, including those providing estimates of the impact of climate 
change on the ocean's biogeochemistry (Bopp et al., 2013; Laufkotter 
et al., 2015). However, as these models added even modest increases 
in plankton diversity (e.g., two rather than one PFT), it became clear 
that uniform traits were unrealistic. Most models now include at least 
a	 fast-	growing	diatom	and	a	slower	growing	smaller	phytoplankton	
with varied μmax (similar to the Kremer method), or implicit func-
tions like calcification, though few include mixotrophy (Laufkotter 
et al., 2015). Despite this added diversity, the method of choosing 
Q10 and μmax varies from model to model with most models electing 
to apply a single Q10 universally among PFTs. However, recent obser-
vations suggest that PFTs exhibit unique responses to temperature 
(Anderson	et	al.,	2021; Kremer et al., 2017) and employing a single 
universal thermal trait, as in the Eppley method, may result in coarse 
estimations of ecological processes in the global ocean. Using a single 
empirical dataset, we evaluated three methods of parameterizing the 
Q10 and μmax to provide an outline of the strengths and limitations 
of	each	method.	Our	robust	framework	allowed	us	to	compare	the	
ecological and biogeochemical consequences of different thermal 
response trait parameterizations, which will help strengthen the pre-
dictive capacity of biogeochemical and ecosystem models.

F I G U R E  5 Difference	in	silica	export	(a–c;	g	Si m−2 year−1),	export	production	(d–f;	g	C	m−2 year−1),	and	particulate	inorganic	carbon	(PIC;	
g–i;	mg	C m−3)	at	115 m	between	models,	averaged	over	the	final	10 years	of	each	simulation.	The	difference	between	the	Anderson	and	
Kremer	parameterizations	(Anderson–Kremer)	in	the	control	[mean	(1870–1880)]	is	shown	in	(a,	d,	g)	and	the	change	in	export	processes	
with	climate	change	[mean	(2090–2100) – mean	(1870–1880)]	is	characterized	for	Kremer	(b,	e,	h)	and	Anderson	(c,	f,	i).

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
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    |  9 of 16ANDERSON et al.

4.1  |  Simulating diverse phytoplankton 
communities

One	 of	 the	 principal	 findings	 of	 our	 control	 simulations	 was	 the	
difference in community structures produced by each parameteri-
zation. The Eppley formulation in particular produced an ocean 
almost entirely absent of diatoms. This differs significantly from 
satellite-	based	estimations	of	phytoplankton	community	structure,	
which characterize diatoms as the dominant PFT in the Southern 
Ocean	 during	 austral	 summer	 (Figure S7a;	 Alvain	 et	 al.,	 2008; Xi 
et al., 2020), as well as empirical observations which note considera-
ble diatom biomass throughout the world's oceans, and especially in 
the	Southern	Ocean	(Figure S8; Leblanc et al., 2012). The absence of 
diatoms in the Eppley simulation was due in part to the way in which 
growth rates were parameterized, with all PFTs characterized by the 
same μmax, contradicting evidence that diatoms can be strong com-
petitors in high nutrient regimes and have some of the fastest phyto-
plankton	growth	rates	(Alexander	et	al.,	2015;	Anderson	et	al.,	2021; 
Tang, 1995). Global biogeochemical and plankton community mod-
els have generally parameterized higher growth rates for diatoms 
based on these empirical observations of greater nutrient uptake 
(Aumont	&	Bopp,	2006; Follows et al., 2007; Gregg & Casey, 2007; 

Negrete-	García	et	al.,	2022; Stock et al., 2014) and are often able to 
reproduce	 substantial	diatom	communities	 in	 the	Southern	Ocean	
(Bopp et al., 2005). However, rarely is the μmax	 also	 temperature-	
dependent, with some exceptions (Shigemitsu et al., 2012), or evalu-
ated using as rigorous of a methodology as provided here. We find 
that without employing a higher μmax, and with diatoms' higher nutri-
ent requirements (due to their larger size), diatoms are outcompeted 
in	the	simulated	global	ocean.	 In	the	Eppley	simulation,	dinoflagel-
lates were the main competitor of the diatoms and excelled given 
their ability to supplement their nutrient requirements with grazing 
(mixotrophy). These results highlight the limitations of parameter-
izing ecosystem models strictly according to the Eppley method, 
as simulations produced phytoplankton community structures that 
contradict	observations	from	the	natural	world	(Alvain	et	al.,	2008; 
Leblanc et al., 2012; Soppa et al., 2014; Xi et al., 2020).

While many ocean plankton community models have included 
different μmax between PFTs, they generally utilize a single Q10 (Bopp 
et al., 2013; Laufkotter et al., 2015).	As	 such,	most	models	 (Bopp	
et al., 2013; Follows et al., 2007; Laufkotter et al., 2015) follow 
an approach closer to our Kremer method, with some exceptions 
(Buitenhuis et al., 2013). However, the choice of different Q10's be-
tween PFTs has typically not been rigorously differentiated for many 

F I G U R E  6 Bray–Curtis	dissimilarity	from	1860	to	2100	(a)	for	the	Kremer	and	Anderson	parameterizations	under	a	climate	change	
scenario (e.g., nutrient concentrations, circulation etc. changing), versus a community comparison between models at each time point (b; 
1870–1880	(control)	or	2090–2100	(climate	change)).	A	‘0’	indicates	no	change	in	phytoplankton	community	and	a	‘1’	indicates	a	community	
with	no	analogous	Phytoplankton	Functional	Types	(PFTs).	Zonal	means	(lines)	and	standard	deviations	(shading)	are	also	shown	(c).	Only	
PFTs representing at least 0.001% of the total phytoplankton biomass were considered.

(a) (b) (c)
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10 of 16  |     ANDERSON et al.

PFTs, using a single coherent dataset, and is not normally based on 
thermal growth curves as is done here. By estimating both the μmax 
and the Q10 in a consistent manner, we were able to characterize 
each PFT's thermal dependency and compare parameterization 
methods. From this analysis, we found that parameterizing PFTs 
with a unique μmax while holding the Q10 constant (Kremer) or al-
lowing	 it	 to	vary	 (Anderson),	 better	 simulated	natural	phytoplank-
ton	 assemblages	 than	 the	 Eppley	 method.	 In	 lower	 latitudes,	 the	

two	parameterizations	had	 similar	 community	 structures.	 In	 these	
regions, smaller phytoplankton adapted to low nutrient conditions 
dominate, as nutrient affinity is a more important factor in determin-
ing competitive ability than differences in Q10. But poleward, there 
are notable differences between these two parameterizations. For 
instance, the poleward extent of cyanobacteria was reduced in the 
Anderson	 simulation,	 better	 reflecting	 global	 cyanobacteria	 distri-
butions.	 Abundance	 patterns	 of	 the	 cyanobacteria	 Synechococcus 

F I G U R E  7 Average	change	in	biomass	for	each	Phytoplankton	Functional	Type	(PFT;	a–f),	over	the	upper	240 m	between	the	final	
10 years	of	the	control	(1870–1880)	and	climate	change	scenario	(2090–2100)	for	the	Kremer	(blue)	and	Anderson	(green)	parameterizations.	
PFT	changes	over	time	were	binned	into	high	(60–90°),	mid	(30–60°),	and	low	(0–30°)	latitudes.

(a) (b) (c) (d) (e) (f)

F I G U R E  8 Difference	in	growth	rate	
(per day) between cyanobacteria and 
coccolithophores (a, b) and diatoms and 
dinoflagellates (c, d) in a simplified Kremer 
(a,	c)	or	Anderson	(b,	d)	model	where	
growth depends only on temperature 
and nutrient availability (Equation 4). 
Phytoplankton Functional Type (PFT) 
icons indicate which conditions lead to 
one PFT exhibiting a higher growth rate 
over another (red or blue).(a) (b)

(c) (d)
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    |  11 of 16ANDERSON et al.

and Prochlorococcus, collected via cruise transects, often charac-
terize a clear drop in cyanobacteria density approaching the poles 
(Flombaum et al., 2013; Follett et al., 2022), resembling that of the 
Anderson	 simulation.	 This	 decrease	 in	 abundance	 can	 partially	 be	
explained via the increase in shared predation of cyanobacteria and 
heterotrophic bacteria at higher latitudes, which are similar in size 
(Follett et al., 2022). However, as our iteration of the Darwin model 
includes	heterotrophic	bacteria	 in	both	 the	Kremer	 and	Anderson	
simulations, we can also hypothesize that the varied temperature 
coefficients (Q10)	 in	 the	 Anderson	 parameterization	 contribute	 to	
the	observed	differences	in	cyanobacteria	biomass.	In	particular,	the	
steeper Q10 for cyanobacteria reduces their competitive ability at 
low temperatures.

Coccolithophores were another PFT whose geographical range 
varied between control simulations, with a greater poleward extent 
exhibited	in	the	Anderson	simulation.	Coccolithophores	are	calcify-
ing	phytoplankton	that	comprise	the	Southern	Ocean	Great	Calcite	
Belt	which	extends	as	far	South	as	65°	 (Holligan	et	al.,	2010). The 
calcium	carbonate	(PIC)	that	they	produce	is	visible	via	satellite	and	
is at its highest concentration at high latitudes (Mitchell et al., 2017). 
Though	 in-	situ	 observations	 are	 sparse	 for	 the	 coccolithophores	
(Figure S8), they are thought to contribute considerably to total an-
nual	production	 in	the	Southern	Ocean	(Nissen	et	al.,	2018), again 
supporting coccolithophore presence in polar regions. This distribu-
tion pattern is captured in the Darwin model only when the cocco-
lithophores are parameterized with a lower Q10, supporting the use 
of	the	Anderson	formulation	in	high	latitude	ecosystem	models.

To further demonstrate and highlight the impact of these varied 
Q10's on PFT competitive abilities, we provide a simplified illustrative 
example	of	the	temperature-	nutrient	growth	relationship	under	the	
Kremer	and	Anderson	parameterizations	(Figure 8). Here, we eval-
uate the growth of just two representative phenotypes (Figure S1), 
the fastest grower from each PFT (Figure S4, Methods). Growth (μ) 
is dependent only on temperature (T) and nitrogen (N; the full model 
includes	other	elements	as	well	as	a	light-	dependency)	according	to	
the following equation (expanded from Equation 1), where the max-
imum growth at T = 0°C	(μmax[0]) scales with temperature at a rate of 
b	and	nutrient	concentration	[N]	based	on	a	half-	saturation	constant	
of nitrate KNO3

 (Table S3):

We show the differences in growth rates for PFTs that have very 
different Q10's, cyanobacteria and coccolithophores (Figure 8a,b), 
and for PFTs that have similar Q10's, diatoms and dinoflagellates 
(Figure 8c,d), both when the Q10 is held constant (Kremer) and 
when	it	is	differentiated	(Anderson).	When	PFTs	have	similar	Q10's, 
we expect similar competitive abilities as we transition across en-
vironmental gradients, regardless of how the Q10's are parameter-
ized (Figure 8c,d). However, PFTs with large differences in their Q10 

are significantly impacted by Q10	 parameterization.	 In	 the	Kremer	
simulation, cyanobacteria only outcompete coccolithophores in 
low-	nutrient	 environments	 (Figure 8a),	 whereas	 in	 the	 Anderson	
simulation, this competitive relationship is more nuanced, with cya-
nobacteria	growing	faster	in	both	nutrient-	limited	systems	and	high	
temperature	 regimes,	 and	 coccolithophores	 exceling	 in	 nutrient-	
replete, colder environments (Figure 8b). By parameterizing PFTs 
with unique Q10's, we are thus adjusting how phytoplankton com-
pete across the world's oceans.

4.2  |  Projecting into the future

These differences in modeled competitive abilities extended into 
the	 future	 with	 climate	 change.	 Our	 results	 demonstrated	 that	
model parameterization substantially impacts the starting phyto-
plankton community assemblage, which is then carried forward in 
climate change scenarios, consequently impacting estimates of ex-
port processes. Though some studies have examined phytoplank-
ton diversity and PFT turnover with climate change (e.g., Henson 
et al., 2021), few have estimated how the biomass of specific PFTs 
might be altered in the future (Le Quéré et al., 2005) and that has 
contributed to a lack of consensus for each PFT's relative contribu-
tions to primary (Laufkotter et al., 2015) and secondary production 
(Dutkiewicz et al., 2021).

Between	 the	Kremer	 and	Anderson	methods,	 there	was	 con-
sensus regarding the directionality of change (either positive or 
negative) expected for each PFT at each latitude with climate 
change (Figure 7). Both parameterizations showed the expansion 
of the oligotrophic gyres (Figure S9) and the dominance of smaller 
phytoplankton (Figure S10) predicted by many previous modelling 
studies (e.g., Bopp et al., 2005; Marinov et al., 2010). They also both 
predicted	an	increase	in	diatom	abundance	in	the	Southern	Ocean	
(Figure 7c),	 which	 would	 increase	 the	 Southern	 Ocean's	 role	 as	
the ‘silicon trap’, or the region of the greatest silica export (Holzer 
et al., 2014), which may be partially due to light limitation being 
alleviated as ice extent is reduced. These similar projected changes 
in PFT biomass led to parallel projections for export production 
(Figure 5e,f). However, there was disagreement on the magni-
tude of biomass change to be expected for each PFT (Figure 7), 
which lead to discrepancies in estimates of other export processes, 
like	 PIC	 (Figure 5h,i).	 For	 example,	 in	 the	 Anderson	 simulation	
(Figure 5i),	PIC	is	projected	to	decrease	due	to	a	reduction	in	cocco-
lithophore	biomass.	Observations	in	the	natural	world	suggest	this	
may already be occurring, with documented declines in the pole-
ward extent of coccolithophore blooms in recent years, attributed 
to	increases	in	sea-	surface	temperature	(Uz	et	al.,	2013).	Although	
on	a	different	 timeframe,	 the	Anderson	simulation	similarly	 finds	
this decline in coccolithophore biomass which is not captured in 
the Kremer simulations.

To	explore	the	differences	in	PFTs	further,	we	ran	a	warming-	
only simulation, in which nutrient and physical dynamics were as 

(4)�[T ,N] = �max[0] ⋅ e
(b⋅T)

⋅

[
N
]

[
N
]
+ KNO3

.
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for the control, but temperature changed. With warming alone, 
the phytoplankton communities under the Kremer parameter-
ization remained relatively constant through time (Figure S11), 
whereas	 the	communities	 in	 the	Anderson	simulations	exhibited	
large changes, especially at the poles. Returning to our illustra-
tive example (Figure 8), this would be similar to moving along the 
temperature axis only, rather than dynamically in temperature/
nutrient space, as would be expected in a full climate change sce-
nario. This suggests that by applying a Q10 universally, as in the 
Kremer method, PFT competitive abilities become largely tem-
perature	 independent,	 masking	 important	 inter-	group	 dynamics	
and overturn.

In	summary,	we	found	that	using	the	same	μmax and Q10 across 
all modeled PFTs (Eppley) did not lead to a realistic phytoplankton 
community structure, but resulted in estimates of primary pro-
duction	that	were	comparable	to	Kremer	and	Anderson	 in	 lower	
latitudes,	 though	 not	 at	 higher.	 Our	 findings	 also	 demonstrated	
how the phytoplankton assemblage is impacted by varied Q10's, 
especially	 at	higher	 latitudes.	At	 lower	 latitudes,	 nutrient	 limita-
tion was often a more important control on community structure 
but with higher nutrient concentrations further poleward, the 
temperature effect became more important. Thus, we found that 
the Kremer (same Q10)	 and	Anderson	 (unique	Q10) methods pro-
duced similar communities at low latitudes, but the Q10 parameter-
ization substantially impacted each PFTs competitive abilities at 
higher latitudes. This was most pronounced with climate change, 
as warming led to substantial changes in phytoplankton diversity 
with	the	Anderson	but	not	the	Kremer	parameterization.	Though	
observational data is not currently sufficient to discern whether 
the	Kremer	or	Anderson	method	results	in	a	more	realistic	control	
phytoplankton community (Figure S8), the lack of diversity change 
in the Kremer simulations under ocean warming (Figure S11) sug-
gests	that	the	Anderson	method	would	be	preferential	when	ex-
amining future high latitude communities, even though it requires 
greater	model	complexity,	as	 temperature-	related	competition	 is	
likely to impact phytoplankton community structure with climate 
change (Table 2).

4.3  |  Study limitations

The	MIT	biogeochemistry	and	ecosystem	model,	Darwin,	 resolves	
PFTs at finer physiological scale than most ecological models. 
However, like all models, it cannot capture all the complexity we 
know to exist in the natural world. Given the model's current pa-
rameterization, the temperature dependence of nutrient uptake and 
growth are assumed the same. Yet, some research on diatoms sug-
gests that nutrient uptake processes may each have their own opti-
mal temperature (Baker et al., 2016). Similarly, nutrient availability 
may also alter the thermal response, with the μmax, Q10, and thermal 
optimum, the temperature that produces the greatest growth, shift-
ing based on nutrient availability (Marañón et al., 2018). Light avail-
ability may have a similar effect, altering the temperature sensitivity 
of phytoplankton (Edwards et al., 2016). For these relationships 
to be characterized and accounted for in ecosystem models, more 
laboratory experiments across a diverse range and concentration of 
environmental drivers and using multiple PFTs are needed (Collins 
et al., 2022).

On	a	broader	scale,	there	is	also	some	debate	about	whether	the	
exponential curve, first described by Eppley to portray the μmax re-
lationship with temperature and characterize the Q10 (Eppley, 1972), 
accurately depicts the phytoplankton response to temperature at the 
thermal extremes (low and high temperatures). Some data suggest 
that	 the	 exponential	 temperature-	growth	 relationship	 may	 break	
down	at	higher	temperatures	(Anderson	et	al.,	2021), potentially in-
dicating a limit to the thermal dependency. This may be caused by 
thermodynamic constraints, like enzyme structure and membrane 
fluidity, both of which have thermal limits (Willmer et al., 2004) 
leading to negatively skewed thermal performance curves in indi-
vidual phytoplankters (a rapid decline in growth above the thermal 
optima, Thomas et al., 2012). Thus, fitting exponential curves to 
thermally constrained growth rates may not be representative of the 
temperature-	growth	relationship	and	could	lower	the	resulting	Q10. 
While the goal of this study was to evaluate the parameterization of 
the Q10 and not the exponential relationship from which it is derived, 
defining a new function that would better describe the thermal de-
pendency remains an active area of research worth pursuing to fur-
ther improve our ecosystem models.

At	 last	 this	modeling	 study	 is	 highly	 simplified	 for	 demonstra-
tive purposes. Though we aimed to characterize the effect of ther-
mal traits on phytoplankton community composition, we could not 
include all of the features that delineate PFTs, such as cell shape 
(Margalef, 1978;	Naselli-	Flores	 et	 al.,	2021), nor could we capture 
all of the diversity, complexity of organismal interactions, potential 
for trait evolution, or transient processes which may have impacted 
competition and therefore community structure historically or which 
will alter communities with climate change (Bishop et al., 2022; 
Padfield et al., 2016).	Additionally,	 due	 to	 the	model's	 global	 scale	
and course resolution, plankton are advected and mixed within the 
flow field, but smaller scale features (e.g., eddies, turbulence) are 
not	explicitly	included.	Instead,	we	designed	this	experiment	to	ex-
plore the impacts of different thermal trait parameterizations in an 

TA B L E  2 The	growth	parameters	which	significantly	impacted	
estimates of biogeochemical processes at each latitude. Listed 
in parentheses are the methods that differentiated between 
Phytoplankton Functional Types for these parameters (K: Kremer; 
A:	Anderson),	potentially	increasing	model	realism.	Where	we	state	
‘Ambiguous’	we	indicate	that	results	were	comparable	between	all	
methods.

Low latitudes High latitudes

Primary production Ambiguous	(all	
comparable)

μmax	(K,	A)

Community structure μmax	(K,	A) μmax & Q10	(A)

Export processes μmax	(K,	A) μmax & Q10	(A)

Climate change μmax & Q10	(A) μmax & Q10	(A)
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idealized, model setting. Though we have begun to disentangle the 
value	 of	 increased	 PFT	 thermal	 trait	 differentiation	 in	 ocean-	only	
biogeochemical models, comparing modeled PFT distribution from 
each simulation with empirical knowledge and observations (satel-
lite and in situ sampling), we cannot explicitly state that the Kremer 
method produces more realistic phytoplankton communities than 
the	Anderson	method,	or	vice	versa,	as	we	do	not	have	the	observa-
tional data and global coverage needed to support such a conclusion. 
We also cannot validate each simulation's primary production esti-
mates, as satellite derived estimates of net primary production are 
highly variable depending on the algorithms employed, varying more 
than the differences between our model experiments (Stock, 2019). 
However, we can highlight how each method may lead to different 
understandings of certain PFTs or regions (e.g., high latitudes) or 
cause predictions for a future ocean to vary so widely between Earth 
system models (Kwiatkowski et al., 2020; Laufkotter et al., 2015).

5  |  CONCLUSIONS

This work illustrated the impacts of phytoplankton thermal trait 
parameterization on estimates of phytoplankton community 
structure and biogeochemical cycling in a historical and climate 
change scenario. Several studies have estimated the Q10 from 
thermal	growth	data	obtained	from	laboratory	studies	(Anderson	
et al., 2021; Bissinger et al., 2008; Eppley, 1972; Kremer 
et al., 2017); however, our study is unique in that it used a single 
empirically	 derived	 temperature-	growth	 dataset,	 with	 differing	
assumptions about whether PFTs should be analyzed separately, 
to more consistently calculate the Q10 and μmax (Table 1). We then 
investigated how these different assumptions impacted commu-
nity structure, competition, and productivity in a global ecosystem 
model. The Eppley method of assuming all PFTs have the same Q10 
and μmax provided productivity estimates that matched observa-
tions in low latitudes, but hindered diatoms, eliminating them from 
the global ocean. For studies interested in diversity, food web 
structures,	 or	 export	 processes,	 both	 the	Kremer	 and	Anderson	
methods should be preferentially employed for their higher ca-
pacity to recreate natural community structures. Between these 
methods,	 the	 Anderson	 formulation	 captures	 variability	 in	 the	
temperature coefficients (Q10) of each PFT, resulting in key differ-
ences in competition and export, especially at high latitudes, while 
the Kremer method provides a simpler approach which produces 
comparable phytoplankton communities at low latitudes, where 
nutrient limitation plays a larger role in determining which PFTs 
can	survive.	Though	the	Kremer	and	Anderson	methods	had	sig-
nificant differences in historical community structure, they both 
showed similar directionality of PFT biomass change in the future 
ocean. However, there were important differences in the magni-
tudes of these changes, especially in key PFTs and along the edges 
of expanding gyre boundaries.

This assessment serves as an illustrative guide for parameter-
izing phytoplankton ecosystem models, showcasing the strengths 

and weaknesses of three key methodologies. This study also em-
phasizes how the parameterization of the μmax and Q10 can alter 
our understanding of phytoplankton community structure, with 
a steeper or shallower thermal dependency curve impacting the 
range of temperatures and regions where one PFT may outcom-
pete another, thus altering projections for the future in Earth sys-
tem models.

AUTHOR CONTRIBUTIONS
Stephanie I. Anderson: Conceptualization; data curation; formal 
analysis; funding acquisition; methodology; visualization; writ-
ing	 –	 original	 draft;	 writing	 –	 review	 and	 editing.	 Clara Fronda: 
Conceptualization; formal analysis; funding acquisition; method-
ology;	 visualization;	 writing	 –	 original	 draft;	 writing	 –	 review	 and	
editing. Andrew D. Barton: Conceptualization; formal analysis; 
writing	 –	 review	 and	 editing.	 Sophie Clayton: Conceptualization; 
formal	analysis;	writing	–	review	and	editing.	Tatiana A. Rynearson: 
Conceptualization;	formal	analysis;	funding	acquisition;	writing	–	re-
view and editing. Stephanie Dutkiewicz: Conceptualization; data cu-
ration; formal analysis; funding acquisition; methodology; resources; 
supervision;	visualization;	writing	–	original	draft;	writing	–	review	
and editing.

ACKNO WLE DG E MENTS
This work was supported by a grant from the Simons Foundation 
(874777,	SIA).	This	work	was	also	supported	in	part	by	the	Simons	
Collaboration on Computational Biogeochemical Modeling of 
Marine	 Ecosystem/CBIOMES	 (Grant	 ID:	 549931FY22,	 SD,	 CF)	
and	 by	 The	 National	 Science	 Foundation	 award	 #1638834	 (to	
TAR).

CONFLIC T OF INTERE S T S TATEMENT
The authors declare no conflict of interest.

DATA AVAIL ABILIT Y S TATEMENT
The Darwin ecosystem model used in this study is available through 
https:// github. com/ darwi nproj ect/ darwin3, and the physical model 
is available through https:// mitgcm. org.	Outputs	from	model	simula-
tions	are	archived	on	the	Harvard	Dataverse	(Anderson,	2023). Code 
to reproduce these analyses are available on GitHub (https:// github. 
com/ siand erson/  Therm al_ trait_ param eteri zation) and archived at 
Zenodo	(Anderson	&	Fronda,	2023).

ORCID
Stephanie I. Anderson  https://orcid.org/0000-0002-2458-0922 
Andrew D. Barton  https://orcid.org/0000-0002-6480-4433 
Sophie Clayton  https://orcid.org/0000-0001-7473-4873 
Tatiana A. Rynearson  https://orcid.org/0000-0003-2951-0066 
Stephanie Dutkiewicz  https://orcid.org/0000-0002-0380-9679 

R E FE R E N C E S
Alexander,	 H.,	 Rouco,	 M.,	 Haley,	 S.,	 Wilson,	 S.,	 Karl,	 D.,	 &	 Dyhrman,	

S.	 (2015).	 Functional	 group-	specific	 traits	 drive	 phytoplankton	

 13652486, 2024, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/gcb.17093 by B

ristol C
om

m
unity C

ollege, W
iley O

nline L
ibrary on [23/10/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://github.com/darwinproject/darwin3
https://mitgcm.org
https://github.com/sianderson/Thermal_trait_parameterization
https://github.com/sianderson/Thermal_trait_parameterization
https://orcid.org/0000-0002-2458-0922
https://orcid.org/0000-0002-2458-0922
https://orcid.org/0000-0002-6480-4433
https://orcid.org/0000-0002-6480-4433
https://orcid.org/0000-0001-7473-4873
https://orcid.org/0000-0001-7473-4873
https://orcid.org/0000-0003-2951-0066
https://orcid.org/0000-0003-2951-0066
https://orcid.org/0000-0002-0380-9679
https://orcid.org/0000-0002-0380-9679
https://onlinelibrary.wiley.com/action/rightsLink?doi=10.1111%2Fgcb.17093&mode=


14 of 16  |     ANDERSON et al.

dynamics in the oligotrophic ocean. Proceedings of the National 
Academy of Sciences of the United States of America, 112(44), 
E5972–E5979.	https://	doi.	org/	10.	1073/	pnas.	15181	65112	

Alvain,	S.,	Moulin,	C.,	Dandonneau,	Y.,	&	Loisel,	H.	(2008).	Seasonal	dis-
tribution and succession of dominant phytoplankton groups in the 
global	ocean:	A	satellite	view.	Global Biogeochemical Cycles, 22(3), 
1–15.	https:// doi. org/ 10. 1029/ 2007G B003154

Anderson,	 S.	 I.	 (2023).	 Thermal_Trait_Parameterization. Harvard 
Dataverse. https://	doi.	org/	10.	7910/	DVN/	6TLL8Z

Anderson,	S.	I.,	Barton,	A.	D.,	Clayton,	S.,	Dutkiewicz,	S.,	&	Rynearson,	T.	
(2021). Marine Phytoplankton Functional Types exhibit diverse re-
sponses to thermal change. Nature Communications, 12(6413),	1–9.	
https://	doi.	org/	10.	1038/	s4146	7-		021-		26651	-		8

Anderson,	 S.	 I.,	 &	 Fronda,	 C.	 (2023).	 Sianderson/thermal_trait_param-
eterization: Phytoplankton thermal trait parameterization alters 
community structure and biogeochemical processes in a modeled 
ocean. Zenodo. https://	doi.	org/	10.	5281/	zenodo.	10223059

Aumont,	O.,	 &	 Bopp,	 L.	 (2006).	 Globalizing	 results	 from	 ocean	 in	 situ	
iron fertilization studies. Global Biogeochemical Cycles, 20(2),	1–15.	
https:// doi. org/ 10. 1029/ 2005G B002591

Baker,	K.	G.,	Robinson,	C.	M.,	Radford,	D.	T.,	McInnes,	A.	S.,	Evenhuis,	C.,	
&	Doblin,	M.	A.	(2016).	Thermal	performance	curves	of	functional	
traits	aid	understanding	of	thermally	induced	changes	in	diatom-	
mediated biogeochemical fluxes. Frontiers in Marine Science, 
3(April),	1–14.	https://	doi.	org/	10.	3389/	fmars.	2016.	00044	

Barton,	 A.,	 Dutkiewicz,	 S.,	 Flierl,	 G.,	 Bragg,	 J.,	 &	 Follows,	 M.	 (2010).	
Patterns of diversity in marine phytoplankton. Science, 372(5972), 
1509–1511.	https://	doi.	org/	10.	1126/	scien	ce.	1184961

Bishop,	 I.	 W.,	 Anderson,	 S.	 I.,	 Collins,	 S.,	 &	 Rynearson,	 T.	 A.	 (2022).	
Thermal	trait	variation	may	buffer	Southern	Ocean	phytoplankton	
from anthropogenic warming. Global Change Biology, 28(19),	5755–
5767.	https://	doi.	org/	10.	1111/	gcb.	16329	

Bissinger,	J.	E.,	Montagnes,	D.	J.	S.,	Sharples,	J.,	&	Atkinson,	D.	 (2008).	
Predicting marine phytoplankton maximum growth rates from tem-
perature:	Improving	on	the	Eppley	curve	using	quantile	regression.	
Limnology and Oceanography, 53(2),	 487–493.	 https:// doi. org/ 10. 
4319/	lo.	2008.	53.2.	0487

Bopp,	 L.,	 Aumont,	 O.,	 Cadule,	 P.,	 Alvain,	 S.,	 &	 Gehlen,	 M.	 (2005).	
Response of diatoms distribution to global warming and potential 
implications:	 A	 global	model	 study—Art.	 no.	 L19606.	Geophysical 
Research Letters, 32(19),	 19606.	 https:// doi. org/ 10. 1029/ 2005G 
L023653

Bopp,	L.,	Resplandy,	L.,	Orr,	J.	C.,	Doney,	S.	C.,	Dunne,	J.	P.,	Gehlen,	M.,	
Halloran,	P.,	Heinze,	C.,	Ilyina,	T.,	Séférian,	R.,	Tjiputra,	J.,	&	Vichi,	
M. (2013). Multiple stressors of ocean ecosystems in the 21st cen-
tury:	Projections	with	CMIP5	models.	Biogeosciences, 10(10),	6225–
6245.	https://	doi.	org/	10.	5194/	bg-	10-	6225-	2013

Bray,	J.	R.,	&	Curtis,	J.	T.	(1957).	An	ordination	of	the	upland	forest	com-
munities of southern Wisconsin. Ecological Monographs, 27(4),	325–
349. https://	doi.	org/	10.	2307/	1942268

Buitenhuis, E. T., Hashioka, T., & Quéré, C. L. (2013). Combined con-
straints on global ocean primary production using observations and 
models. Global Biogeochemical Cycles, 27(3),	 847–858.	https:// doi. 
org/ 10. 1002/ gbc. 20074 

Cael,	B.	B.,	Dutkiewicz,	S.,	&	Henson,	S.	 (2021).	Abrupt	 shifts	 in	21st-	
century plankton communities. Science Advances, 7,	 eabf8593.	
https://	doi.	org/	10.	1126/	sciadv.	abf8593

Clayton,	S.,	Dutkiewicz,	S.,	Jahn,	O.,	&	Follows,	M.	J.	 (2013).	Dispersal,	
eddies, and the diversity of marine phytoplankton. Limnology and 
Oceanography: Fluids and Environments, 3(1),	 182–197.	https:// doi. 
org/	10.	1215/	21573	689-		2373515

Collins, S., Whittaker, H., & Thomas, M. K. (2022). The need for unre-
alistic experiments in global change biology. Current Opinion in 
Microbiology, 68, 102151. https://	doi.	org/	10.	1016/j.	mib.	2022.	
102151

Dutkiewicz, S., Boyd, P. W., & Riebesell, U. (2021). Exploring biogeo-
chemical and ecological redundancy in phytoplankton communi-
ties in the global ocean. Global Change Biology, 27(6),	1196–1213.	
https:// doi. org/ 10. 1111/ gcb. 15493 

Dutkiewicz,	 S.,	 Cermeno,	 P.,	 Jahn,	 O.,	 Follows,	 M.	 J.,	 Hickman,	 A.	 E.,	
Taniguchi,	D.	 A.	 A.,	 &	Ward,	 B.	 A.	 (2020).	Dimensions	 of	marine	
phytoplankton diversity. Biogeosciences Discussions, 17(3),	 609–
634.	https://	doi.	org/	10.	5194/	bg-		2019-		311

Dutkiewicz,	S.,	Hickman,	A.	E.,	Jahn,	O.,	Gregg,	W.	W.,	Mouw,	C.	B.,	&	
Follows, M. J. (2015). Capturing optically important constituents 
and properties in a marine biogeochemical and ecosystem model. 
Biogeosciences, 12(14),	 4447–4481.	 https:// doi. org/ 10. 5194/ 
bg-		12-		4447-		2015

Dutkiewicz,	 S.,	 Hickman,	 A.	 E.,	 Jahn,	 O.,	 Henson,	 S.,	 Beaulieu,	 C.,	 &	
Monier,	 E.	 (2019).	 Ocean	 colour	 signature	 of	 climate	 change.	
Nature Communications, 10,	 578.	 https://	doi.	org/	10.	1038/	
s41467-	019-	08457-	x

Dutkiewicz,	 S.,	 Morris,	 J.	 J.,	 Follows,	 M.	 J.,	 Scott,	 J.,	 Levitan,	 O.,	
Dyhrman,	S.	T.,	&	Berman-	Frank,	I.	(2015).	Impact	of	ocean	acid-
ification on the structure of future phytoplankton communities. 
Nature Climate Change, 5(11),	 1002–1006.	 https:// doi. org/ 10. 
1038/	nclim	ate2722

Dutkiewicz, S., Scott, J. R., & Follows, M. J. (2013). Winners and losers: 
Ecological and biogeochemical changes in a warming ocean. Global 
Biogeochemical Cycles, 27(2),	 463–477.	 https:// doi. org/ 10. 1002/ 
gbc. 20042 

Edwards,	K.	F.,	Thomas,	M.	K.,	Klausmeier,	C.	A.,	&	Litchman,	E.	(2016).	
Phytoplankton growth and the interaction of light and tempera-
ture:	 A	 synthesis	 at	 the	 species	 and	 community	 level.	 Limnology 
and Oceanography, 61(4),	1232–1244.	https:// doi. org/ 10. 1002/ lno. 
10282	

Eppley, R. W. (1972). Temperature and phytoplankton growth in the sea. 
Fishery Bulletin, 70,	1063–1085.

Falkowski,	P.	G.,	Barber,	R.	T.,	&	Smetacek,	V.	(1998).	Biogeochemical	con-
trols and feedbacks on ocean primary production. Science, 281(1998),	
200–206.	https://	doi.	org/	10.	1126/	scien	ce.	281.	5374.	200

Falkowski,	 P.	 G.,	 Laws,	 E.	 A.,	 Barber,	 R.	 T.,	 &	 Murray,	 J.	 W.	 (2003).	
Phytoplankton and their role in primary, new, and export produc-
tion.	In	M.	J.	R.	Fasham	(Ed.),	Ocean biogeochemistry. Global change—
The IGBP series (closed). Springer. https://	doi.	org/	10.	1007/	978-3-	
642-	55844-3_	5

Flombaum,	 P.,	 Gallegos,	 J.	 L.,	 Gordillo,	 R.	 A.,	 Rincón,	 J.,	 Zabala,	 L.	 L.,	
Jiao,	N.,	Karl,	D.	M.,	Li,	W.	K.,	Lomas,	M.	W.,	Veneziano,	D.,	Vera,	
C.	S.,	Vrugt,	J.	A.,	&	Martiny,	A.	C.	(2013).	Present	and	future	global	
distributions of the marine Cyanobacteria Prochlorococcus and 
Synechococcus. Proceedings of the National Academy of Sciences of 
the United States of America, 110(24),	9824–9829.	https:// doi. org/ 
10. 1073/ pnas. 13077 01110 

Follett,	C.	L.,	Dutkiewicz,	S.,	Ribalet,	F.,	Zakem,	E.,	Caron,	D.,	Armbrust,	
E.	V.,	&	Follows,	M.	J.	(2022).	Trophic	interactions	with	heterotro-
phic bacteria limit the range of Prochlorococcus. Proceedings of the 
National Academy of Sciences of the United States of America, 119(2), 
1–10.	https://	doi.	org/	10.	1073/	pnas.	21109	93118	

Follows, M. J., Dutkiewicz, S., Grant, S., & Chisholm, S. W. (2007). 
Emergent biogeography of microbial communities in a model 
ocean. Science, 315,	 1843–1847.	 https://	doi.	org/	10.	1126/	scien	ce.	
1138544

Gregg,	 W.	 W.,	 &	 Casey,	 N.	 W.	 (2007).	 Modeling	 coccolithophores	 in	
the global oceans. Deep Sea Research Part II: Topical Studies in 
Oceanography, 54(5),	 447–477.	 https://	doi.	org/	10.	1016/j.	dsr2.	
2006.	12.	007

Henson,	 S.	 A.,	 Cael,	 B.	 B.,	 Allen,	 S.	 R.,	 &	 Dutkiewicz,	 S.	 (2021).	
Future phytoplankton diversity in a changing climate. Nature 
Communications, 12(1),	 1–8.	 https://	doi.	org/	10.	1038/	s4146	7-		
021-		25699	-		w

 13652486, 2024, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/gcb.17093 by B

ristol C
om

m
unity C

ollege, W
iley O

nline L
ibrary on [23/10/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1073/pnas.1518165112
https://doi.org/10.1029/2007GB003154
https://doi.org/10.7910/DVN/6TLL8Z
https://doi.org/10.1038/s41467-021-26651-8
https://doi.org/10.5281/zenodo.10223059
https://doi.org/10.1029/2005GB002591
https://doi.org/10.3389/fmars.2016.00044
https://doi.org/10.1126/science.1184961
https://doi.org/10.1111/gcb.16329
https://doi.org/10.4319/lo.2008.53.2.0487
https://doi.org/10.4319/lo.2008.53.2.0487
https://doi.org/10.1029/2005GL023653
https://doi.org/10.1029/2005GL023653
https://doi.org/10.5194/bg-10-6225-2013
https://doi.org/10.2307/1942268
https://doi.org/10.1002/gbc.20074
https://doi.org/10.1002/gbc.20074
https://doi.org/10.1126/sciadv.abf8593
https://doi.org/10.1215/21573689-2373515
https://doi.org/10.1215/21573689-2373515
https://doi.org/10.1016/j.mib.2022.102151
https://doi.org/10.1016/j.mib.2022.102151
https://doi.org/10.1111/gcb.15493
https://doi.org/10.5194/bg-2019-311
https://doi.org/10.5194/bg-12-4447-2015
https://doi.org/10.5194/bg-12-4447-2015
https://doi.org/10.1038/s41467-019-08457-x
https://doi.org/10.1038/s41467-019-08457-x
https://doi.org/10.1038/nclimate2722
https://doi.org/10.1038/nclimate2722
https://doi.org/10.1002/gbc.20042
https://doi.org/10.1002/gbc.20042
https://doi.org/10.1002/lno.10282
https://doi.org/10.1002/lno.10282
https://doi.org/10.1126/science.281.5374.200
https://doi.org/10.1007/978-3-642-55844-3_5
https://doi.org/10.1007/978-3-642-55844-3_5
https://doi.org/10.1073/pnas.1307701110
https://doi.org/10.1073/pnas.1307701110
https://doi.org/10.1073/pnas.2110993118
https://doi.org/10.1126/science.1138544
https://doi.org/10.1126/science.1138544
https://doi.org/10.1016/j.dsr2.2006.12.007
https://doi.org/10.1016/j.dsr2.2006.12.007
https://doi.org/10.1038/s41467-021-25699-w
https://doi.org/10.1038/s41467-021-25699-w
https://onlinelibrary.wiley.com/action/rightsLink?doi=10.1111%2Fgcb.17093&mode=


    |  15 of 16ANDERSON et al.

Holligan,	P.	M.,	Charalampopoulou,	A.,	&	Hutson,	R.	(2010).	Seasonal	dis-
tributions of the coccolithophore, Emiliania huxleyi, and of particu-
late inorganic carbon in surface waters of the Scotia Sea. Journal of 
Marine Systems, 82(4),	195–205.	https://	doi.	org/	10.	1016/j.	jmars	ys.	
2010. 05. 007

Holling,	C.	S.	(1965).	The	functional	response	of	predators	to	prey	den-
sity and its role in mimicry and population regulation. Memoirs of 
the Entomological Society of Canada, 97(Suppl.	 45),	 5–60.	https:// 
doi. org/ 10. 4039/ entm9 745fv 

Holzer, M., Primeau, W., Devries, T., & Matear, R. (2014). The Southern 
Ocean	silicon	trap:	Data-	constrained	estimates	of	regenerated	si-
licic acid, trapping efficiencies, and global transport paths. Journal 
of Geophysical Research: Oceans, 119,	313–331.	https:// doi. org/ 10. 
1002/	2013J	C009356

Keeling, P. J. (2010). The endosymbiotic origin, diversification and fate of 
plastids. Philosophical Transactions of the Royal Society B: Biological 
Sciences, 365(1541),	 729–748.	 https://	doi.	org/	10.	1098/	rstb.	2009.	
0103

Kremer,	C.	T.,	Thomas,	M.	K.,	&	Litchman,	E.	 (2017).	Temperature-		and	
size-	scaling	of	phytoplankton	population	growth	rates:	Reconciling	
the Eppley curve and the metabolic theory of ecology. Limnology 
and Oceanography, 62(4),	1658–1670.	https:// doi. org/ 10. 1002/ lno. 
10523 

Kwiatkowski,	 L.,	 Torres,	 O.,	 Bopp,	 L.,	 Aumont,	 O.,	 Chamberlain,	 M.,	
Christian,	 R.	 J.,	 Dunne,	 J.	 P.,	 Gehlen,	 M.,	 Ilyina,	 T.,	 John,	 J.	 G.,	
Lenton,	A.,	Li,	H.,	Lovenduski,	N.	S.,	Orr,	J.	C.,	Palmieri,	J.,	Santana-	
Falcón,	 Y.,	 Schwinger,	 J.,	 Séférian,	 R.,	 Stock,	 C.	 A.,	 …	 Ziehn,	 T.	
(2020).	Twenty-	first	century	ocean	warming,	acidification,	deoxy-
genation,	and	upper-	ocean	nutrient	and	primary	production	decline	
from	CMIP6	model	projections.	Biogeosciences, 17(13),	3439–3470.	
https://	doi.	org/	10.	5194/	bg-	17-	3439-	2020

Laufkotter,	C.,	Vogt,	M.,	Gruber,	N.,	Aita-	Noguchi,	M.,	Aumont,	O.,	Bopp,	
L., Buitenhuis, E., Doney, S. C., Dunne, J., Hashioka, T., Hauck, J., 
Hirata,	T.,	John,	J.,	Le	Quéré,	C.,	Lima,	I.	D.,	Nakano,	H.,	Séférian,	R.,	
Totterdell,	I.,	Vichi,	M.,	&	Volker,	C.	(2015).	Drivers	and	uncertain-
ties of future global marine primary production in marine ecosys-
tem models. Biogeosciences, 12(23),	6955–6984.	https:// doi. org/ 10. 
5194/	bg-	12-	6955-	2015

Le	Quéré,	C.,	Harrison,	S.	P.,	Prentice,	I.	C.,	Buitenhuis,	E.	T.,	Aumont,	O.,	
Bopp, L., Claustre, H., Cotrim Da Cunha, L., Geider, R., Giraud, X., 
Klaas, C., Kohfeld, K. E., Legendre, L., Manizza, M., Platt, T., Rivkin, 
R.	B.,	Sathyendranath,	S.,	Uitz,	J.,	Watson,	A.	J.,	&	Wolf-	Gladrow,	
D. (2005). Ecosystem dynamics based on plankton functional types 
for global ocean biogeochemistry models. Global Change Biology, 
2005,	 2016–2040.	 https://	doi.	org/	10.	1111/j.	1365-	2486.	2005.	
1004. x

Leblanc,	K.,	Arístegui	Ruiz,	J.,	Armand,	L.	K.,	Assmy,	P.,	Beker,	B.,	Bode,	
A.,	Breton,	E.,	Cornet,	V.,	Gibson,	J.,	Gosselin,	M.	P.,	Kopczynska,	
E.	E.,	Marshall,	H.	G.,	Peloquin,	 J.	M.,	Piontkovski,	S.,	Poulton,	A.	
J.,	 Quéguiner,	 B.,	 Schiebel,	 R.,	 Shipe,	 R.,	 Stefels,	 J.,	 …	 Yallop,	M.	
(2012). Global distributions of diatoms abundance, biovolume and 
biomass—Gridded	 data	 product	 (NetCDF)—Contribution	 to	 the	
MAREDAT	world	ocean	atlas	of	plankton	functional	types.	Pangaea. 
https://	doi.	org/	10.	1594/	PANGA	EA.	777384

Litchman,	 E.,	&	Klausmeier,	C.	A.	 (2008).	 Trait-	based	 community	 ecol-
ogy of phytoplankton. Annual Review of Ecology, Evolution, and 
Systematics, 39(1),	615–639.	https://	doi.	org/	10.	1146/	annur	ev.	ecols	
ys. 39. 110707. 173549

Marañón,	E.,	Cermeño,	P.,	López-	Sandoval,	D.	C.,	Rodríguez-	Ramos,	T.,	
Sobrino,	C.,	Huete-	Ortega,	M.,	Blanco,	J.	M.,	&	Rodríguez,	J.	(2013).	
Unimodal size scaling of phytoplankton growth and the size depen-
dence of nutrient uptake and use. Ecology Letters, 16(3),	371–379.	
https:// doi. org/ 10. 1111/ ele. 12052 

Marañón,	 E.,	 Lorenzo,	 M.	 P.,	 Cermeño,	 P.,	 &	 Mouriño-	Carballido,	 B.	
(2018).	Nutrient	limitation	suppresses	the	temperature	dependence	

of phytoplankton metabolic rates. ISME Journal, 1–10,	1836–1845.	
https://	doi.	org/	10.	1038/	s4139	6-		018-		0105-		1

Margalef,	R.	(1978).	Life-	forms	of	phytoplankton	as	survival	alternatives	
in an unstable environment. Oceanologica Acta, 1(4),	493–509.

Marinov,	 I.,	Doney,	S.	C.,	&	Lima,	 I.	D.	 (2010).	Response	of	ocean	phy-
toplankton community structure to climate change over the 21st 
century: Partitioning the effects of nutrients, temperature and 
light. Biogeosciences, 7,	 3941–3959.	 https:// doi. org/ 10. 5194/ 
bg-7-	3941-	2010

Marshall,	 J.,	 Adcroft,	 A.,	 Hill,	 C.,	 Perelman,	 L.,	 &	 Heisey,	 C.	 (1997).	 A	
finite-	volume,	 incompressible	Navier	 stokes	model	 for	 studies	 of	
the ocean on parallel computers. Journal of Geophysical Research: 
Oceans, 102(C3),	5753–5766.	https://	doi.	org/	10.	1029/	96JC0	2775

Mitchell, C., Hu, C., Bowler, B., Drapeau, D., & Balch, W. M. (2017). 
Estimating particulate inorganic carbon concentrations of the 
global ocean from ocean color measurements using a reflectance 
difference approach. Journal of Geophysical Research: Oceans, 
122(11),	8707–8720.	https://	doi.	org/	10.	1002/	2017J	C013146

Monier,	E.,	Paltsev,	S.,	Sokolov,	A.,	Chen,	Y.	H.	H.,	Gao,	X.,	Ejaz,	Q.,	Couzo,	
E.,	 Schlosser,	C.	A.,	Dutkiewicz,	 S.,	 Fant,	C.,	 Scott,	 J.,	Kicklighter,	
D.,	Morris,	 J.,	 Jacoby,	H.,	Prinn,	R.,	&	Haigh,	M.	 (2018).	Toward	a	
consistent	modeling	framework	to	assess	multi-	sectoral	climate	im-
pacts. Nature Communications, 9(1),	1–8.	https://	doi.	org/	10.	1038/	
s41467-	018-	02984-	9

Monier,	E.,	 Scott,	 J.	R.,	 Sokolov,	A.	P.,	 Forest,	C.	E.,	&	Schlosser,	C.	A.	
(2013).	 An	 integrated	 assessment	 modeling	 framework	 for	 un-
certainty	 studies	 in	 global	 and	 regional	 climate	 change:	 The	MIT	
IGSM-	CAM	 (version	 1.0).	 Geoscientific Model Development, 6(6),	
2063–2085.	https://	doi.	org/	10.	5194/	gmd-		6-		2063-		2013

Naselli-	Flores,	L.,	Zohary,	T.,	&	Padisák,	J.	(2021).	Life	in	suspension	and	
its	 impact	on	phytoplankton	morphology:	An	homage	 to	Colin	S.	
Reynolds. Hydrobiologia, 848(1),	 7–30.	 https:// doi. org/ 10. 1007/ 
s1075	0-		020-		04217	-		x

Negrete-	García,	G.,	Luo,	J.	Y.,	Long,	M.	C.,	Lindsay,	K.,	Levy,	M.,	&	Barton,	
A.	D.	(2022).	Plankton	energy	flows	using	a	global	size-	structured	
and	 trait-	based	 model.	 Progress in Oceanography, 209,	 102898.	
https://	doi.	org/	10.	1016/j.	pocean.	2022.	102898

Nissen,	C.,	Vogt,	M.,	Münnich,	M.,	Gruber,	N.,	&	Alexander	Haumann,	
F.	(2018).	Factors	controlling	coccolithophore	biogeography	in	the	
Southern	 Ocean.	 Biogeosciences, 15(22),	 6997–7024.	 https:// doi. 
org/	10.	5194/	bg-		15-		6997-		2018

Padfield,	 D.,	 Yvon-	Durocher,	 G.,	 Buckling,	 A.,	 Jennings,	 S.,	 &	 Yvon-	
Durocher,	G.	 (2016).	 Rapid	 evolution	 of	metabolic	 traits	 explains	
thermal adaptation in phytoplankton. Ecology Letters, 19(2),	133–
142. https:// doi. org/ 10. 1111/ ele. 12545 

Raven,	J.	A.	 (1994).	Why	are	there	no	picoplanktonic	O2	evolvers	with	
volumes less than 10−19 m3? Journal of Plankton Research, 16(5), 
565–580.	https://	doi.	org/	10.	1093/	plankt/	16.5.	565

Reynolds,	C.	S.,	Huszar,	V.,	Kruk,	C.,	Naselli-	Flores,	L.,	&	Melo,	S.	(2002).	
Towards a functional classification of the freshwater phytoplank-
ton. Journal of Plankton Research, 24(5),	417–428.	https:// doi. org/ 
10. 1093/ plankt/ 24.5. 417

Sherr, E. B., & Sherr, B. F. (1991). Planktonic microbes: Tiny cells at the 
base of the ocean's food webs. Trends in Ecology & Evolution, 6(2), 
50–54.	https://	doi.	org/	10.	1016/	0169-		5347(91)	90122	-		E

Shigemitsu,	M.,	Okunishi,	T.,	Nishioka,	J.,	Sumata,	H.,	Hashioka,	T.,	Aita,	
M.	N.,	Smith,	S.	L.,	Yoshie,	N.,	Okada,	N.,	&	Yamanaka,	Y.	 (2012).	
Development	of	a	one-	dimensional	ecosystem	model	including	the	
iron	cycle	applied	to	the	Oyashio	region,	western	subarctic	Pacific.	
Journal of Geophysical Research: Oceans, 117(6),	 1–23.	https:// doi. 
org/	10.	1029/	2011J	C007689

Soppa,	M.	A.,	Hirata,	T.,	Silva,	B.,	Dinter,	T.,	Peeken,	I.,	Wiegmann,	S.,	&	
Bracher,	A.	(2014).	Global	retrieval	of	diatom	abundance	based	on	
phytoplankton pigments and satellite data. Remote Sensing, 6(10), 
10089–10106.	https://	doi.	org/	10.	3390/	rs610	10089	

 13652486, 2024, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/gcb.17093 by B

ristol C
om

m
unity C

ollege, W
iley O

nline L
ibrary on [23/10/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1016/j.jmarsys.2010.05.007
https://doi.org/10.1016/j.jmarsys.2010.05.007
https://doi.org/10.4039/entm9745fv
https://doi.org/10.4039/entm9745fv
https://doi.org/10.1002/2013JC009356
https://doi.org/10.1002/2013JC009356
https://doi.org/10.1098/rstb.2009.0103
https://doi.org/10.1098/rstb.2009.0103
https://doi.org/10.1002/lno.10523
https://doi.org/10.1002/lno.10523
https://doi.org/10.5194/bg-17-3439-2020
https://doi.org/10.5194/bg-12-6955-2015
https://doi.org/10.5194/bg-12-6955-2015
https://doi.org/10.1111/j.1365-2486.2005.1004.x
https://doi.org/10.1111/j.1365-2486.2005.1004.x
https://doi.org/10.1594/PANGAEA.777384
https://doi.org/10.1146/annurev.ecolsys.39.110707.173549
https://doi.org/10.1146/annurev.ecolsys.39.110707.173549
https://doi.org/10.1111/ele.12052
https://doi.org/10.1038/s41396-018-0105-1
https://doi.org/10.5194/bg-7-3941-2010
https://doi.org/10.5194/bg-7-3941-2010
https://doi.org/10.1029/96JC02775
https://doi.org/10.1002/2017JC013146
https://doi.org/10.1038/s41467-018-02984-9
https://doi.org/10.1038/s41467-018-02984-9
https://doi.org/10.5194/gmd-6-2063-2013
https://doi.org/10.1007/s10750-020-04217-x
https://doi.org/10.1007/s10750-020-04217-x
https://doi.org/10.1016/j.pocean.2022.102898
https://doi.org/10.5194/bg-15-6997-2018
https://doi.org/10.5194/bg-15-6997-2018
https://doi.org/10.1111/ele.12545
https://doi.org/10.1093/plankt/16.5.565
https://doi.org/10.1093/plankt/24.5.417
https://doi.org/10.1093/plankt/24.5.417
https://doi.org/10.1016/0169-5347(91)90122-E
https://doi.org/10.1029/2011JC007689
https://doi.org/10.1029/2011JC007689
https://doi.org/10.3390/rs61010089
https://onlinelibrary.wiley.com/action/rightsLink?doi=10.1111%2Fgcb.17093&mode=


16 of 16  |     ANDERSON et al.

Stock,	 C.	 A.	 (2019).	 Comparing	 apples	 to	 oranges:	 Perspectives	 on	
satellite-	based	primary	production	estimates	drawn	from	a	global	
biogeochemical model. Journal of Marine Research, 77,	259–282.

Stock,	C.	A.,	Dunne,	J.	P.,	&	John,	J.	G.	(2014).	Global-	scale	carbon	and	
energy	flows	through	the	marine	planktonic	food	web:	An	analysis	
with	a	coupled	physical–biological	model.	Progress in Oceanography, 
120,	1–28.	https://	doi.	org/	10.	1016/j.	pocean.	2013.	07.	001

Tang, E. P. Y. (1995). The allometry of algal growth rates. Journal of 
Plankton Research, 17(2),	303–315.	https:// doi. org/ 10. 1093/ plankt/ 
17.2. 303

Thomas,	M.	K.,	Kremer,	C.	T.,	Klausmeier,	C.	A.,	&	Litchman,	E.	 (2012).	
A	 global	 pattern	 of	 thermal	 adaptation	 in	marine	 phytoplankton.	
Science, 338(6110),	 1085–1088.	 https://	doi.	org/	10.	1126/	scien	ce.	
1224836

Thomas,	M.	K.,	Kremer,	C.	T.,	&	Litchman,	E.	 (2016).	Environment	and	
evolutionary history determine the global biogeography of phyto-
plankton temperature traits. Global Ecology and Biogeography, 25(1), 
75–86.	https://	doi.	org/	10.	1111/	geb.	12387	

Toseland,	A.,	Daines,	S.	J.,	Clark,	J.	R.,	Kirkham,	A.,	Strauss,	J.,	Uhlig,	C.,	
Lenton,	 T.	M.,	Valentin,	K.,	 Pearson,	G.	A.,	Moulton,	V.,	&	Mock,	
T. (2013). The impact of temperature on marine phytoplankton 
resource allocation and metabolism. Nature Climate Change, 3(11), 
979–984.	https://	doi.	org/	10.	1038/	nclim	ate1989

Uitz, J., Claustre, H., Gentili, B., & Stramski, D. (2010). Phytoplankton 
class-	specific	primary	production	 in	 the	world's	oceans:	Seasonal	
and interannual variability from satellite observations. Global 
Biogeochemical Cycles, 24(3),	1–19.	https:// doi. org/ 10. 1029/ 2009G 
B003680

Uz,	 S.	 S.,	 Brown,	C.	W.,	Heidinger,	A.	K.,	 Smyth,	 T.	 J.,	&	Murtugudde,	
R. (2013). Monitoring a sentinel species from satellites: Detecting 
Emiliania huxleyi	in	25 years	of	AVHRR	imagery.	In	J.	Qu,	A.	Powell,	
&	M.	V.	K.	Sivakumar	 (Eds.),	Satellite- based applications on climate 
change	 (pp.	 277–288).	 Springer.	 https://	doi.	org/	10.	1007/	978-		94-		
007-		5872-		8_	18

Ward,	 B.	 A.,	 Dutkiewicz,	 S.,	 Jahn,	O.,	 &	 Follows,	M.	 J.	 (2012).	 A	 size-	
structured	 food-	web	 model	 for	 the	 global	 ocean.	 Limnology and 
Oceanography, 57(6),	1877–1891.	https:// doi. org/ 10. 4319/ lo. 2012. 
57.6.	1877

Ward,	B.	A.,	Marañón,	E.,	Sauterey,	B.,	Rault,	J.,	&	Claessen,	D.	 (2017).	
The	size	dependence	of	phytoplankton	growth	rates:	A	 trade-	off	
between nutrient uptake and metabolism. American Naturalist, 
189(2),	170–177.	https://	doi.	org/	10.	1086/	689992

Willmer,	P.,	Stone,	G.,	&	Johnston,	I.	(2004).	Environmental physiology of 
animals	(2nd	ed.).	Wiley-	Blackwell.

Xi,	H.,	Losa,	S.	N.,	Mangin,	A.,	Soppa,	M.	A.,	Garnesson,	P.,	Demaria,	J.,	
Liu,	Y.,	Hembise	Fanton	d'Andon,	O.,	&	Bracher,	A.	 (2020).	Global	
retrieval of phytoplankton functional types based on empirical 
orthogonal functions using CMEMS GlobColour merged products 
and	further	extension	to	OLCI	data.	Remote Sensing of Environment, 
240, 111704. https://	doi.	org/	10.	1016/j.	rse.	2020.	111704

SUPPORTING INFORMATION
Additional	 supporting	 information	 can	 be	 found	 online	 in	 the	
Supporting	Information	section	at	the	end	of	this	article.

How to cite this article: Anderson,	S.	I.,	Fronda,	C.,	Barton,	
A.	D.,	Clayton,	S.,	Rynearson,	T.	A.,	&	Dutkiewicz,	S.	(2023).	
Phytoplankton thermal trait parameterization alters 
community structure and biogeochemical processes in a 
modeled ocean. Global Change Biology, 30, e17093. https://
doi.org/10.1111/gcb.17093

 13652486, 2024, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/gcb.17093 by B

ristol C
om

m
unity C

ollege, W
iley O

nline L
ibrary on [23/10/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1016/j.pocean.2013.07.001
https://doi.org/10.1093/plankt/17.2.303
https://doi.org/10.1093/plankt/17.2.303
https://doi.org/10.1126/science.1224836
https://doi.org/10.1126/science.1224836
https://doi.org/10.1111/geb.12387
https://doi.org/10.1038/nclimate1989
https://doi.org/10.1029/2009GB003680
https://doi.org/10.1029/2009GB003680
https://doi.org/10.1007/978-94-007-5872-8_18
https://doi.org/10.1007/978-94-007-5872-8_18
https://doi.org/10.4319/lo.2012.57.6.1877
https://doi.org/10.4319/lo.2012.57.6.1877
https://doi.org/10.1086/689992
https://doi.org/10.1016/j.rse.2020.111704
https://doi.org/10.1111/gcb.17093
https://doi.org/10.1111/gcb.17093
https://onlinelibrary.wiley.com/action/rightsLink?doi=10.1111%2Fgcb.17093&mode=

	Phytoplankton thermal trait parameterization alters community structure and biogeochemical processes in a modeled ocean
	Citation/Publisher Attribution

	Phytoplankton thermal trait parameterization alters community structure and biogeochemical processes in a modeled ocean
	Keywords
	Creative Commons License
	Authors

	Phytoplankton thermal trait parameterization alters community structure and biogeochemical processes in a modeled ocean
	Abstract
	1|INTRODUCTION
	2|MATERIALS AND METHODS
	2.1|Global plankton community, biogeochemical, and circulation models
	2.2|Model thermal growth parameters
	2.3|Model parameterization using empirical data
	2.4|Model simulations
	2.5|Phytoplankton diversity

	3|RESULTS
	3.1|Thermal trait evaluations
	3.2|Estimates of primary production
	3.3|Phytoplankton community structure
	3.4|Community projections for the future

	4|DISCUSSION
	4.1|Simulating diverse phytoplankton communities
	4.2|Projecting into the future
	4.3|Study limitations

	5|CONCLUSIONS
	AUTHOR CONTRIBUTIONS
	ACKNOWLEDGEMENTS
	CONFLICT OF INTEREST STATEMENT
	DATA AVAILABILITY STATEMENT

	REFERENCES


