University of Rhode Island DigitalCommons@URI

Open Access Master's Theses

2023

DYNAMIC BUCKLING BEHAVIOR OF 3D-PRINTED POLYMER STRUCTURES

Nathan Grantham-Coogan University of Rhode Island, n.coogan.nphs@gmail.com

Follow this and additional works at: https://digitalcommons.uri.edu/theses Terms of Use All rights reserved under copyright.

Recommended Citation

Grantham-Coogan, Nathan, "DYNAMIC BUCKLING BEHAVIOR OF 3D-PRINTED POLYMER STRUCTURES" (2023). *Open Access Master's Theses.* Paper 2307. https://digitalcommons.uri.edu/theses/2307

This Thesis is brought to you by the University of Rhode Island. It has been accepted for inclusion in Open Access Master's Theses by an authorized administrator of DigitalCommons@URI. For more information, please contact digitalcommons-group@uri.edu. For permission to reuse copyrighted content, contact the author directly.

DYNAMIC BUCKLING BEHAVIOR OF 3D-PRINTED POLYMER STRUCTURES

 $\mathbf{B}\mathbf{Y}$

NATHAN GRANTHAM-COOGAN

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

IN

MECHANICAL ENGINEERING AND APPLIED MECHANICS

UNIVERSITY OF RHODE ISLAND

2023

MASTER OF SCIENCE THESIS

OF

NATHAN GRANTHAM-COOGAN

APPROVED:

Thesis Committee:

Major Professor

Helio Matos

Co-Major Professor Arun Shukla

Carl Ernst-Rousseau

Sumanta Das

Brenton DeBoef

DEAN OF THE GRADUATE SCHOOL

UNIVERSITY OF RHODE ISLAND

2023

Abstract

This experimental study investigates the critical buckling behaviors and the underwater characteristics of 3D-printed polymers. High-speed photography and Digital Image Correlation (DIC) were utilized to capture full-field displacements during the collapse event. Additionally, piezoelectric transducers recorded local dynamic pressure histories of the tubes during failure. A numerical model is also used for predicting collapse and comparing results.

CUI has been removed.