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ABSTRACT

A path planning method using Model Predictive Control (MPC) is explored

for driving the state of the robot towards a goal while utilizing knowledge of which

states are fully observable to simultaneously minimize state uncertainty. State

estimation is accomplished using a particle filter. Path planning is accomplished

using multiple particle filters to track the performance of the hypothetical state

estimates while propagated out to a specified time horizon. Paths are continuously

evaluated using a scoring function, yielding a final ”best path” selection that is

implemented by the robot controller to achieve the best blend of performance -

seeking the goal while simultaneously minimizing state estimate uncertainty. Cru-

cially, hypothetical paths are generated using breadth-first search of the state space

and not intentionally driven towards observable states. The proposed path planner

was tested in simulation and gave superior results over a naive navigation scheme

in many evaluated scenarios of sparse environment observability.
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CHAPTER 1

Introduction

For mobile ground robot state estimation, using proprioceptive sensors for

dead reckoning is subject to unbounded drift over time due to the accumulation

of error, so an exteroceptive measurement source is often used to correct state

estimates. However, some systems may not be capable of gathering sufficient mea-

surements to determine an accurate state estimate due to the unavailability of

measurement sources, increased system cost/complexity to access those measure-

ment sources, or an environmental limitation (e.g. a vision based system operating

in a pitch black room). In these cases there is a need for robots to operate long

enough to reach a desired goal state, or reach an area where the system can suc-

cessfully obtain measurements en route to the goal.

In this research, a solution for path planning is explored to minimize state

estimate uncertainty over the course of a mission to a goal state despite requiring

the system to operate periodically in regions that cannot guarantee exteroceptive

measurements. Like most systems, the robot used for this research will be capable

of operating in fully observable areas of the state space, but critically, the envi-

ronment will be constructed in a way that requires the robot to navigate across

arbitrary gaps in observability to accomplish mission objectives. During these

short periods of time, proprioceptive sensors will continue to gather information

for state estimates, but error is expected to increase until the system finds a fully

observable state to reconverge state estimates. This approach will effectively trade

continuous certainty of state variables for increased flexibility and range beyond

typical operation points.
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1.1 Background

1.1.1 Particle Filter

One challenge at the heart of every control system problem is developing an

accurate state estimate to determine the control action that will drive the system

to the goal. In motion planning, this state estimate has the additional affect of

potentially setting the start point for the path in the wrong location compared to

the ground truth. Authors in [1] provide a comparison of various approaches to

robot localization. For this research we are specifically interested in the perfor-

mance of Bayesian filter derivatives commonly used in robot localization like the

Kalman filter, grid-based Markov localization, and sampling-based methods.

For completeness, a derivation of the Bayes Filter is included here follow-

ing the procedure from [2]. The notation for this derivation requires a series of

states {x0, x1, ..., xt} which can be expressed as x0:t, a series of inputs {u1, u2, ..., ut}

which can be expressed as u1:t, and a series of measurements {z1, z2, ..., zt} that

can be expressed as z1:t. We assume a known probability distribution of the initial

state p(x0), a known measurement probability p(zt|xt) for each time t, and a known

state transition probability p(xt|xt−1, ut).

We would like to find the posterior distribution belief bel(xt) at time step t as

the conditional probability of our current state xt given the all previous measure-

ments z1:t−1 and all previous control inputs u1:t:

bel(xt) = p(xt|z1:t, u1:t) (1)

given the posterior distribution from the previous time step t− 1:

bel(xt−1) = p(xt−1|z1:t−1, u1:t−1) (2)

Recall Bayes’ theorem to compute the conditional posterior probability of a

given b and c:

2



p(a|b, c) =
p(b|a, c)p(a|c)

p(b|c)
(3)

To express the desired posterior distribution in Equation 1, we split the mea-

surements z1:t into the most recent measurement zt and previous measurements

z1:t−1 and define the events where a = xt, b = zt, and c = x0, z1:t−1, u1:t.

Substituting into Bayes’ theorem into Equation 3 yields:

p(xt|zt, z1:t−1, u1:t) =
p(zt|xt, z1:t−1, u1:t)p(xt|z1:t−1, u1:t)

p(zt|z1:t−1, u1:t)
(4)

where the denominator p(zt|z1:t−1, u1:t) is a scalar value representing a nor-

malization factor η to ensure that the integral of the posterior distribution over all

conditionals goes to 1. The measurement notation for all measurements z1:t is also

collapsed in the posterior belief for simplicity.

p(xt|z1:t, u1:t) = ηp(zt|xt, z1:t−1, u1:t)p(xt|z1:t−1, u1:t) (5)

The Bayes filter makes a crucial assumption that evolution of the system

represents an unobserved Markov process, making the current state xt a com-

plete representation of all previous measurements z1:t−1 and inputs u1:t. Therefore

Equation 5 can be further simplified to:

p(xt|z1:t, u1:t) = ηp(zt|xt)p(xt|z1:t−1, u1:t) (6)

We can now define an ”a priori” belief of the distribution of state xt before we

receive the current measurement as bel(xt) = p(xt|z1:t−1, u1:t), allowing us to make

a final substitution to yield a standard form of the measurement update portion

of Bayes’ filter algorithm.

bel(xt) = ηp(zt|xt)bel(xt) (7)

3



To investigate the implications of the bel(xt) term, recall the total law of

probability:

p(a) =

∫

p(a|b)p(b) d(b) (8)

where a = xt|z1:t−1, u1:t and b = xt−1, which yields the total probability of the

the a priori distribution from a distribution conditioned on the previous state xt−1

and knowledge of the probability distribution of that state.

bel(xt) =

∫

p(xt|xt−1, z1:t−1, u1:t)p(xt−1|z1:t−1, u1:t) dxt−1 (9)

Once again, applying the assumption that the current state xt is a com-

plete representation of previous measurement and inputs, we simplify the condi-

tions xt−1, z1:t−1, u1:t to xt−1, ut. Finally, the input ut has not yes been commanded

for state xt−1 so that element is removed from the conditional p(xt−1|z1:t−1, u1:t)

to yield the common form of the a prior belief of state xk computed for the state

transition probability after receiving an input command ut, but before measure-

ment zt:

bel(xt) =

∫

p(xt|xt−1, ut)p(xt−1|z1:t−1, u1:t−1) dxt−1 (10)

The Kalman filter proposed in [3] implements the Bayes Filter with the as-

sumption of Gaussian distributions for the posterior probability distribution of the

state, a priori probability distribution of the state transition outcome, and proba-

bility distribution of measurement model. Fundamentally, this makes the Kalman

filter a practical application of the Bayes Filter because results can be calculated

in closed form due to the additive and multiplicative properties of Gaussian dis-

tributions yielding a Gaussian-distributed result.

4



For nonlinear problems however, Monte Carlo sampling-based methods pro-

posed in [4] and [5] can be used to approximate the probability distribution func-

tions discussed in the Bayes Filter. Various versions the particle filter have emerged

over time, but the basic assumptions and methods are still derived from Sequen-

tial Monte Carlo algorithms as summarized by the authors of [6]. The particle

filter uses many weighted particles to approximate the probability distributions

presented in the Bayes filter, yielding probability mass functions as the discrete

equivalent. Given a set of particles forming a probability mass function represent-

ing the previous system state posterior belief bel(xt−1), the particle filter iteratively

approximates the updated state probability distributions in two distinct phases:

❼ Given an input ut, the a priori probability distribution bel(xt) is approxi-

mated by applying the state transition model to each particle with additional

noise sampled from an arbitrary probability distribution function represent-

ing the state transition uncertainty. This ”time update” of the system model

yields a probability mass function approximating the Bayes filter’s a priori

belief described by Equation 10.

❼ When a measurement zt is received, the new posterior probability distribu-

tion bel(xt) is approximated by multiplying the weight of each particle by the

probability distribution function value at each particle’s expected measure-

ment value for an arbitrary probability distribution representing the mea-

surement uncertainty. Finally, the weights of all the particles are normalized

to sum to 1, restoring the weights of the particles to form a legitimate prob-

ability mass function. This ”measurement update” using the measurement

model yields a probability mass function approximating the Bayes filter’s

new posterior belief described by Equation 7.

One challenge with the implementation of a standard particle filter is particle

5



degeneracy as discussed in [7], where the weights of some particles approach zero

due to the evolution of some particles toward states with a low likelihood of repre-

senting the state probability distribution function. The particle filter is unable to

glean much information from these degenerate particles, so with a fixed number of

particles employed by the particle filter, the number of useful particles contribut-

ing to system state estimation may become significantly reduced over time, giving

poor long term performance. A common solution to this problem is an unbiased

particle Importance Resampling (IR) where particles are resampled to form a pro-

posal distribution identical to the original state probability distribution, but other

methods exist for achieving the desired proposal distribution as discussed in [8].

1.1.2 Observability

When designing a state estimator, the topic of observability must first be

addressed, namely that the measurements of a system are sufficient to uniquely re-

construct the state of that system [9], [10]. An intuitive way to define observability

is presented by the authors of [11], where a system is considered to have states x

belonging to the state space M . An ”input-output map” is formed for a system

with initial state x0 given all possible inputs over a time interval [t(0), t(1)] and

measuring the resulting system output. If the same system with a different initial

state x1 yields the same input-output map over the same time interval [t(0), t(1)],

then the evolution of the two states is indistinguishable. Therefore, a system is

only said to be observable at an arbitrary state x if there are no other initial

states result in the same input-output map. Furthermore, the system as a whole

is observable if every system state x, ∀x ∈ {M} is observable.

An observability study of mobile ground robots with unicycle dynamics (the

same used in this research) is conducted by the authors of [12]. Their work tabu-

lates the observability of a two robot system with various combinations of control

6



inputs and measurements, so for applicability to this research, the second robot

is assumed to be a stationary beacon by setting the velocity v = 0. Therefore,

the state of our robot is found to be fully observable if the robot is moving with

velocity v > 0 and the robot is measured at a bearing of α from the beacon’s

frame of reference. If a beacon is unable to provide a bearing measurement, then

the state of the robot is not fully observable and the state estimate will diverge.

This is a common challenge in applications without access to persistent external

measurement sources, such as underwater navigation, where extremely accurate

proprioceptive sensors may be selected to slow the rate of state divergence over

the course of a mission [13].

1.1.3 Motion Planning

Common motion planning approaches are presented by the authors of [14],

[15] and [16], with the latter including a review of newer machine learning ap-

proaches. Grid-based approaches typically discretize the state space and employ

a search to find a valid path to the goal. A* search is a popular extension of

Dijkstra’s algorithm that uses heuristics to guide search efforts from the origin

toward the direction of the goal instead of exploring the entire environment. A

major downside of the standard A* search algorithm is that any deviation from the

path or a discovery of an unknown obstacle requires the entire path to be planned

again, although there are strategies to recall previously computed path costs and

adjust the single-source path as shown by the authors in [17]. Another approach is

generating an artificial potential function that draws the system toward the goal

state, with the authors of [18] demonstrating a hybrid technique of A* search and

artificial potential to prevent the system from getting stuck in local minima.

However, due to the desire to apply model predictive control (MPC) to the

planning problem, a solution to explore the state space was required. A hybrid

7



approach that uses A* search to find an initial path which is then smoothed by

MPC is presented by the authors of [19], but a wider variety of candidate paths

was desired. Therefore, an implicit breadth-first is explored using the robot tra-

jectory controller to develop a sequence of control inputs required to implement

the state space search. This method also reduces the need for complex trajectories

experienced by the authors of [20] when implementing motion planning for a robot

with nonholonomic constraints such as our unicycle robot.

1.1.4 Model-Predictive Control

Model-predictive control is a type of predictive control that uses a known

system model and cost function to optimize a sequence of control inputs over pre-

diction time horizon T . The optimization becomes more challenging when applied

to a nonlinear system, but there has been widespread research into the area of

nonlinear model-predictive control (NMPC) due to the broad range of nonlinear

control problems. Examples of model-predictive control applications range from

health care and finance to power electronics and grid scale power systems as pre-

sented in [21]. Optimization functions may be solved analytically with tools such

as nonlinear constrained optimization or solved using evolutionary algorithms that

find global solutions to nonconvex problems [22]. In this research, a set of particle

filters managed by a model-predictive controller will perform a search to capture

the evolution of state dependent certainty based on observability.

1.2 Related Work

In motion planning, many approaches do not consider the state uncertainty

that the system will face later on when the controller struggles to achieve the se-

lected path. Therefore, several linear and nonlinear approaches to motion planning

have been developed to also optimize state certainty with good results. Assump-
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tions of Gaussian state uncertainty models are common due to the ease of applying

optimization algorithms. For example, the authors of [23], [24] and [25] present sim-

ilar approaches using rapidly-exploring random trees that simulate measurements

in environments with restricted observability to track Gaussian state error along

a path and find a trajectory that simultaneously avoids collisions and maximizes

the probability of achieving the goal. The work in [26] expands the optimization

factors to also minimize vehicle acceleration and maximize self calibration between

inertial measurement unit (IMU) and visual sensors. The authors of [27] instead

focus on achieving the goal while maximizing the norm of system Fisher infor-

mation relating observable to unobservable characteristics, resulting in a system

that generates control perturbations to observe system dynamics. In the case of

higher degrees of freedom, the authors of [28] develop an observability aware sys-

tem for the case of simultaneous localization and mapping (SLAM) but discount

sampling-based planning approaches due to the computational demands.

Stepping away from analytical optimization functions, the distinction between

motion planning and control becomes blurry with model-predictive control due to

the inherent time horizon used for prediction. Specifically applied to motion plan-

ning, authors in [29] successfully applied model-predictive control to optimize fac-

tors like passenger comfort, safety, and speed of execution in autonomous vehicle

maneuvering. Model-predictive control using particle filters has also been suc-

cessfully demonstrated where a particle filter is evolved using the state transition

model to determine the best set of control inputs. The approach taken by authors

of [30] initialize MPC with single particle values, while other approaches taken by

authors of [31] and [32] use the entire particle cloud for better state representation.
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1.3 Summary of Contribution

This research demonstrates that a mobile ground robot operating in a two

dimensional environment with pre-existing knowledge of sparse observable states

can successful navigate to a goal while minimizing state estimate uncertainty. To

accomplish this, a particle filter is used to estimate the state of the robot and

similar particle filters are used to explore potential trajectories with simulated

measurements to evaluate potential state uncertainty along each trajectory. Fi-

nally, a model-predictive control approach is used to score each potential path and

select the most promising option, essentially performing the role of a higher level

particle filter searching for the overall optimal path to the goal.
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CHAPTER 2

Methodology

2.1 Problem Setting

We assume that a mobile ground robot moves in a two-dimensional plane with

a state described as position [x, y]T ∈ R
2 and orientation θ ∈ SO(2). The robot

state evolves according to inputs linear velocity v and angular velocity ω following

the nonlinear model for a unicycle:





ẋ

ẏ

θ̇



 =





cos θ 0
sin θ 0
0 1





[

v

ω

]

(11)

We assume that a known number N of landmarks are present in the environ-

ment with the nth landmark located at a known position [x
(n)
l , y

(n)
l ]T ∈ R

2 and

a maximum detection range of R(n). The robot obtains measurements of its po-

sition [z
(n)
x , z

(n)
y ]T from the nth landmark if the robot’s range from the landmark

r(n) < R(n). If the robot is within detection range, the landmark will measure

the robot’s range r(n) and bearing α(n) from the landmark. Based on the mea-

surements, the landmark will determine the position of the robot according to the

measurement equation:

[

x(n)

y(n)

]

=

[

x
(n)
l + r(n) ∗ cosα(n)

y
(n)
l + r(n) ∗ sinα(n)

]

(12)

The robot’s task is to travel from a starting position [xs, ys]
T to a known goal

location [xg, yg]
T . Note that as long as the robot velocity v > 0, according to the

discussion in section 1.1.2, the system is observable when the robot is within the

detection range of at least one landmark, and is not observable otherwise.
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2.2 System Architecture

A block scheme of the navigation system developed in this work is presented

in Figure 2.1 and described below.

Figure 2.1: System Configuration Overview - Real World Application

2.2.1 State Estimator

Given the nonlinearity of the estimation problem, a standard implementation

of the particle filter was selected for the state estimator. P particles are initialized

with the state of each particle i identical to the robot state:





x(i)

y(i)

θ(i)



 =





x

y

θ



 (13)

and importance weights w(i) = 1
P
such that the sum of all weights is one.

P
∑

i=1

w(i) = 1 (14)
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Given proprioceptive odometry measurements [zv, zω]
T , the state

[x(i), y(i), θ(i)]T for each particle i is updated using the unicycle model from

Equation 11 plus a noise sample [V,Ω]T drawn from the actuation noise joint

probability distribution function ǫV,Ω(v, ω).







˙x(i)

˙y(i)

˙θ(i)






=





cos θ(i) 0
sin θ(i) 0

0 1





[

zv + V

zω + Ω

]

(15)

Note that the actuation applied to each particle is unique and therefore each

particle will represent a hypothesis of the true state of the robot, with accuracy

improving as the number of particles P → ∞. The new state estimate of the robot

is selected as the weighted sum of all particles states, with special care taken to

find the weighted orientation average due to periodicity of θ on the interval [0, 2π).





x

y

θ



 =







∑P

i=1 w
(i)x(i)

∑P

i=1 w
(i)y(i)

atan2
(

∑P

i=1 w
(i) sin θ(i),

∑P

i=1 w
(i) cos θ(i)

)






(16)

At an arbitrary time, an exteroceptive measurement [z
(n)
x , z

(n)
y ]T may be re-

ceived from an arbitrary beacon n. This measurement represents the sum of an

ideally measured value and noise sampled randomly from a zero mean joint prob-

ability distribution δX,Y (x, y) characterizing the additive measurement noise. To

calculate the likelihood that a particular particle hypothesis represents the true

system state, an updated particle weight w(i)′ is found by multiplying the previous

particle weight by the value of the joint probability distribution function calculated

for that particle’s position error compared to the measured position.

w(i)′ = w(i) ∗ δX,Y

(

x(i) − z(n)x , y(i) − z(n)y

)

(17)

Finally, the weights of all particles are renormalized to sum to one, and this

weight is used for each particle until the next measurement update re-weights each

16



particle again.

w(i)′′ =
w(i)′

∑P

i=1 w
(i)′

(18)

After several re-weighting iterations, the issue of particle degeneracy may be

encountered where the weights of outlying particles w(i) → 0 due to their poor

representation of the state estimate. In this case, fewer particles will remain in

the vicinity of the true state, so fewer particles will be available to represent the

current state estimate, and therefore those particles will have higher weights to

ensure the sum of all weights
∑P

i=1 = 1. This large variance in weights can be

detected with an Effective Sample Size (ESS) metric computed using the sum of

all particle weights squared.

ESS =
1

∑P

i=1 w
(i)2

(19)

When each particle weight w(i) = 1
P
, ESS = P indicating no degeneracy as

expected. However, as the particle weight variance increases, the value of ESS

will drop and a threshold can be used to trigger an unbiased importance sampling

of the particles to represent the same state estimate probability distribution but

with equalized importance weights. One way to accomplish this is with systematic

re-sampling where P linearly spaced values r(k) are generated

r(k) =
k

P
+

1

2P
, k ∈ {0, ..., P − 1} (20)

and compared to the cumulative summation cw(k) of all particle weights.

cw(k) =
k

∑

i=1

w(i), k ∈ {1, ..., P} (21)

Recall that the sum of all particle weights
∑P

i=1 = 1, so every randomly

generated re-sampling point will correspond to specific particle, which is selected to
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construct a new posterior probability distribution. Particles that represent better

state estimates will have higher weights and therefore occupy a larger portion of

the cumulative summation, resulting in a higher likelihood of being re-sampled,

approximately maintaining the posterior distribution after the re-sampling process.

One unique measurement opportunity afforded by an observability map ap-

proach to path planning is the intrinsic boolean information of whether the robot

is inside or outside of an observable region. Therefore, a similar approach to

measurement updates and re-sampling is applied to this additional measurement

source. If a set of particles P ⊂ {i = 1, ..., P} is found to be in conflict with

the current measurement availability (e.g. a measurement was not received, but

one or more particles existed within an observable region), then those conflicting

particles are resampled to remove their contribution from the state estimate. This

was accomplished by setting the weights w(i) of the conflicting particles to zero

and re-sampling.

w(i) = 0, ∀i ∈ P (22)

This approach is similar to terrain aided navigation as discussed by the authors

of [1] which can improve robot state estimation performance. For example, if the

robot intended to enter an observable region, but narrowly missed due to state

estimate error, the particles in the observable region representing an incorrect

hypothesis are pruned from the particle filter, causing the weighted state estimate

of the new particle distribution to converge toward the ground truth. Due to

issues with sporadic performance near observability thresholds, particle pruning

was limited to 30% which yielded suitable performance. The impact of particle

pruning can be seen to improve the robot state estimate in the sample shown in

Figure 2.2.
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Figure 2.2: Particle Pruning Using ”Negative Measurement” Knowledge

Similarly, when the robot is inside an observable area receiving measurements,

particles existing outside the observable region are pruned, but this was rarely

needed in practice because the state estimate quickly converged when the robot

was collecting measurements in an observable region.

2.2.2 Trajectory Controller

A differential drive robot platform is one of the simplest options for a mobile

ground robot because it only has two actuators - the left and right wheels. This
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type of robot is capable of moving forwards, moving backwards, turning in place,

or turning while in motion given any combination of positive or negative control

inputs for linear velocity v and angular velocity ω. Due to these motion paths, this

type of configuration can be represented by a unicycle model with the kinematic

model previously expressed in Equation 11.

Note that the system is nonholonomic in that it does not allow sideways

motion, so to follow an arbitrary trajectory a control point B must be considered

a distance b in front of the midpoint of the wheels. With this control point we find

an input-output feedback linearization controller using the procedure found in [2].

First, the kinematic model is rewritten in terms of the new control point B:

[

ẋB

ẏB

]

=

[

cos θ −b sin θ
sin θ b cos θ

] [

v

ω

]

(23)

and a transformation matrix is defined as

T (θ) =

[

cos θ −b sin θ
sin θ b cos θ

]

, such that

[

ẋB

ẏB

]

= T (θ)

[

v

ω

]

(24)

To guarantee the existence of T−1(θ), T (θ) must not be singular, and in this

case

det(T (θ)) =

∣

∣

∣

∣

cos θ −b sin θ
sin θ b cos θ

∣

∣

∣

∣

= b cos2 θ + b sin2 θ = b (25)

As long as b 6= 0, T−1(θ) exists which highlights the need for a control point

B that is not directly between the robot wheels. Equation 24 is therefore inverted

to solve for the control input:

[

v

ω

]

= T−1(θ)

[

ẋB

ẏB

]

=

[

cos θ sin θ
− sin θ

b
cos θ
b

] [

ẋB

ẏB

]

(26)

and the system in equation 11 is re-written to form:
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ẋ

ẏ

θ̇



 =





cos θ 0
sin θ 0
0 1





[

cos θ sin θ
− sin θ

b
cos θ
b

] [

ẋB

ẏB

]

(27)

Now finding θ̇ we see that

θ̇ = −
ẋB sin θ

b
+

ẏB cos θ

b
=

ẏB cos θ − ẋB sin θ

b
(28)

where we can define ẋB and ẏB as inputs to the new linear system

ẋB = u1

ẏB = u2

θ̇ =
u2 cos θ − u1 sin θ

b

(29)

where xB and yB act as integrators. Now we can select a desired trajectory

composed of a desired position qd(t) and desired velocity q̇d(t) for all time in our

planned trajectory t ∈ [0, Td] where:

qd(t) =

[

xd(t)
yd(t)

]

, t ∈ [0, Td]

q̇d(t) =

[

ẋd(t)
ẏd(t)

]

, t ∈ [0, Td]

(30)

Now a control law for system 29 can be implemented as:

[

u1(t)
u2(t)

]

=

[

ẋd(t)
ẏd(t)

]

+

[

kx 0
0 ky

]([

xd(t)
yd(t)

]

−

[

x(t)
y(t)

])

(31)

with arbitrary positive controller gains kx and ky. Finally, using the relation-

ship established in the system 29, the computed values u1 and u2 are applied to

the inverted system equation 26 to calculate the actual input for the robot:

[

v

ω

]

=

[

cos θ sin θ
− sin θ

b
cos θ
b

] [

u1

u2

]

(32)
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Note that with this control method, the desired trajectory can be arbitrary

at the cost of losing direct control over the robot orientation θ.

To minimize the scope of each class needed for functionality, the Unicycle

robot class implements the input-output linearization feedback controller for the

unicycle model derived above. When running the system in ”naive navigation”

mode, the controller drives the state of the robot directly to the goal, otherwise

the path planner is used for higher level trajectory planning and robot control only

operates locally to drive the robot to the next point along the path.

Each path is constructed from a time stamped seed location and subsequent

positions incremented by a fixed time step. The robot selects the next timestamped

position into the future as the desired position qd[k] to pursue. Additionally, feed-

forward velocity q̇d[k] is calculated from the difference in adjacent positions along

path divided by the path time step as shown below.

q̇d[k] =
qd[k]− qd[k − 1]

qt[k]− qt[k − 1]
(33)

The trajectory controller then uses the desired trajectory to drive the robot

toward that position, continuously iterating through the sequence of path positions

until a new path is received. Care has been taken in this research to make the

transition between paths as seamless as possible, but the transition could be a

large discontinuity, especially with long path planning cycles.

Once the robot is within a certain distance from the goal, the robot switches

from the path trajectory to simply using the goal as the next target. In this

research a distance of 0.5 m was used as the threshold to shift the controller from

”path following” to ”goal seeking” by using the values below.
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qd[k] =

[

xg

yg

]

(m)

q̇d[k] =

[

0.0
0.0

]

(m
s
)

(34)

2.3 Model-Predictive Control

In this work, model-predictive control was implemented to selected a ”best

path” by weighting a time varying blend of scoring factors. Each potential path

was evaluated by propagating a particle filter with a reduced particle count, but

sampled from a multivariate Gaussian to roughly preserve current state estimate

uncertainty characteristics. Furthermore, the implementation of the path planning

method was designed to mimic the operation of a particle filter operating at a

higher level:

❼ Propagating the paths outward increases the variance of path endpoints at

each path planning step k, representing a sample of all possible paths the

robot could take.

❼ A scoring function performs a measurement of the relative performance of

each path, updating the weight of each path for each time step k.

❼ Once the path planner reaches the time horizon, the best path is selected

using the highest weight which causes that path to be resampled as the

initial state for all paths in the next iteration of path planning.

Two factors were used to achieve satisfactory path weighting performance in

this research - normalized distance to the goal and a state estimate covariance

metric. Given the goal location (xg, yg), the normalized distance to the goal nd

was computed by taking the euclidean distance d of each path endpoint x
(i)
k , y

(i)
k

to the goal and normalizing the distance with respect to the mean of all M path
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endpoint distances. This factor was designed to give values for nd that were closely

clustered around 1.0 when the paths were far from the goal, allowing the paths to

explore without significant penalty. Once the paths drew closer to the goal, the

path endpoints would become more distinguished and allow for easy selection of

high performers.

d
(i)
k =

√

(

xg − x
(i)
k

)2

+
(

yg − y
(i)
k

)2

(35)

nd
(i)
k =

d
(i)
t

∑
M

i=1 d
(i)
k

M

(36)

Secondly, given the covariance matrix Σ
(i)
k of the particle positions for the

particle filter exploring path i, a metric c was developed to give an absolute measure

of state estimate uncertainty. Conceptually, the diagonal eigenvalue matrix Λ
(i)
k is

computed and the eigenvalues along the diagonal are squared and summed to yield

a single value for particle filter i. In practice, a more computationally efficient way

of finding this value is taking the trace of the square of the covariance matrix.

c
(i)
k = tr

(

Σ
(i)
k

2
)

(37)

The progress of time toward the time horizon for each path planning iteration

was normalized on the interval 0 <= t <= 1 to serve as a time variant scaling factor

independent of the user configurable time horizon. The overall scoring function

uses a negative exponential function to generate a large value for over performing

paths, and a small value with less variation for under performing paths. On top of

choosing the exponential decay term to weight each factor, the time value weights

the covariance factor at a steadily increasing amount, while the distance factor is

heavily weighted at the end of the time horizon by raising it to the 6th power.
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These weighting functions were selected to accumulate path performance over

the entire time horizon as opposed to a strategy that only looks at the endpoint.

If only the endpoint was considered, a potential path may appear to be a strong

candidate, but if the projected path encountered an observable zone near the end

of the time horizon there is no guarantee that the robot could actually reach that

observable zone due to state estimate divergence. Instead, a robot that travels

through an observable zone near the middle of the time horizon may yield better

results because there is a higher certainty of the robot reaching those observable

states, even if the state estimate diverges again slightly before the time horizon.

The complete function that computes each path score s
(i)
k is shown below and the

weight factors functions are shown in Figure 2.3.

s
(i)
k = 2t6 exp

(

−nd
(i)
k

)

+ 1.5t exp
(

−2c
(i)
k

)

(38)

Figure 2.3: Model-Predictive Control Factor Weighting Curves

Finally, the score of each path is normalized for that time interval and added

to running sum of the performance weight for each path w
(i)
k .

25



w
(i)
k = w

(i)
k−1 +

s
(i)
k

∑M

i=1 s
(i)
k

(39)

Note that the full reward system was selected to be positive and bounded.

However, the final product delivered by this method is a set of positions that form

a path, as opposed to true model-predictive control which applies the optimized

control inputs directly to the plant. This deviation was intentional due to the

long computation times needed for each path planning iteration. In the case of

this research, waiting for the path planner response to an updated state estimate

would cause a response delay of 20 seconds or more.

Fortunately, the method used in this research does preserve the model evo-

lution characteristics as illustrated previously in Figure 2.4. A target somewhat

behind the robot will cause the low level controller to initially back up the robot

and turn before driving forward. That behavior is seen in the top three paths,

whereas the fourth and adjacent paths immediately drive forward, initially taking

the same route due to control input saturation. These model specific control in-

put realizations are preserved in the generated path and carried out by the path

follower.

2.3.1 State Space Exploration

One major breakthrough that enabled the success of this research was effi-

ciently generating a sequence of control inputs to explore a wide variety of potential

paths. A breadth-first search of the state space was implemented by defining an

”explore angle” γe for all M paths to fan out and explore. The sequence of control

inputs to explore this variety of paths was generated by assigning each path i a

linearly spaced angular offset α(i) centered around 0:

α(i) = −
γe

2
+

γe

2M
+

i

M
, i ∈ {0, ...,M − 1} (40)
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and placing a new fictitious goal point [x
(i)
g , y

(i)
g ]T that was unique to each

path given the path’s assigned angular offset α(i) from the goal direction. This was

accomplished by applying a rotation matrix R
(i)
g to the vector error between each

path endpoint [x(i), y(i)]T and the goal, then adding the resulting vector back to

the path endpoint.

R(i)
g =

[

cosα(i) − sinα(i)

sinα(i) cosα(i)

]

(41)

[

x
(i)
g

y
(i)
g

]

= R(i)
g

([

xg

yg

]

−

[

x(i)

y(i)

])

+

[

x(i)

y(i)

]

(42)

Each individualized goal point is pursued by the low level controller, then

over multiple time steps the resulting paths form a fan-shaped projection that

ultimately seek out and wrap around the goal as seen in Figure 2.4.

2.3.2 Path Seed Projection

Two challenges of our resource constrained path planning were misalignment

between adjacent paths and running out of new path positions to pursue due

to the computation time needed to plan each path. To mostly overcome these

limitations, all new paths were seeded in the future by projecting the current state

forward in time. This was accomplished by spawning a new particle filter from

the current pose estimate of the robot and sampling particles from a multivariate

Gaussian distribution to simulate the current state estimate uncertainty. Using

the previously published path and the time it took to plan the last path, the

path planner simulated the control inputs and measurements for an ideal robot to

project the new particle filter forward in time.

The resulting particle filter theoretically captured the expected state of the

robot at the future time when the new path became ready, so it was used as

a seed for the new iteration of path exploration. In practice, best performance
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Figure 2.4: Potential Paths Explored Using a 3
4
π Exploration Angle

was achieved when the path was projected to about 90% of the expected time

to complete the path planning to leave a margin for inconsistency in computation

time. Because the low level controller followed a path rather than directly applying

a sequence of commands, small offsets between similarly oriented paths were well

tolerated with the robot asymptotically approaching the new path due to feed-

forward control.

28



List of References

[1] J. Melo and A. Matos, “Survey on advances on terrain based navigation for
autonomous underwater vehicles,” Ocean Engineering, vol. 139, pp. 250–264,
2017. [Online]. Available: https://www.sciencedirect.com/science/article/pii/
S002980181730241X

[2] H. Marquez, Nonlinear Control Systems: Analysis and Design. Wiley-
Interscience, 11 2002.

29

https://www.sciencedirect.com/science/article/pii/S002980181730241X
https://www.sciencedirect.com/science/article/pii/S002980181730241X


CHAPTER 3

Implementation

3.1 Robot Platform

For simplicity, the Cherokey mobile robot platform was selected for this re-

search and configured with differential drive to emulate the ”unicycle” model. The

Cherokey platform, shown in Figure 3.1, had two motorized wheels controlled by a

microcontroller board running the low level wheel speed controllers with encoder

feedback delivered at 5 Hz. The vehicle was about 225 mm long and 175 mm wide

with a maximum speed limited to ±10.0 m
s
and maximum rotation of ±0.2 rad

s
for

these trials. Each wheel rotation gave about 20 cm of forward travel resulting in

a wheel encoder resolution of 96 ticks
cm

.

Figure 3.1: Cherokey Mobile Ground Robot
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Noise characteristics of the vehicle were assumed to be Gaussian and estimated

empirically by comparing odometry wheel encoder integration to ground truth

position measurements. In this research, actuation noise is added to the linear

velocity v and angular velocity ω with the following mean µ and variance σ:

[

µv

µω

]

=

[

0.0 m
s

0.0 rad
s

]

[

σ2
v σv ∗ σω

σv ∗ σω σ2
ω

]

=

[

0.002 0.0
0.0 0.005

] (43)

3.2 OptiTrack Motion Capture System

For real time ground truth feedback, an OptiTrack Motion Capture system

was configured to track the robot as a rigid body and stream real time positions

at a rate of 2 Hz. For the purpose of these experiments, positions were assumed

to be in the world frame as defined during the most recent OptiTrack calibration.

A view of the OptiTrack screen during an experiment is shown in Figure 3.2 with

the reflective markers grouped as the ”robot” object.

Figure 3.2: OptiTrack Motion Capture User Interface
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To simulate the measurement quality of a real beacon, each measurement

passed to the ground robot state estimator was sampled from a multinomial Gaus-

sian distribution using the OptiTrack position for µm and covariance:

Σm =

[

0.001 0.0
0.0 0.001

]

(44)

3.3 Computation

An Odroid single board computer with Wi-Fi dongle provided the Cherokey

robot’s onboard network communication link to interact with local information

streams. The Odroid communicated with the wheel driver microcontroller board

over Universal Serial Bus (USB) to send linear and angular velocity commands,

then receive the linear and angular velocity inferred from the wheel encoders for

state estimation.

Most computation for this project was completed on a personal laptop com-

puter with a 4th generation Intel i5-4210u mobile processor. For simulations, the

laptop computer was able to support a 0.8 real time factor and give satisfactory

results for prototyping and testing the system. For simulation validation with the

real robot, the laptop computer gave slightly better results in real time, poten-

tially due to the lack of simulation load. This computational performance is in

alignment with the vision of this path planning method running in real time on a

mobile ground robot.

The Python scripting language was used to implement all the software that

performed the primary tasks of this thesis research. Additional scripts in Mat-

lab/Octave and bash were used to generate the observability maps, automate sim-

ulation trials, and interpret results. Generally, the software was designed to be as

universal as possible, with a Unicycle object class providing the main functionality

for any Unicycle specific state and input variable modifications. By limiting the
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scope of functionality for each piece of software, the particle filter and path plan-

ner implementations could be generalized to three dimensions and pass variables

without the need to understand data structures specific to the Unicycle object.

3.4 Robot Operating System Configuration

Robot Operating System (ROS) is a collection of software libraries designed to

streamline the development and deployment of robotic systems. One unique aspect

of ROS is the use of a network based communication with a publisher/subscriber

model using ROS ”topics” as a way for ROS nodes to communicate. This allows

for the development of distinct nodes that perform the main functionality of the

system, but also allows for nodes to simulate various aspects of the anticipated

application that can be bypassed once deployed. In this case, the Gazebo simulator

was used to simulate the physical process of driving a small mobile ground robot,

similar to the real world application, and publish a ROS topic that would be

contextually similar.

Additionally, passing predefined messages on ROS topics over the local net-

work allowed the nodes to exist anywhere as long as they had access to the network

and knew which machine was running the ROS core. In this work, the vari-

ous python scripts were designed to have distinct functionality and communicate

through ROS topics for easy integration with real world applications. Specifically,

a laptop computer was used to run all the nodes for the simulation, and the simula-

tor was seamlessly replaced with the ROS enabled Cherokey robot and OptiTrack

Motion Capture System when experimental trials were conducted to validate simu-

lation results. In future work it would be trivial to run the computational intensive

path planner on a higher performance machine and publish the resulting paths on

the appropriate ROS topic for the robot to follow.

To improve ease of use, ROS features a ”roslaunch” file format that allows
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users to predefine a desired ROS environment and launch specific nodes simulta-

neously using an XML ”.launch” file. In the case of this research, four launch

files were created to cover a variety of test conditions. A pair of launch files were

created to either run the software on the Gazebo simulator or in the real world

with the ground robot and OptiTrack Motion Capture System. Then, each launch

file was copied to either launch a trial of the path planner software or launch a

trial of the naive navigation. In each launch file, specific nodes were included as

needed to activate the desired functionality for a complete system.

3.4.1 Goal Publisher

To communicate the current goal position, a goal node was created for the sole

purpose of publishing the desired goal whenever queried. This gave flexibility for

the user to latch a new desired goal message to change robot tasking during oper-

ation. In the current implementation, any changes to the goal will be incorporated

when the path planner started the next path planning iteration. The goal was

published as a standard Pose message and used continuously by the path planner

node and near the end of the trials by the control node to use simple control once

within a short distance of the goal.

3.4.2 Noisy Odometry Simulator

For dead reckoning, the robot wheel encoders were used to estimate the ve-

hicle’s linear and angular velocity. However, for the purpose of simulation, the

standard Odometry message published by the Gazebo simulator was noise free

and did not represent a realistic case. Therefore, a noisy odometry simulation

node was created to take the ideal odometry values and add actuation noise with

the characteristics presented in Subsection 3.1 to make system simulation more

realistic. To transition the system to the real world operating on a real robot,
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this node was simply bypassed so the mobile ground robot could directly provide

noisy odometry input to the state estimator. Noisy odometry was published as a

standard Odometry message and used by the state estimator node.

3.4.3 Measurement Simulator

A measurement source was required for the state estimator to reduce uncer-

tainty during robot operation. In the real application, measurements could be

derived in any number of ways from a set of beacons, but for this research the

simple case of bearing and range from the beacon was selected to yield full ob-

servability as shown in [1]. Measurements from Gazebo or the Optitrack Motion

Capture system were considered ideal ground truth measurements, so noise was

added as described above in Subsection 3.2. Measurements were published as a

standard Odometry message, to accommodate position and velocity components

if needed, and used by the state estimator node.

3.4.4 State Estimator

The state estimator node implemented the localization particle filter described

in Subsection 2.2.1. The particle filter class consisted of higher level functions that

used the robot object to perform the time update and measurement update phases.

Re-sampling was conducted autonomously at the particle filter level by using state

manipulation functions provided by the robot class. The state estimation particle

filter used in this research employed 100 particles and re-sampled the particles once

the effective sample size computed using Equation 19 reached 50% of the original

particle number, in this case 50 particles. In software, this was implemented as

100 copies of the Unicycle robot object with references to the original robot object

broken to allow for independent motion and state management of each particle.

This node was subscribed to the noisy odometry sensor feedback and measure-
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ment source. A new state estimate was published each time a new noisy odometry

message was received. The state estimate was published as a standard Odometry

message to accommodate position and velocity components if needed, and used by

the controller for navigation and the path planner to seed the next path.

3.4.5 Path Planner

As the most computationally intensive portion of the project, the path planner

node subscribed to the state estimate messages, but was configured to keep an

empty queue so the state estimate was up to date whenever the path planner

node was ready to seed a new path. This node implemented the model-predictive

controller and associated performance enhancements described in Section 2.3. The

completed path was packaged as a standard PoseArray message and published for

the trajectory controller to follow.

3.4.6 Trajectory Controller

The trajectory controller node implemented the path following described in

Subsection 2.2.2 and applied conservative saturation values to all commands to

prevent damage to the robot. This node was subscribed to the path planner to

maintain the most recent path, the state estimator to determine an updated control

command to reach the next planned path position, and the goal publisher to switch

trajectory control once the robot was in the vicinity of the goal.
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CHAPTER 4

System Simulation

To reduce the development time for this research, the Gazebo simulator was

used in conjunction with Robot Operating System (ROS) to simulate the perfor-

mance of the path planning system compared to a naive navigator that does not

use knowledge of observability to aid in the collection of high quality position mea-

surements. The configuration of the system using the Gazebo simulation is shown

in Figure 4.1.

Figure 4.1: System Configuration Overview - Gazebo Simulation

4.1 Simulation Setup

Gazebo generated ideal odometry feedback and ideal position measurements,

so the simulated robot in Gazebo was used as the ground truth and the output

streams were modified with added noise quantified in Section 3.1 to more accurately
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simulate real world odometry and measurement quality. ROS nodes described in

Section 3.4 were launched to perform the following simulations and generate results.

4.2 Simulation Results

4.2.1 Case of Full Observability

The trivial case for this research must compare the performance of the path

planner against naive navigation in an environment with global full observability

to ensure there is no loss in standard functionality. As expected, the end result of

both approaches is indistinguishable as shown in Figure 4.2 and Figure 4.3. The

main exception is the additional time required for the path planner to generate

the initial path before embarking.

As expected, neither approach varied by much from the ground truth. A com-

parison showing the state estimate error for the path planner and naive navigation

is shown in Figure 4.4 and Figure 4.5 respectively.

4.2.2 Case Study #1

The first case study demonstrates the preference for traveling in an observable

zone due to the resulting higher state estimate confidence. In this study, the goal

was located at (5,5) and a row of observable zones was positioned to the side of

the direct path to the goal, each with a radius of 0.5 m and located at (2,0), (3,1),

(4,2), and (5,3).

In the case of the naive controller heading directly for the the goal, the state

estimate will steadily diverge unless the robot happens to come close enough or

encounter an observable zone and the state estimate converges. An example of an

accidental success of the naive navigation is shown in in Figure 4.6.

In sharp contrast, the path planner will intentionally seek out observable zones

on the way to the goal in order to maintain a low state estimate uncertainty. The

sequence of best paths selected during the path planning operation is shown in
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Figure 4.2: Global Full Observability Path Planner Performance

Figure 4.7, with the proposed path and state estimate for the path planner robot

shown in Figure 4.8.

This comparison of simulation results was repeated 101 times to see the dis-

tribution of final error that could be expected in a real trial. Paths for both

sets of simulations are overlaid in Figure 4.9 with the final robot positions shown

in Figure 4.10. The covariances of final positions for each method of navigation

were computed to draw 95% confidence ellipses indicating a clear improvement of
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Figure 4.3: Global Full Observability Naive Navigation Performance

the path planner over naive navigation in this scenario. Table 1 shows the state

estimate error and time requirements for each approach.

4.2.3 Case Study #2

The second case study demonstrates the limitations of the path planner when

the environment was so sparsely populated with observable zones that the robot

may not be able to navigate as desired. In this study, the goal was also located at

(5,5) and two observable zones were positioned to one side of the direct path to
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Figure 4.4: Path Planner State Estimate Error from Ground Truth

Statistic Calculation Method
Naive

Navigator
Path

Planner
Position Estimate
Error en Route (m)

Absolute Mean Value 0.282 0.047
Root Mean Square 0.535 0.098

Final Position Error
(m)

Absolute Mean Value 0.719 0.222
Root Mean Square 0.904 0.270

Initialization Time (s)
Absolute Mean Value 1.693 17.15
Root Mean Square 1.715 17.43

Drive Time (s)
Absolute Mean Value 73.39 81.59
Root Mean Square 73.43 81.63

Table 1: Naive Navigation vs. Path Planner Statistics for Case #1 (101 Trials)

the goal, each with a radius of 0.5 m and located at (3,1) and (5,3).

In the case of the naive controller heading directly for the goal, the state esti-

mate again steadily diverged unless the robot happened to encounter an observable

zone. A typical example of the naive navigation is shown in Figure 4.11.
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Figure 4.5: Naive Navigator State Estimate Error from Ground Truth

In contrast, the path planner intentionally sought out the nearest observable

zone on the way to the goal in an attempt to maintain a low state estimate un-

certainty. However, in this case, the observable zone was located far enough away

that the robot was not be able to reliably achieve the desired path. The sequence

of best paths selected during path planning looked promising and is shown in Fig-

ure 4.12, but sometimes the robot missed the first observable zone due to system

noise and became lost as shown in Figure 4.13.

This comparison of simulation results was repeated 93 times to see the dis-

tribution of final error that could be expected in a real trial. Paths for both sets

of simulations are overlaid in Figure 4.14 with the final robot positions shown in

Figure 4.15. The covariances of final positions for each method of navigation were

computed to draw 95% confidence ellipses indicating a modest improvement of
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Figure 4.6: Naive Navigator Driving Past Observable Zones

the path planner over naive navigation in this scenario. Table 2 shows the state

estimate error and time requirements for each approach.

4.2.4 Case Study #3

The third case study demonstrated the performance of the path planner when

the nearest observable zone was beyond the time horizon that the path planner was

set to explore. In this study, the goal was also located at (5,5) and two observable

zones were positioned to either side of the direct path toward the goal, each with
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Figure 4.7: Path Planner Selected Paths Projected Through Observable Zones

a radius of 0.5 m and located at (3,5) and (5,3).

In the case of the naive controller heading directly for the the goal, the state

estimate steadily diverged as expected, but the observable areas happened to be

arranged to catch the robot if it strayed too far off track. An example of this

behavior is shown in Figure 4.16.

Initially, the path planner pursued a blended exploratory and goal pursuit

trajectory in the absence of observable zones, but once the robot was within the
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Figure 4.8: Path Planner Robot Navigating Through Observable Zones

time horizon from a mapped observable zone, the robot reoriented to intentionally

seek out the observable zone. However, the state estimate was sometimes so poor

at this point that the robot was not able to find the observable zone. A favorable

sequence of best paths for this study is shown in Figure 4.17, but the ground truth

in Figure 4.18 shows the reality that the robot missed the observable area and

could not find the goal.

This comparison of simulation results was repeated 105 times to see the dis-
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Figure 4.9: Path Comparison of Path Planning vs Naive Navigation (101 Trials)

Statistic Calculation Method
Naive

Navigator
Path

Planner
Position Estimate
Error en Route (m)

Absolute Mean Value 0.419 0.326
Root Mean Square 0.789 0.568

Final Position Error
(m)

Absolute Mean Value 1.037 0.614
Root Mean Square 1.457 0.955

Initialization Time (s)
Absolute Mean Value 9.957 45.46
Root Mean Square 11.44 47.95

Drive Time (s)
Absolute Mean Value 73.74 87.72
Root Mean Square 73.78 88.14

Table 2: Naive Navigation vs. Path Planner Statistics for Case #2 (93 Trials)

tribution of final error that could be expected in a real trial. Paths for both sets

of simulations are overlaid in Figure 4.19 with the final robot positions shown in

Figure 4.20. The covariances of final positions for each method of navigation were

computed to draw 95% confidence ellipses indicating that the path planner pro-

duces similarly poor results to naive navigation in this scenario. Table 3 shows the
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Figure 4.10: Final Position Comparison of Path Planning vs Naive Navigation (101
Trials)

state estimate error and time requirements for each approach.

Statistic Calculation Method
Naive

Navigator
Path

Planner
Position Estimate
Error en Route (m)

Absolute Mean Value 0.530 0.385
Root Mean Square 1.015 0.679

Final Position Error
(m)

Absolute Mean Value 1.158 0.858
Root Mean Square 1.858 1.156

Initialization Time (s)
Absolute Mean Value 1.648 16.62
Root Mean Square 1.665 16.72

Drive Time (s)
Absolute Mean Value 74.24 91.49
Root Mean Square 74.29 91.93

Table 3: Naive Navigation vs. Path Planner Statistics for Case #3 (105 Trials)
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Figure 4.11: Naive Navigator Driving Past Observable Zones

4.2.5 Case Study Randomly Generated

The final case study demonstrated a positive outcome in a randomly generated

scenario with approximately 30.7% beacon coverage in the simulated environment.

In this case the goal was located at about (-8.03, 5.96) and there was an observ-

ability void between the origin and goal positions, but the void was surrounded by

beacons.

In the case of the naive controller heading directly for the the goal, the state
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Figure 4.12: Path Planner Selected Paths Projected Through Observable Zones

estimate confidence steadily diverged until the robot reached the other side of the

void and encountered an observable region, shown in Figure 4.21.

In contrast, the path planner explored the potential paths shown in Figure 4.22

and intentionally traveled around the perimeter of the observability void to main-

tain a low state estimate uncertainty as it progressed towards the goal. The se-

quence of best paths selected is shown in Figure 4.23 with the resulting state

estimate shown in Figure 4.24.
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Figure 4.13: Path Planner Robot Missing the Observable Zones

The euclidean distance between the state estimate and ground truth at each

time interval were plotted for the path planner and naive navigation for this ran-

dom case. Even though the final naive navigation state estimate happened to be

favorable in this trial, the path planner maintained a lower maximum position esti-

mate error of 0.16 m compared to the naive navigation maximum position estimate

error of 0.32 m as shown in Figure 4.25 vs Figure 4.26 respectively.
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Figure 4.14: Case #2 Path Comparison of Path Planning vs Naive Navigation (93
Trials)

4.3 Random Trials

Environments were randomly generated to assess the performance of the path

planning system compared to the standard naive navigation. After each system

reached what it believed to be the goal position, the state estimate logs, ground

truth logs, goal position, and map characteristics were saved for post processing.

Beacons for these trials had a detection radius of 1 m and were arbitrarily placed

in the environment to provide a coverage ratio of between 1% and 50%. More

trials were selected for lower coverage concentrations due to the higher variability

of outcomes, with the final distribution of environment beacon coverage shown as

a histogram in Figure 4.27. A new goal located 10 m from the origin was also

generated for each comparison trial with a distribution from the origin shown in
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Figure 4.15: Case #2 Final Position Comparison of Path Planning vs Naive Nav-
igation (93 Trials)

Figure 4.28.

In all, 1,818 randomly generated environments were evaluated to compare the

performance of the path planner against the naive navigation system. For each

trial, the mean absolute position error en route to the goal with respect to the

ground truth was calculated to quantify the performance of each system during

its respective trial. These values are plotted in Figure 4.29 along with 2nd order

least-squares regression functions to characterize the relative performance of these

approaches across many environments. These data suggest that the path planner

improves en route state estimation compared to naive navigation in environments

with between 1% and 50% beacon coverage in an otherwise unobservable environ-

ment. However, the improvement came at the cost of extra time required to pursue
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Figure 4.16: Naive Navigator Driving Between Observable Zones

observable zones with longer drive times required to reach what the robot believed

was the goal location. This trade-off is shown in Figure 4.30 along with 2nd or-

der least-squares regression functions to characterize the relative performance of

these approaches across many environments. The regression functions were calcu-

late best fit distance error and drive time values shown in Table 4 the compare

the path planning and naive navigation outcomes for environments with varying

beacon coverage.
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Figure 4.17: Path Planner Selected Paths Projected Through Observable Zones
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Figure 4.18: Path Planner Robot Missing the Observable Zones

55



Figure 4.19: Case #3 Path Comparison of Path Planning vs Naive Navigation (105
Trials)

Performance Metric Beacon Coverage
Naive

Navigator
Path

Planner
Position Estimate
Error en Route (m)

1% 0.759 0.508
10% 0.548 0.326
20% 0.364 0.177
30% 0.233 0.085
40% 0.155 0.048
50% 0.131 0.068

Drive Time (sec)
1% 110.6 140.2
10% 112.1 136.7
20% 112.4 132.3
30% 111.1 127.1
40% 108.2 121.3
50% 103.8 114.9

Table 4: Naive Navigation vs. Path Planner Performance Statistics (1818 Ran-
domly Generated Trials)
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Figure 4.20: Case #3 Final Position Comparison of Path Planning vs Naive Nav-
igation (105 Trials)
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Figure 4.21: Naive Navigator Driving Through a Randomly Constructed Environ-
ment

58



Figure 4.22: Potential Paths Evaluated to Circumnavigate an Observability Void
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Figure 4.23: Path Planner Selected Paths Circumnavigating an Observability Void
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Figure 4.24: Path Planner Robot State Estimate Circumnavigating an Observabil-
ity Void
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Figure 4.25: Path Planner Position Estimate Error from Ground Truth
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Figure 4.26: Naive Navigation Position Estimate Error from Ground Truth
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Figure 4.27: Distribution of Environment Beacon Coverage in Randomly Gener-
ated Trials
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Figure 4.28: Distribution of Goal Direction in Randomly Generated Trials
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Figure 4.29: Comparison of Path Planning vs. Naive Navigation Position Estimate
Error in Randomly Generated Trials

66



Figure 4.30: Comparison of Path Planning vs. Naive Navigation Drive Time in
Randomly Generated Trials
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CHAPTER 5

Experiments

To validate the simulation results achieved in Chapter 4, Robot Operating

System (ROS) launch files were developed to integrate the mobile ground robot as

a source of odometry feedback and the OptiTrack Motion Capture system as the

measurement source. The new system configuration is shown in Figure 5.1.

Figure 5.1: System Configuration Overview - OptiTrack Validation

5.1 Incorporating the Ground Robot

As a ROS enabled robot, the mobile ground robot communication was

straightforward to configure for use in this research. Instead of launching the

Gazebo simulator and noisy odometry node that was previously used in simula-

tion, the mobile ground robot was energized with a battery pack and the on-board

Odroid computer was configured to communicate with the other ROS nodes on the
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local network. First, environment variables were set to indicate which machine on

the local network was running the ROS core, then a ROS serial server node was

started on the robot to parse information going to and from the Arduino motor

control board. Finally, the ROS serial server registered with the remote ROS core

to register routing paths for the ROS topics it published and subscribed to.

5.2 Incorporating OptiTrack

The OptiTrack Motion Capture System was not directly compatible with ROS,

but instead produced a continuous stream of position and motion information on

the network. A generic Virtual Reality Peripheral Network (VRPN) client from

the ros-noetic-vrpn-client-ros Ubuntu package converted the OptiTrack stream to

a usable ROS topic. The aforementioned ROS launch file was used to spawn the

VRPN client node given the IP address of the machine running the OptiTrack

software and generate a standard Pose message corresponding to the tracked rigid

body ”robot” object. This Pose message replaced the Gazebo simulator, but due

to the high accuracy of the OptiTrack system, noise was still added as before.

Measurements were marked as either ”good” or ”bad” depending on the observ-

ability of each measurement to indicate whether the state estimator could use the

information.

5.3 Simulation Validation

Several experiments conducted in simulation were repeated using the real

robot to validate our results. Results from these trials are presented and analyzed

below.

5.3.1 Case of Full Observability

As before, the trivial case for this research must compare the performance

of the path planner against naive navigation in an environment with global full
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observability to ensure there was no loss in standard functionality. As expected, the

path planner explored many paths shown in Figure 5.2, but ultimately selected the

path directly leading to the goal, shown by the state estimates and ground truth

in Figure 5.3.

Figure 5.2: Global Full Observability Path Planner Performance

5.3.2 Case Study #1

As before, the first case study demonstrated the preference for traveling in

an observable zone due to the resulting higher state estimate confidence. In this
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Figure 5.3: Global Full Observability Naive Navigation Performance

study, the goal was located at (5,5) and a row of observable zones was positioned

to the side of the direct path to the goal, each with a radius of 0.5 m and located

at (2,0), (3,1), (4,2), and (5,3).

In the case of the naive controller heading directly for the the goal, the state

estimate steadily diverged unless the robot accidentally encountered an observable

zone and the state estimate converged. This circumstance is shown in in Figure 5.4.

By contrast, the path planner intentionally sought out observable zones on the
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Figure 5.4: Naive Controller State Estimate Navigating Past Observable Zones

way to the goal to maintain a low state estimate uncertainty. The sequence of best

paths selected during the path planning for this real trial is shown in Figure 5.5

with the resultant path and state estimate shown in Figure 5.6.

These results align nicely with the expected outcome and demonstrate that

the simulations accurately predicted better performance from the path planner

compared to the naive navigation. A comparison of the continuous state esti-

mate error for the path planner and naive navigation trials is shown in Figure 5.7
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Figure 5.5: Path Planner Selected Paths Projected Through Observable Zones

and Figure 5.8 respectively. The performance of the path planner maintains the

state estimate position error below 0.32 m while the naive navigation case shows

unbounded error growth, reaching 1.35 m by the end of the trial.

5.3.3 Case Study #2

Again, the second case study demonstrated the limitations of the path planner

when the environment was so sparsely populated with observable zones that the

robot could not navigate as desired. In this study, the goal was also located at

73



Figure 5.6: Path Planner State Estimate Navigating Through Observable Zones

(5,5) and two observable zones were positioned to the side of the direct path to

the goal, each with a radius of 0.5 m and located at (3,1) and (5,3).

In the case of the naive controller heading directly for the the goal, the state

estimate confidence again steadily increased throughout the trial. In this case,

the robot actually benefited from pruning particles incorrectly propagated into an

observable zone, and completed the trial reasonably close to the goal as shown in

Figure 5.9.
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Figure 5.7: Path Planner State Estimate Error from Ground Truth

In contrast, the path planner intentionally sought out the nearest observable

zone on the way to the goal in an attempt to maintain a low state estimate uncer-

tainty. In this case, the robot was able to find the observable zone and converge

its state estimate before it embarked for the next observable zone. The best se-

quence of paths determined by the path planner are shown in Figure 5.10 with the

resultant path and state estimate shown in Figure 5.11.

These results represent expected outcomes based on simulation. Although

the naive navigation performed surprisingly well, the final error was still larger

than the path planner error as shown in Figures 5.12 and 5.13 respectively. The

performance of the path planner maintained the state estimate position error below

0.22 m, achieving a final error of 0.046 m while the naive navigation error grew to

0.30 m by the end of the trial.
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Figure 5.8: Naive Navigator State Estimate Error from Ground Truth

5.3.4 Case Study #3

The third case study demonstrated the limitations of the path planner when

the nearest observable zone was beyond the time horizon of the path planner

exploration. In this study, the goal was also located at (5,5) and two observable

zones were positioned to either side of the direct path toward the goal, each with

a radius of 0.5 m and located at (3,5) and (5,3).

In the case of the naive controller heading directly for the the goal, the state

estimate steadily diverged as expected, but in this real trial, the robot accidentally

encountered one of the observable areas, causing a rapid reconvergence of the state

estimate and a low final position error as shown in Figure 5.14.

Initially, the path planner followed a similar trajectory due the lack of ob-

servable zones in the vicinity. However, after progressing toward the goal, the

76



Figure 5.9: Naive Controller State Estimate Navigating Past Observable Zones

observable zones were within range of the path planner time horizon so the robot

redirected to seek out the possible of higher certainty state estimates. The best

sequence of paths determined by the path planner are shown in Figure 5.15 with

the resultant path and state estimate shown in Figure 5.16.

Final error for the path planner is shown in Figure 5.17 while the error for the

naive navigation is shown in Figure 5.18 respectively. The performance of the path

planner reached a maximum state estimate position error of 0.56 m, achieving a
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Figure 5.10: Path Planner Selected Paths Projected Through Observable Zones

final error of 0.11m while the naive navigation error reached a maximum of 0.98m,

achieving a final error of 0.08 m by the end of the trial.
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Figure 5.11: Path Planner Robot Navigating Through Observable Zones
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Figure 5.12: Path Planner State Estimate Error from Ground Truth
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Figure 5.13: Naive Navigator State Estimate Error from Ground Truth
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Figure 5.14: Naive Controller State Estimate Navigating Between Observable
Zones
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Figure 5.15: Path Planner Selected Paths Projected Through Observable Zones
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Figure 5.16: Path Planner Robot Navigating Through Observable Zones
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Figure 5.17: Path Planner State Estimate Error from Ground Truth
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Figure 5.18: Naive Navigator State Estimate Error from Ground Truth
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CHAPTER 6

Conclusions

6.1 Results

This research demonstrated that applying model-predictive control to explore

and weight potential trajectories in a two dimensional navigation problem in a

sparsely observable environment yielded performance improvements over a naive

controller that did not consider observability properties. As desired, the path plan-

ner was able to find and select paths that traveled to the goal while also minimizing

state estimate uncertainty along the way. The state estimates of the path planner

robot were not observed to be worse than the naive navigator that directly sought

out the goal configuration without considering the benefit of utilizing observable

regions. However, this work demonstrated that the path planner took longer to

plan and complete the path to the goal due to the priority of state estimation

accuracy over rapid progress toward the goal.

6.2 Limitations

Depending on the environment, the path planner’s decision to route to the

robot to investigate an area with favorable observability or measurement charac-

teristics may give the system the best possible chance at reaching that favorable

region compared with a naive approach. However, there may be situations where

the nearest observability region is outside of the neighborhood explored by the

time horizon, or where the system cannot be reached reliably due to divergence of

state certainty. In these cases, the path planner may not perform any better than

a standard controller and in fact may perform worse due to the extra time spent

searching for an observable region.

Initially, random commands were used to generate paths, but too many paths
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were required to achieve a reasonable outcome so it was not feasible to run the

path planner in real time. Using breadth-first search was a necessary deviation

from the original intent of the particle filter application to minimize the number of

evaluated paths. The intermediate solution of adding random rotation commands

to the breadth-first search was attempted, but also required many times more paths

to achieve smooth paths for the robot to follow, again increasing computational

complexity beyond the capability for real time application on the hardware used

for this research.

6.3 Future Work

This research developed a method for controlling a system in a state space

with state dependent observability. This method of projecting and weighting path

performance could potentially be applied to situations where measurement qual-

ity is on a spectrum and some areas of the state space yield poor measurements

rather than the binary case of good or bad measurements evaluated in this work.

Additionally, other model-predictive control path weighting factors could be in-

vestigated to yield more robust optimization, including the direct use of particle

distributions to preserve nonlinear state estimation benefits instead of the Gaussian

representation used in this research.
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