
University of Rhode Island University of Rhode Island

DigitalCommons@URI DigitalCommons@URI

Open Access Master's Theses

1-1-2022

A Generic Guidance Navigation and Control Framework For A Generic Guidance Navigation and Control Framework For

Marine Vehicles Marine Vehicles

Emir Cem Gezer
University of Rhode Island, emircem.gezer@gmail.com

Follow this and additional works at: https://digitalcommons.uri.edu/theses

Recommended Citation Recommended Citation
Gezer, Emir Cem, "A Generic Guidance Navigation and Control Framework For Marine Vehicles" (2022).
Open Access Master's Theses. Paper 2278.
https://digitalcommons.uri.edu/theses/2278

This Thesis is brought to you by the University of Rhode Island. It has been accepted for inclusion in Open Access
Master's Theses by an authorized administrator of DigitalCommons@URI. For more information, please contact
digitalcommons-group@uri.edu. For permission to reuse copyrighted content, contact the author directly.

https://digitalcommons.uri.edu/
https://digitalcommons.uri.edu/theses
https://digitalcommons.uri.edu/theses?utm_source=digitalcommons.uri.edu%2Ftheses%2F2278&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.uri.edu/theses/2278?utm_source=digitalcommons.uri.edu%2Ftheses%2F2278&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons-group@uri.edu

A GENERIC GUIDANCE NAVIGATION AND CONTROL FRAMEWORK

FOR MARINE VEHICLES

BY

EMİR CEM GEZER

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

IN

OCEAN ENGINEERING

UNIVERSITY OF RHODE ISLAND

2022

MASTER OF SCIENCE THESIS

OF

EMİR CEM GEZER

APPROVED:

Thesis Committee:

Major Professor Mingxi Zhou

Christopher Roman

Paolo Stegagno

Nasser H. Zawia

DEAN OF THE GRADUATE SCHOOL

UNIVERSITY OF RHODE ISLAND

2022

ABSTRACT

Generic open-source software frameworks are significantly valuable for robotics

research and development. The emergence of low-cost Autonomous Underwater

Vehicles (AUVs) and Autonomous Surface Vehicles (ASVs) is speeding up because

of the increased availability of consumer-grade parts such as actuators, pressure

housings, and single-board computers. With the intention of providing off-the-shelf

AUV/ASV control, guidance, and operation solution to kick-start future marine

vehicle projects, this thesis presents a new open-source framework called Robot Op-

erating System Marine Vehicle Packages (ROS-MVP). MVP is tightly integrated

with the ROS infrastructure and the state-of-the-art ROS packages and can be

easily configured for different marine robots. The framework consists of two main

components: a low-level vehicle controller, and a mission controller with a plugin-

based behavior interface. MVP-Control works by running a control allocation

with a quadratic programming solver. MVP mission controller orchestrates the

behaviors using a finite state machine based process called MVP-Helm. MVP mis-

sion controller is packaged with common behaviors such as path following, depth

tracking, periodic surfacing, etc. This thesis presents the details of the ROS-MVP

framework design, integration, and field test results for an AUV in Narragansett

Bay, Rhode Island.

ACKNOWLEDGMENTS

First and foremost, I want to thank my advisor Mingxi Zhou for giving me

the opportunity and the energy for my academic growth and teaching me things

that I have never thought of. None of the research presented in this thesis would

be possible if my peers in the Smart Ocean System laboratory weren’t there. So

Lin Zhao, Raymond Turrisi, and William McConnell thank you guys so much. I

must add, I’m so grateful for the existence of the coffee machine in the lab.

For their help in the recovery operations for retrieving the lost equipment from

the muddy bottom of the pond, I want to thank Brian Caccioppoli, Kristopher

Krasnosky, David Casagrande, and the diving crew Anya Hanson, Alexa Runyan,

and Myles Wagner. And a moment of silence for Brian’s phone that fell to the

lake whilst capturing the recovery operation.

Lastly, I’d want to express my gratitude to the members of my thesis commit-

tee, Christopher Roman, Paolo Stegagno, and Chengzhi Yuan, for their guidance

and feedback on the thesis.

iii

DEDICATION

To my friends and family who have cared for me, had memories with me, and

carried me to this day.

iv

TABLE OF CONTENTS

ABSTRACT . ii

ACKNOWLEDGMENTS . iii

DEDICATION . iv

TABLE OF CONTENTS . v

LIST OF FIGURES . vii

LIST OF TABLES . ix

CHAPTER

1 Introduction . 1

1.1 Background . 1

1.2 ASVs and AUVs . 2

1.3 Related Work . 5

1.4 Summary of Contribution . 7

List of References . 8

2 Marine Vehicle Packages (MVP) 12

2.1 Overview of the framework . 12

2.2 Low-level controller - MVP-Control 14

2.2.1 Control Law . 15

2.2.2 Control Allocation . 15

2.2.3 Configuration . 17

2.3 Mission controller - MVP Helm 21

v

Page

vi

2.3.1 Finite State Machine . 23

2.3.2 Behaviors . 24

2.4 MVP Behaviors . 28

2.4.1 Path Following . 28

2.4.2 Waypoint Tracking . 33

2.4.3 Depth Tracking . 34

2.4.4 Periodic Surfacing . 35

2.4.5 Timer Behavior . 36

2.5 Robot Localization Integration 36

List of References . 40

3 Simulation Validation . 42

3.1 Stonefish Simulation Setup . 44

3.1.1 Integration . 44

3.1.2 Configuration . 45

3.2 Results . 45

List of References . 52

4 Field Test . 54

4.1 Overall System Architecture . 54

4.2 Experiment Setup . 56

4.3 Results . 57

5 Conclusion and Future Work . 65

List of References . 66

BIBLIOGRAPHY . 67

LIST OF FIGURES

Figure Page

1 Roboat in the Amsterdam Waterways 3

2 Saildrone surface vehicle . 4

3 Hugin 1000 AUV . 5

4 MVP System Diagram . 13

5 MVP-Control flow diagram . 14

6 Example TF Tree for MVP-Control 19

7 Transform Tree for ALPHA AUV visualized in RViZ. 19

8 HVP-Helm flow diagram . 22

9 Example Finite State Machine for MVP-Helm. 24

10 Line of Sight guidance algorithm variables 30

11 Periodic surfacing behavior internal stages. 35

12 Robot Localization data flow diagram. 38

13 Robot Localization common TF tree. 39

14 ALPHA AUV 3D Model . 43

15 Stonefish simulator and RViZ 44

16 Heading control results from simulation. 46

17 Heading control error. 46

18 Surge control results from simulation. 47

19 Surge control error in the simulation. 47

20 Vehicle trajectory during multi-DOF control tests in simulation. 48

vii

Figure Page

viii

21 MVP-Controller results in Stonefish simulator for controlling X,
Y, Z position and pitch simultaneously. 49

22 MVP-Controller results in Stonefish simulator for controlling Z
position, yaw, and pitch simultaneously. 50

23 Trajectory Tracking results in the simulation. 51

24 Cross track error of the trajectory tracking in simulation 52

25 ALPHA AUV Revision 2 in Narragansett Bay 54

26 ALPHA AUV Revision 1 - Diagram 55

27 ALPHA AUV Revision 2 - Diagram 55

28 ALPHA AUV devices diagram 56

29 Field trial results from Narragansett Bay on 2022-06-28 with
ALPHA Revision 1. 59

30 Cross track error for mission presented in Fig. 29 60

31 Field trial results from Narragansett Bay on 2022-09-15 with
ALPHA Revision 2. 61

32 Cross track error for mission presented in Fig. 31 62

33 Long mission result from Narragansett Bay on 2022-09-15 with
ALPHA Revision 2. 63

34 Cross track error for mission presented in Fig. 33 64

LIST OF TABLES

Table Page

1 MVP-Control ROS Node parameters. 18

2 MVP-Helm FSM Parameter Descriptions. 23

3 MVP-Helm Behavior Configuration. 28

4 Path Following behavior parameters 32

5 Depth Tracing Behavior parameters. 35

6 Periodic surfacing parameters. 36

7 Timer behavior parameters. 36

8 Common navigation sensors and their outputs. 37

9 Behavior parameters for presented results 57

ix

CHAPTER 1

Introduction

1.1 Background

The oceans cover about 70% of the earth’s surface and only a small frac-

tion of it had been mapped [1]. It is a great resource that provides energy, food,

jobs, and many more. Knowing it enables us to better maintain and manage the

ocean sources, leading to a sustainable Blue Economy with an estimated worth of

US$24 in 2015 [2]. We can learn more about the ocean through conducting explo-

ration, observation, monitoring, and sampling, and thanks to improved technology,

the tools for these tasks are improving and becoming more effective and efficient.

Marine robotic platforms, namely Autonomous Underwater Vehicles (AUV) and

Autonomous Surface Vehicles (ASV) have enabled us to reach further, dive deeper,

and see what was not possible to see before.

Marine robots are versatile oceanography instruments used for ocean sam-

pling, data collection, manipulation, inspection, and many other tasks. They

are categorized by the use cases and their designs. Remotely Operated Vehicles

(ROVs) are typically box-shaped underwater platforms that, as their name sug-

gests, are controlled remotely by a pilot from a surface ship. Communication and

power are transmitted with a tether cable. They are capable of focused surveys of

points of interest, such as underwater archaeological sites, shipwrecks, transatlantic

communication lines, etc. Autonomous Underwater Vehicles (AUVs), on the other

hand, operate based on pre-programmed scripts with limited human intervention.

Depending on the application, they can be in different shapes and configurations.

For example, Slocum glider [3] has wings on either side and is powered by a buoy-

ancy engine. This setup enables them to be deployed for an extended duration

from weeks to months depending on the battery types [4]. In work [5], the gliders

1

are recovered after 330 days of operation. In contrast, torpedo-shaped AUVs are

agile platforms that are suitable options for seabed surveys and coastal water sam-

pling. At the water surface, we have Autonomous Surface Vehicles (ASVs). They

are great tools for seabed surveys and air-water interface studies. Some research

has also been done to investigate the application of using ASVs for transportation

tasks [6].

The technology advancements in semiconductors, power systems, and actu-

ators enabled the development of more sophisticated robotic systems [7]. As a

result, robots could be outfitted with power-hungry sensors, manipulators, and ac-

tuators, resulting in longer operating times. Thus, small form factor design is more

feasible and achievable than before. It fundamentally has changed decision-making

and opened the door for developers to design solutions for autonomy.

Open-source robotic frameworks such as ROS[8], MOOS [9], and etc played

a key role in developing autonomous marine vehicles. They provided the basic

building blocks for creating a robotic platform. The users of these frameworks were

able to identify problems and offer solutions, and as a result, these frameworks grew

steadily more dependable and approachable for new users. But marine robotics

guidance, navigation, and, control (GNC) systems started to fall behind. Thus,

this thesis introduces a new framework that offers GNC functionality with simple-

to-maintain individual components.

1.2 ASVs and AUVs

In the context of marine robotics, Autonomous Surface Vehicles (ASVs), are

robotic platforms that operate on the sea surface. They can operate independently

or complementary to another vessel. For data collection in hazardous areas where

crewed boats and ships are not permitted to visit, researchers at the Woods Hole

Oceanographic Institution (WHOI) designed an autonomous kayak, The WHOI

2

Jetyak [10], which can be deployed from a small boat to carry side tasks when

the mother ship conducts other tasks. In 2020, a team of researchers at Mas-

sachusetts Institute of Technology (MIT) created the Roboat II (in Fig. 1), for

urban waterway uses such as trash collection and transportation of goods [6].

Figure 1: Roboat in the Amsterdam waterways (October 27, 2021.
REUTERS/Piroschka van de Wouw)

Some ASVs are built with extended operating ranges in mind. The Wave

Glider ASV uses a tethered underwater glider with a horizontal fin array to leverage

ocean waves for propelling the vehicle and solar panels to harvest energy which

results in a long endurance of several months. For instance, The Wave Glider ASV

[11] ran continuously in open waters for 169 days. The Saildrone [12] is another

long-endurance ASV that is mainly propelled using a rigid sail. (in Fig. 2). In

April 2015 [13], two saildrones were deployed from Dutch Harbor, Alaska and they

traveled a total of 15,525 km in 97 days.

3

Figure 2: Saildrone moving along the wave (Image from noaa.gov, Credits Sail-
drone INC.)

Autonomous Underwater Vehicles (AUVs) are underwater platforms that re-

quire limited human interventions. They vary in shape, size, and propulsion sys-

tem depending on the applications. They are often tasked for seabed mapping [14],

mine countermeasures [15], environmental surveys [16], continuous monitoring of

underwater structures or marine environments.

The very first AUV, SPURV (Self-Propelled Underwater Research Vehicle),

was built in 1957 [17]. It had a carrying capacity of 45 kg, a 3 m length, a 50 cm

diameter, and a 5.5 hour of endurance. SPURV was controlled by the mothership

through acoustic communication. Now, Hugin 1000 AUV [18] (in Fig. 3) can offer

endurance of 24 hours at a cruising speed of 5 knots with more sensors on board.

4

Figure 3: Hugin 1000 AUV on the ship deck before deployment (Courtesy of
Kongsberg Maritime)

Recently, the emergence of low-cost AUVs is speeding up because of the in-

creased availability of consumer-grade parts including actuators, pressure housings,

and single-board computers. Increased accessibility on hardware has enabled re-

search groups from all around the world to come up with new AUV designs for

various applications [19] [20] [21].

1.3 Related Work

The software is an essential part of a marine vehicle besides the hardware. Cur-

rently, there are several existing marine vehicle guidance, navigation, and control

software middlewares running on different kinds of marine robots. The MOOS-IvP

[22] is the most notable one. It comprises two main components: the MOOS [9]

for inter-process communication (IPC), and IvP Helm for guidance and autonomy.

The MOOS-IvP framework has sensor fusion capabilities for localization through

pNav, a navigation stack program. Users of MOOS-IvP can introduce custom

software while keeping the existing packages for their ecosystem by using the Mis-

sion Oriented Operating Suite (MOOS). The work in [23] is a good example of

using the MOOS-IvP, where the authors successfully customized the MOOS-IvP

5

framework and implemented a vessel tracking application with a Bluefin-21 AUV.

Moreover, in [24], an autonomy payload for Bluefin Sandshark AUV was developed

using the MOOS-IvP framework. However, MOOS-IvP does not have a generic

low-level vehicle controller. Furthermore, it is not readily compatible with ROS

due to its fundamental differences. Therefore, advancements in the ROS ecosystem

can not be reflected easily in the MOOS-IvP ecosystem, and the gap is widening

between them as robotics communities lean towards ROS [25]. Although there are

some efforts to bridge these two frameworks together, such as the MOOS-IvP ROS

bridge[26] and ROS-IvP [27], combining two different architectures remains to be

a challenging task.

COLA2 [28] is a notable ROS-based framework specialized in AUVs [8].

COLA2 has full-stack guidance, navigation, and control solutions and it currently

runs two AUVs, Sparus II [29] and Girona 500 [30]. Nonetheless, COLA2 is pro-

prietary software that is not available to adopt for different marine vehicles.

Some robotics simulation projects come with vehicle guidance, navigation,

and control packages besides the MOOS-IvP and COLA2. For instance, the UUV

Simulator [31] project contains a simple thruster control allocation implementation,

and its successor, Project DAVE [32], has more features, such as localization stack

and perception sensor simulators available. Finally, using the vehicle controller

inside the UUV Simulator imposes a high coupling problem that increases the

complexity of the maintenance process, and the transition from simulation and

the actual operation is not streamlined.

In addition to these marine vehicle frameworks, it is important to note some

of the important robotics libraries in the ROS ecosystem since they have a great

impact on robotics development. To begin with, the ROS Transform Library[33],

namely TF, is one of the most important libraries in the ROS ecosystem that

6

handles coordinate frame transformations in a scalable fashion. It has an RViZ1

plugin to visualize the transform tree and evidently makes it easy to diagnose any

problem in its setup. The most frequent cause of software mistakes is failing to keep

track of coordinate frame transformations. However, decoupling and distributing

the coordinate frames among the robot programs is simple with TF. Consequently,

the likelihood of software mistakes brought on by coordinate frame modifications is

decreased. Moreover, the Robot Localization [34] package provides a localization

solution for mobile robots. It combines multiple motion sensor data and fuses them

into a single odometry source. It uses TF to transform sensory information and

publishes the vehicle pose as a TF tree coordinate frame link. In conclusion, the

libraries mentioned above and numerous more helped to modify the limitations of

design and open up new avenues for creating robotics libraries.

1.4 Summary of Contribution

The main contribution of this thesis is the design of a new open-source ROS-

based marine vehicle guidance, navigation, and control framework, namely Marine

Vehicle Packages (MVP). MVP integrates state-of-the-art robotic software pack-

ages and commonly used control and guidance algorithms for marine vehicles into

the ROS ecosystem.

ROS-MVP consists of two major components. MVP-Control enables users to

easily integrate a low-level vehicle controller into their vehicles by creating config-

uration files other than changing the source code. On the higher level, MVP-Helm

orchestrates behaviors using a finite state machine. It doesn’t run a solver to decide

which behavior to execute, instead, it uses a priority pool to pick desired control

input by using user-defined priority levels.

ROS-MVP seeks to provide a modular, scalable, and highly customizable

1RViZ is a visualization tool from ROS ecosystem

7

framework for building GNC systems for new marine robotic platforms. MVP-

Control and MVP-Helm packages are two separate packages that don’t depend on

each other. Therefore, MVP Mission packages can be used with any other vehicle

controller software. The architecture also allows the introduction of new behaviors

through the MVP behavior interface.

List of References

[1] L. Mayer, M. Jakobsson, G. Allen, B. Dorschel, R. Falconer, V. Ferrini,
G. Lamarche, H. Snaith, and P. Weatherall, “The nippon foundation—gebco
seabed 2030 project: The quest to see the world’s oceans completely mapped
by 2030,” Geosciences, vol. 8, no. 2, p. 63, 2018.

[2] O. Hoegh-Guldberg, “Reviving the ocean economy: the case for action,” 2015.

[3] O. Schofield, J. Kohut, D. Aragon, L. Creed, J. Graver, C. Haldeman, J. Ker-
foot, H. Roarty, C. Jones, D. Webb, et al., “Slocum gliders: Robust and
ready,” Journal of Field Robotics, vol. 24, no. 6, pp. 473–485, 2007.

[4] D. L. Rudnick, R. E. Davis, C. C. Eriksen, D. M. Fratantoni, and M. J. Perry,
“Underwater gliders for ocean research,” Marine Technology Society Journal,
vol. 38, no. 2, pp. 73–84, 2004.

[5] C. Jones, B. Allsup, and C. DeCollibus, “Slocum glider: Expanding our un-
derstanding of the oceans,” in 2014 Oceans - St. John’s, 2014, pp. 1–10.

[6] W. Wang, T. Shan, P. Leoni, D. Fernández-Gutiérrez, D. Meyers, C. Ratti,
and D. Rus, “Roboat ii: A novel autonomous surface vessel for urban envi-
ronments,” in 2020 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), 2020, pp. 1740–1747.

[7] X. Wang, J. Shang, Z. Luo, L. Tang, X. Zhang, and J. Li, “Reviews of power
systems and environmental energy conversion for unmanned underwater ve-
hicles,” Renewable and Sustainable Energy Reviews, vol. 16, no. 4, pp. 1958–
1970, 2012.

[8] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler,
A. Y. Ng, et al., “Ros: an open-source robot operating system,” in ICRA
workshop on open source software, vol. 3, no. 3.2. Kobe, Japan, 2009, p. 5.

[9] P. M. Newman, “Moos-mission orientated operating suite,” 2008.

[10] P. Kimball, J. Bailey, S. Das, R. Geyer, T. Harrison, C. Kunz, K. Manganini,
K. Mankoff, K. Samuelson, T. Sayre-McCord, F. Straneo, P. Traykovski, and

8

H. Singh, “The whoi jetyak: An autonomous surface vehicle for oceanographic
research in shallow or dangerous waters,” in 2014 IEEE/OES Autonomous
Underwater Vehicles (AUV), 2014, pp. 1–7.

[11] T. Daniel, J. Manley, and N. Trenaman, “The wave glider: enabling a new
approach to persistent ocean observation and research,” Ocean Dynamics,
vol. 61, no. 10, pp. 1509–1520, 2011.

[12] C. W. Mordy, E. D. Cokelet, A. De Robertis, R. Jenkins, C. E. Kuhn,
N. Lawrence-Slavas, C. L. Berchok, J. L. Crance, J. T. Sterling, J. N. Cross,
et al., “Advances in ecosystem research: Saildrone surveys of oceanography,
fish, and marine mammals in the bering sea,” Oceanography, vol. 30, no. 2,
pp. 113–115, 2017.

[13] C. Meinig, N. Lawrence-Slavas, R. Jenkins, and H. M. Tabisola, “The use of
saildrones to examine spring conditions in the bering sea: Vehicle specification
and mission performance,” in OCEANS 2015 - MTS/IEEE Washington, 2015,
pp. 1–6.

[14] D. W. Caress, H. Thomas, W. J. Kirkwood, R. McEwen, R. Henthorn, D. A.
Clague, C. K. Paull, J. Paduan, K. L. Maier, J. Reynolds, et al., “High-
resolution multibeam, sidescan, and subbottom surveys using the mbari auv
d. allan b,” Marine habitat mapping technology for Alaska, pp. 47–69, 2008.

[15] L. Freitag, M. Grund, C. Von Alt, R. Stokey, and T. Austin, “A shallow
water acoustic network for mine countermeasures operations with autonomous
underwater vehicles,” Underwater Defense Technology (UDT), pp. 1–6, 2005.

[16] D. R. Yoerger, A. M. Bradley, B. B. Walden, H. Singh, and R. Bachmayer,
“Surveying a subsea lava flow using the autonomous benthic explorer (abe),”
International Journal of Systems Science, vol. 29, no. 10, pp. 1031–1044, 1998.

[17] H. Widditsch, “Spurv-the first decade,” WASHINGTON UNIV SEATTLE
APPLIED PHYSICS LAB, Tech. Rep., 1973.

[18] R. Marthiniussen, K. Vestgard, R. Klepaker, and N. Storkersen, “Hugin-auv
concept and operational experiences to date,” in Oceans ’04 MTS/IEEE
Techno-Ocean ’04 (IEEE Cat. No.04CH37600), vol. 2, 2004, pp. 846–850
Vol.2.

[19] C. Edge, S. S. Enan, M. Fulton, J. Hong, J. Mo, K. Barthelemy, H. Bashaw,
B. Kallevig, C. Knutson, K. Orpen, et al., “Design and experiments with
loco auv: A low cost open-source autonomous underwater vehicle,” in
2020 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE, 2020, pp. 1761–1768.

9

[20] D. A. Duecker, N. Bauschmann, T. Hansen, E. Kreuzer, and R. Seifried,
“Hippocampusx–a hydrobatic open-source micro auv for confined environ-
ments,” in 2020 IEEE/OES Autonomous Underwater Vehicles Symposium
(AUV). IEEE, 2020, pp. 1–6.

[21] A. Griffiths, A. Dikarev, P. R. Green, B. Lennox, X. Poteau, and S. Wat-
son, “Avexis—aqua vehicle explorer for in-situ sensing,” IEEE Robotics and
Automation Letters, vol. 1, no. 1, pp. 282–287, 2016.

[22] M. R. Benjamin, H. Schmidt, P. M. Newman, and J. J. Leonard, “Nested
autonomy for unmanned marine vehicles with moos-ivp,” Journal of Field
Robotics, vol. 27, no. 6, pp. 834–875, 2010.

[23] A. Wolek, J. McMahon, B. R. Dzikowicz, and B. H. Houston, “Tracking mul-
tiple surface vessels with an autonomous underwater vehicle: Field results,”
IEEE Journal of Oceanic Engineering, vol. 47, no. 1, pp. 32–45, 2022.

[24] O. A. Viquez, E. M. Fischell, N. R. Rypkema, and H. Schmidt, “Design of
a general autonomy payload for low-cost auv r&d,” in 2016 IEEE/OES Au-
tonomous Underwater Vehicles (AUV), 2016, pp. 151–155.

[25] L. Zhang, R. Merrifield, A. Deguet, and G.-Z. Yang, “Powering the world’s
robots—10 years of ros,” Science Robotics, vol. 2, no. 11, p. eaar1868, 2017.

[26] K. DeMarco, M. E. West, and T. R. Collins, “An implementation of ros on the
yellowfin autonomous underwater vehicle (auv),” in OCEANS 2011. IEEE,
2011, pp. 1–7.

[27] M. Snyder, J. N. Weaver, and M. J. Bays, “Ros-ivp: Porting the interval
programming suite into the robot operating system for maritime autonomy,”
in OCEANS 2016 MTS/IEEE Monterey, 2016, pp. 1–6.

[28] N. Palomeras, A. El-Fakdi, M. Carreras, and P. Ridao, “Cola2: A control
architecture for auvs,” IEEE Journal of Oceanic Engineering, vol. 37, no. 4,
pp. 695–716, 2012.

[29] M. Carreras, J. D. Hernández, E. Vidal, N. Palomeras, D. Ribas, and P. Ridao,
“Sparus ii auv—a hovering vehicle for seabed inspection,” IEEE Journal of
Oceanic Engineering, vol. 43, no. 2, pp. 344–355, 2018.

[30] D. Ribas, N. Palomeras, P. Ridao, M. Carreras, and A. Mallios, “Girona 500
auv: From survey to intervention,” IEEE/ASME Transactions on Mechatron-
ics, vol. 17, no. 1, pp. 46–53, 2012.

[31] M. M. M. Manhães, S. A. Scherer, M. Voss, L. R. Douat, and T. Rauschen-
bach, “Uuv simulator: A gazebo-based package for underwater intervention
and multi-robot simulation,” in OCEANS 2016 MTS/IEEE Monterey. IEEE,
2016, pp. 1–8.

10

[32] M. M. Zhang, W.-S. Choi, J. Herman, D. Davis, C. Vogt, M. McCarrin,
Y. Vijay, D. Dutia, W. Lew, S. Peters, and B. Bingham, “Dave aquatic vir-
tual environment: Toward a general underwater robotics simulator,” in 2022
IEEE/OES Autonomous Underwater Vehicle (AUV) Symposium, 2022, pp.
1–8.

[33] T. Foote, “tf: The transform library,” in Technologies for Practical Robot
Applications (TePRA), 2013 IEEE International Conference on, ser. Open-
Source Software workshop, April 2013, pp. 1–6.

[34] T. Moore and D. Stouch, “A generalized extended kalman filter implementa-
tion for the robot operating system,” in Proceedings of the 13th International
Conference on Intelligent Autonomous Systems (IAS-13). Springer, July
2014.

11

CHAPTER 2

Marine Vehicle Packages (MVP)

2.1 Overview of the framework

The MVP framework has two main components: MVP-Control and MVP-

Mission. The overview of the MVP framework is shown in Figure 4. At the low

level, The MVP-Control is responsible for computing a set of actuator commands to

track the desired vehicle pose (position, velocity, or orientation). It runs a control

allocation method [1] with quadratic programming solver under the hood. MVP

Mission is a collection of packages made up of behaviors and a state-oriented mis-

sion controller called MVP-Helm. The MVP-Helm process is in charge of providing

directions using behaviors (such as waypoint following, and depth tracking) that

compute the desired vehicle pose for the MVP-Control process. Since the MVP-

Helm and MVP-Control communicate over ROS topics, it is possible to replace

the MVP-Control with other custom solutions, e.g., a model-predictive controller

or fuzzy logic controller, with the same ROS topics and services setup. In that

case, the low-level controller that replaces the MVP-Control must use the same

ROS message types and implement the same interface.

MVP framework requires an external navigation solution that provides odome-

try (vehicle pose) and related ROS Transform Tree (TF) transforms. MVP-Control

reads the odometry from the navigation node, whereas MVP-Helm reads the ve-

hicle pose from the low-level vehicle controller. Currently, to provide a navigation

solution, MVP framework uses the ROS Robot Localization package [2] to obtain

the vehicle odometry. Again, benefiting from the ROS framework, the Robot Lo-

calization method could be replaced with other methods, e.g., the MaRS sensor

framework [3] and works presented in [4] and [5].

The following sections provide a detailed discussion of the MVP design.

12

SNAME 1950 notations [6] were used to describe the motion of a marine vehi-

cle. Lastly, the MVP packages are available in the following GitHub repositories1.

MVP

Helm

Behavior

custom behavior

Desired

Control

inputs

Behavior
eg: path tracking

Behavior

eg: depth tracking

Behavior
eg: periodic surface

State updates

Po
se

Priority based
control input pool

Controller Mode

Finite

State

Machine

C
ontrol Inputs

Po
se

MVP

Controller

Mode

eg: Flight

Mode

eg: Hold

Mode

eg: custom

N
av

ig
at

io
n

ROS Robot Localization

G
ui
da
nc
e

C
on

tr
ol

N
av
ig
at
io
n

R
O
S-M

VP
R
O
S

Figure 4: The system diagram of the Marine Vehicle Packages. Green blocks show
ROS-MVP components, while yellow block shows the publicly available Robot
Localization package from ROS repositories.

1MVP Packages are published under the URI Ocean Robotics GitHub page. https:

//github.com/uri-ocean-robotics

13

https://github.com/uri-ocean-robotics
https://github.com/uri-ocean-robotics

2.2 Low-level controller - MVP-Control

The MVP-Control is responsible for computing the control inputs for the ac-

tuators. MVP-Control generates actuator control commands in three steps, and

the flow diagram for MVP-Control is shown in Fig.5. First, it works by computing

the necessary force and torque that should act on the body frame to achieve the

desired pose using a Multiple Input Multiple Output Proportional Integral Deriva-

tive (MIMO-PID) controller for each degree of freedom (DOF). Next, it feeds the

target body frame force and torque to the control allocation matrix and ignores

the DOFs that are not controlled in the current controller mode (configured by the

user). Then, it applies the quadratic programming solver [7] to find the optimum

set of forces for the thrusters to match the requested force and torque. Finally,

the actual thruster command is solved based on the given thruster curves defined

as polynomial functions.

Control Allocation

Control Law

MIMO PID

Vehicle

AUV/ASV

Navigation

ROS

Robot

Localization

Control
Allocation

 Matrix

ROS
Transform

Tree
Quadratic

Programming
OSQP

Root Finding

GNU Scientific

Library

Control
Allocation

Figure 5: MVP-Control flow diagram. ROS-MVP components are shown in green
and the existing ROS packages used in MVP-Control are shown in yellow.

MVP-Control is configured via a YAML2 file where the user defines the PID

14

gains for each control mode, thrust curve coefficients for each thruster, relevant

transform tree (TF) link names, and the odometry topic source. To make the

PID tuning convenient, gains can be configured dynamically on the fly using the

ROS dynamic reconfigure mechanism. The propulsion systems’ thrust curves are

approximated using polynomials to represent the force with respect to a control

command, and the data are normally available from vendors or can be obtained

through thruster identification [8].

2.2.1 Control Law

The MVP-Control computes the resultant force and torque, τ , needed on the

vehicle for each DOF using a MIMO-PID. The controller uses the feedback from

the vehicle pose, η = [x, y, z, φ, θ, ψ] and v = [u, v, w, p, q, r]>.

2.2.2 Control Allocation

The control allocation matrix, T , maps the thrusts from individual actuators,

U , into the forces/torques in different DOFs either in the body frame or the earth

fixed frame τ , as indicated in Eq. 1. The elements in each column in T indicate the

contribution in force and torque from an actuator in different DOFs. For multiple

actuators, the contributions, tn are concatenated to form the control allocation

matrix, T = [t1, t2..., tn]. In the MVP framework, the control allocation matrix

can be set up manually by typing each element in the control allocation matrix or

using URDF files where the program will look up the transform tree.

τ = TU (1)

To find the optimal values in vector U such that the product force and torque

on the vehicle, τ , we minimize the difference between the resulting values, τ , and

2YAML file specifications can be found on https://yaml.org

15

https://yaml.org

the required values, τ ∗, from the MIMO-PID control law. Therefore, we defined

the objective function (the sum of the squares of the difference), which can be

expanded and simplified as shown in Eq. 2.

J =(TU − τ ∗)>(TU − τ ∗)

=U>T>TU −U>T>τ ∗ − τ ∗>TU + τ ∗>τ ∗

=U>T>TU − 2τ ∗>TU + τ ∗>τ ∗

(2)

The expanded objective function shares a similar format as the standard

quadratic programming (QP) problem shown in Eq. 3. In the MVP-Control we ap-

plied the OSQP solver [7] to solve the QP problem defined in Eq. 4. Therefore, we

obtain the thrusts for individual actuators subject to a set of defined constraints.

min
x

J = (
1

2
x>Qx+ c>x)

subject to Ax ≤ b
(3)

min U>︸︷︷︸
x>

T>T︸ ︷︷ ︸
1
2
Q

U︸︷︷︸
x

+ (−2τ ∗>T)︸ ︷︷ ︸
c>

U︸︷︷︸
x

subject to AU ≤ b

(4)

Next, we need to obtain the control command given the thrust needed for each

actuator. In MVP-Control, thrust curves are defined using polynomials where the

coefficients can be estimated by applying the linear regression to the manufacturer

provided thrust data at different control commands or characterized through tank

tests. With the identified polynomial function, we apply the GNU Scientific Li-

brary [9] to compute the control commands, C = [c1, c2, ..., cn]>, for the required

thrusts.

In the MVP-Control, the user can define different control modes to control

different DOFs of the vehicle. For example, flight mode can be configured to

16

control surge, yaw, and pitch, whereas, the hold mode controls X, Y , and Z

position. For better performance, the user could define different PID gains for the

same DOF in different modes. For instance, the PID gains for heading can be

different in flight and hold station modes as the region of operation for the vehicle

will be different.

2.2.3 Configuration

Information related to vehicle actuators, odometry topics, control modes, and

PID gains is stored in the MVP-Control configuration file. The configuration

parameters are listed in Table 1 with data type and description shown. PID

parameters can be dynamically configured using the ROS Dynamic Reconfigure

package.

Parameter Type Description

generator type string Specifies the method for

control allocation matrix

generation.
controller frequency number Controller frequency in

Hertz
control allocation matrix complex Specifies the control allo-

cation matrix. This pa-

rameter is only valid when

generator type is set to

user.
cg link string TF link describes the center

of gravity
tf prefix string the TF prefix of the robot
world link string the link name for world

frame
odometry source string Odometry topic

17

enabled boolean Initial state of the low-level

controller
control mode complex Control mode definitions

and PID controller gains
thruster ids list<string> Arbitrary names of the ac-

tuators
control tf complex TF link names of control-

lable actuators
thruster command topics complex Topic to publish actua-

tor control inputs. The

ROS message type is

std msgs/Float64

thruster force topics complex Topic to publish forces that

are requested per actuator.

The ROS message type is

std msgs/Float64

thruster polynomials complex Polynomial describing the

force curve of the actuator
thruster limits complex Minimum and maximum

forces can be requested per

thruster.

Table 1: MVP-Control ROS Node parameters.

MVP-Control heavily relies on the ROS Transform Tree. The TF configura-

tion must include an earth-fixed frame, a center-of-gravity frame, and frames for

actuators. Fixed thrusters are the only supporter actuators in the current version

of the MVP-Control, and for those, the X axis of the thruster frame should point

in the positive force direction.

An example transforms tree with required links by MVP-Control is shown in

18

Fig. 6. The odom and world ned frames are used as earth-fixed frames. The vehi-

cle’s body is represented with base link frame. The transform between odom and

base link frame is provided by the navigation solution, e.g. the Robot Localiza-

tion package. Lastly, thruster transforms port jet link, starboard jet link,

and center of gravity transform cg link are provided through URDF. Figure 7

shows a real-world example of a transform tree for ALPHA AUV [10].

odom

base_link

world_ned

starboard_jet_linkport_jet_linkcg_link

Figure 6: Example transform tree with required frames by MVP-Control.

Thruster
Links

Center of
Gravity

Link

Base

Link

Odometry

Link

World

NED

Link

Figure 7: Transform Tree for ALPHA AUV visualized in RViZ.

During the operation, changes in the TF are permitted such as translation

and rotation, and these changes in the TF tree also update the control allocation

19

matrix. This is particularly useful when MVP-Control is used for controlling shape-

reconfigurable vehicles or vehicles with movable or rotatable actuators.

Control modes are configured by control mode parameter. Users can define

control modes as many as needed. Each control mode contains target DOFs and

PID gains for them. In Code 1, MVP-Control is configured with two control modes.

The flight mode controls pitch, yaw, and surge, whereas the idle mode does not

control any DOF. Having control modes without any target DOFs can be used as

a safety feature. For instance, an MVP-Helm state can be configured with idle

control mode to stop the actuators.

1 control_modes:

2 flight:

3 pitch: {p: 10.0, i: 3.0, d: 15.0, i_max: 20, i_min: -20}

4 yaw: {p: 7.0, i: 0.5, d: 7.0, i_max: 20, i_min: -20}

5 surge: {p: 10.0, i: 5.0, d: 5.0, i_max: 30, i_min: -30}

6 idle: false

Code 1: Example control mode configuration.

MVP-Control requires several parameters about thrusters to be able to control

the vehicle. These parameters inform the MVP-Control about the location of the

thruster relative to the body frame, the ROS topics that the thrusters accept con-

trol inputs, the thrust-vs-command polynomial coefficients, and force constraints.

A thruster is declared with thruster ids parameter, and all the parameters re-

lated to the thruster are configured with its arbitrary ID as shown in Code 2.

20

1 thruster_ids:

2 - surge

3 control_tf:

4 surge: surge_thruster_link

5 thruster_command_topics:

6 surge: control/thruster/surge

7 thruster_polynomials:

8 surge: [-0.03703, 4.217, 2.84, 4.976, -0.4119, -0.8448]

9 thruster_limits:

10 surge:

11 max: 40

12 min: -30

Code 2: Configuration example for a single actuator.

MVP-Control computes the necessary forces for each actuator and publishes

them in ROS topics. These forces can be used directly by an external motor con-

troller, or MVP-Control can solve a polynomial to generate the necessary control

signal. The controller, if given polynomial coefficients of the thruster curve, will

solve for the control signal given force using polynomial solver [9]. The thrust

curve is configured as a polynomial, and the coefficients for the polynomial are

configured as a list. The lower index in the list corresponds to the lower degree

coefficient, as shown in Eq. 5.

f(x) = anx
n + an−1x

n−1 + ...+ a1x+ a0

thruster polynomials/<thruster id> = [a0, a1, ..., an−1, an]

(5)

2.3 Mission controller - MVP Helm

The MVP Mission stack is a software suite that consists of a ROS node called

MVP-Helm and behavior plugins. The MVP-Helm executes the behaviors based

on a finite state machine (FSM). Each behavior is responsible for generating control

inputs for the related DOFs and triggering FSM state changes. MVP Mission stack

21

provides an abstract C++ class via the Pluginlib package in ROS middleware for

behavior development, so the users can introduce new behaviors by using that

library.

Behaviros

Depth Tracking Periodic
Surfacing

Path Tracking

Priority based DOF selection

Action pool

Hold Position

Finite State Machine

MVP Controller

active state = survey

name = survey
controller mode = flight

name = start
controller mode = hold

state = survey state = survey state = survey state = start

priority = 1 priority = 1 priority = 2 priority = 1

Figure 8: MVP Helm flow diagram. Priorities for desired vehicle pose requested
from behaviors are shown in the letter p. Blue boxes indicate active state and
executed behaviors.

Figure 8 shows an example of how the MVP-Helm node handles the control

inputs from active behaviors. The MVP-Helm is configured to have two states;

survey and start. The survey state controls the vehicle in flight mode (Mflight =

[u, ψ, θ]) while the start uses the controller in hold position mode (Mhold = [x, y, z]).

As indicated by the green background in the FSM box, the vehicle is currently

22

in the survey state where path following, depth tracking, and periodic surfacing

behaviors are active. Both depth tracking and periodic surfacing behaviors control

the pitch, θ. The conflicts are avoided based on the priorities defined for the

behaviors in different states. For example, when the periodic surfacing behavior

(with priority rank p = 2) is activated using a timer, the MVP-Helm will send

the desired pitch angle from the periodic surfacing behavior rather than the depth

tracking behavior to the MVP-Control.

2.3.1 Finite State Machine

The MVP-Helm orchestrates the behaviors using an FSM. The user defines the

FSM states in the MVP-Helm configuration file. Each state contains information

about vehicle controller mode and transitions to other states. State transitions are

strict and if an illegal transition is requested, the MVP-Helm will fail to change its

state and stay and remain in its current state. A state comprises a name, controller

mode, and state transitions, as listed in Table 2.

Table 2: MVP-Helm FSM Parameter Descriptions.

Parameter Type Description

name string Name of the state.
mode string Controller mode for the state.

transition list<string> State transitions.
initial boolean Describes whether or not the state is

the initial state.

A simple FSM with three states is given in Fig. 9. The controller mode for

the given state is described with the mode keyword. In the example, the initial

state of the FSM is the Start state, indicated by two circles. The configuration for

the FSM shown in Fig. 9 is shown in Code 3.

23

Start
mode: hold

Survey
mode: flight

Abort
mode: idle

Figure 9: Example Finite State Machine for MVP-Helm.

1 finite_state_machine:

2 - name: start

3 mode: hold

4 initial: true

5 transitions:

6 - abort

7 - survey

8

9 - name: survey

10 mode: flight

11 transitions:

12 - start

13 - abort

14

15 - name: abort

16 mode: idle

17 transitions:

18 - start

Code 3: FMS configuration with three states, start, survey, and abort.

2.3.2 Behaviors

In the MVP framework, behaviors are designed to contain instructions for

guidance algorithms, triggers for safety mechanisms, and executive agents for

decision-making. Behaviors are designed as plugins for MVP-Helm, and they are

dynamically loaded and executed in the run time. MVP-Helm informs the be-

haviors about the vehicle pose and low-level controller configuration and requests

24

control inputs for their associated DOFs. After the execution, MVP-Helm collects

desired control inputs for DOFs from behaviors into a priority pool and picks the

DOFs with the highest priorities.

Programming Interface

Behaviors are written as plugins using PluginLib3 library in C++, therefore all

behaviors must be derived from the BehaviorBase class in the behavior interface

package. The listing 4 shows the header file for a SimpleBehavior class that

implements only the necessary methods from BehaviorBase class, and these are

initialize() and request set point() methods. First, in the initialize()

method, a behavior is expected to declare its target DOFs, initialize ROS services

and topics, and read its parameters through the ROS parameter server. Second,

the request set point method, is expected to produce a set point to be handed

over to the low-level vehicle controller.

3The PluginLib library ROS Wiki web page: http://wiki.ros.org/pluginlib, Accessed
2022.

25

http://wiki.ros.org/pluginlib

1 #pragma once

2

3 #include "behavior_interface/behavior_base.h"

4

5 class SimpleBehavior : public helm::BehaviorBase {

6 private:

7

8 void initialize() override;

9

10 public:

11

12 SimpleBehavior();

13

14 bool request_set_point(

15 mvp_msgs::ControlProcess *msg) override;

16 };

Code 4: The header file for a simple behavior.

In addition to the required methods, BehaviorBase C++ class provides two

helper virtual methods that can be implemented on demand. These are activated

and disabled methods. Through these methods, behaviors can detect when they

are activated and disabled by the MVP-Help by implementing these functions.

For instance, a path following behavior may need to append an additional track

segment to the current transects after initialization or interruption. To achieve

that, the behavior must know when it is activated or disabled.

The MVP-Helm reads BehaviorBase::m dofs member variable to acknowl-

edge the target DOFs of the behavior. Behaviors can trigger a state change if they

are active. The behavior only needs to call BehaviorBase::f state change func-

tion in the request set point method implementation to trigger a state change.

Depending on the use case, a behavior may want to control the vehicle with pre-

defined intervals even if it is activated in the current FSM state of the MVP-Helm.

26

As a solution, a behavior can ask the MVP-Helm to discard its setpoint results by

returning false in the request set point method.

The Code 5 shows implementation to the SimpleBehavior shown in the

header file 4. Firstly, between lines 8 to 12 the initialize method is defined. The

method sets the value for BehaviorBase::m dofs to inform MVP-Helm about its

target DOFs. In this instance, the behavior only controls the surge of the vehicle.

Secondly, between lines 12 and 18, the request set point method is defined, in

which the behavior sets desired velocity on the x axis, surge velocity, to 0. Fi-

nally, by returning true, the behavior instructs MVP-Helm to use the action it

produced.

1 #include "simple_behavior.h"

2 #include "pluginlib/class_list_macros.h"

3

4 using namespace helm;

5

6 SimpleBehavior::SimpleBehavior() = default;

7

8 void SimpleBehavior::initialize() {

9 BehaviorBase::m_dofs = decltype(m_dofs){

10 mvp_msgs::ControlMode::DOF_SURGE

11 };

12 }

13

14 bool SimpleBehavior::request_set_point(

15 mvp_msgs::ControlProcess *set_point) {

16 set_point->velocity.x = 0;

17 return true;

18 }

19

20 PLUGINLIB_EXPORT_CLASS(helm::SimpleBehavior, helm::BehaviorBase)

Code 5: The implementation file for a simple behavior.

27

Configuration

Behavior configuration parameters and MVP-Helm configuration parameters

are separated with ROS namespaces. Each behavior read its own parameters from

the ROS parameter server with the namespace described in MVP-Helm configura-

tion with name tag. If the behavior name is bhv00, the private namespace for the

behavior would be helm/bhv00. The MVP-Helm and its behaviors can be config-

ured in a single file or separate files Behavior plugin configuration for MVP-Helm

is shown in Table 3, and the template configuration is given in Code 6.

Table 3: MVP-Helm Behavior Configuration.

Parameter Type Description

name string Name of the behavior.
plugin string Class name of the behavior.
states list<complex> States and priorities of the behavior.

1 behaviors:

2 - name: {{ behavior_name }}

3 plugin: {{ package name }}::{{ library name }}

4 states:

5 - { name: {{ state name }}, priority: {{ priority }} }

Code 6: Configuration template for MVP Helm with placeholders.

2.4 MVP Behaviors

Currently, MVP has several behaviors implemented and are discussed in the

following sections.

2.4.1 Path Following

Path following behavior is used for tracking line segments between a list of

waypoints. The behavior generates surge and yaw control inputs and could be used

for conducting seabed surveys where the vehicle will be programmed to follow a

28

lawnmower pattern.

The path following behavior in MVP uses the Line of Sight (LOS) method

[11]. In mobile robotics, trajectory tracking is a common control problem, and

the solutions differ as the robotic applications branches out. The LOS algorithm

is widely used for marine vehicles since it can compensate for side-slip and it is

well-tested with marine vehicles [12].

Line of Sight Guidance

LOS algorithm works by setting the desired heading of the vessel towards a

point, (xlos, ylos), placed on the path until the vessel approaches the end of the line

segment as close as acceptance radius. The lookahead distance, ∆h, dictates the

placement of LOS point. The desired heading is computed with the Eq. 6 with

the variables depicted in Fig. 10.

Ψd = γp + atan(
−ye
∆h

) (6)

where;

Ψd = Desired heading
γp = Slope of the track
ye = Cross track error
∆h = Look ahead distance

29

Figure 10: Line of Sight guidance algorithm variables. (Credits Lekkas, Anastasios
M and Fossen, Thor I [11]).

The heading of the vessel, Ψd, and the course angle, Xd, may not be the same

due to external disturbances or movement caused by inertia during turns. In other

words, the vehicle may be side slipping. The relation between the heading angle

and course angle can be described in the following Eq. 7.

Xd = Ψd + β (7)

We can get the desired heading by taking side slip, β, into consideration as

shown in Eq. 8.

Ψd = γp + atan(
−ye
∆h

) − β (8)

It may be desirable to adjust the effect of the β over the heading calculation.

Therefore, kβ is introduced to fine-tune the effects of the side slip correction.

30

Ψd = γp + atan(
−ye
∆h

) − βkβ (9)

In some circumstances, the vehicle may fail to reach the end of the line segment

within the acceptance radius. Therefore, overshoot detection is implemented by

comparing along-track errors relative to the next waypoint. Calculations for along-

track and cross-track errors are given in Eq. 10.

xe = (x− xk)cos(γp) + (y − yk)sin(γp)

ye = −(x− xk)sin(γp) + (y − yk)cos(γp)

(10)

In addition to that, along track distance to the (k + 1) waypoint is defined in

Equation 11.

xke = (x− xk+1)cos(γp) + (y − yk+1)sin(γp) (11)

We can determine the overshoot situation based on the sign of the along track

error xe and the along track distance to the target waypoint xke . While the vehicle

is transiting in the path segment between pk and pk+1, the along track error is

xe > 0 and xke < 0. During the overshoot situation, the value of the xke becomes

positive. Once an overshoot is detected, the desired heading, Ψd, can be set to

Ψd + π such that the vehicle can be commanded to turn around to approach the

targeted waypoint.

Implementation

Path following behavior configuration parameters is given in Table 4. This

behavior is capable of continuing its task after interruption by continuing to the

next line segment. Upon completing the task, it can request a state change request

to MVP-Helm.

31

Benefiting from the ROS transform tree, users could define waypoints in dif-

ferent frames. This allows users to define waypoints in any frame. For exam-

ple, if the vehicle has a global localization system that publishes an earth-fixed

frame to the transform tree, the user can use that frame to program a path fol-

lowing the mission with earth-fixed coordinates. This is particularly useful when

navsat transform node from ROS Robot Localization [2] package is being used

for publishing earth fixed UTM frame.

Path following behavior listens for waypoint updates from the topics described

with update topic and append topic. To receive waypoint updates, the path

following behavior doesn’t need to be activated.

A fail-safe method for overshoot situations is built using a timer. If the timer

reaches an end, behavior requests a state change defined with state fail param-

eter from MVP-Helm. Overshoot state is deactivated if the vehicle successfully

enters the acceptance area or goes back to the track, in other words, if xke < 0.

Table 4: Path Following behavior parameters

Parameter Type Description

update topic string Topic name that behavior listens
for waypoint updates.

append topic string Topic name that behavior listens
for additional waypoints.

frame id string Frame id of the waypoints de-
scribed with waypoints parame-
ter.

acceptance radius number Acceptance radius in meters.
lookahead distance number Lookahead distance, ∆h, in me-

ters.
overshoot timeout number Overshoot timeout in seconds.
surge velocity number Surge velocity output in m/s.

beta gain number Beta gain.
state done string State transition after successful

run.
state fail string State transition after failed run.
waypoints list<comples> List of initial waypoints.

32

Example configuration for path following behavior is given in Code

7. In the example configuration, the path following behavior follows the

[(0, 0), (0, 10), (10, 10), (10, 0)] coordinates in the odom frame. The desired surge

velocity for this behavior is 0.70 m/s and the acceptance radius for completing a

transect after reaching the end of the line is 3.0 meters. Side slip gain, kβ, is set

to 1.0.

1 waypoints:

2 - {x: 0, y: 0}

3 - {x: 0, y: 10}

4 - {x: 10, y: 10}

5 - {x: 10, y: 0}

6 acceptance_radius: 3.0 # In meters

7 frame_id: odom

8 surge_velocity: 0.70 # In m/s

9 lookahead_distance: 3.0 # In meters

10 beta_gain: 1.0 # Arbitrary gain

Code 7: Example configuration of Path Following Behavior.

2.4.2 Waypoint Tracking

This behavior is used for moving the vehicle from one waypoint to another

without the requirement of staying on a straight line between two waypoints. It

generates surge and yaw control inputs for the low-level vehicle controller.

The parameters for this behavior are similar to those of path following behav-

ior except few differences. Since this behavior doesn’t try to maintain a course,

lookahead distance, ∆h, beta gain, kβ, and overshoot timeout parameters are not

necessary.

33

2.4.3 Depth Tracking

This behavior helps the underwater vehicle to maintain a certain depth. The

parameters for the depth tracking behavior are given in Table 5. Depth tracking

behavior controls the vehicle depth by generating control inputs for depth and pitch

angle, z and θ respectively. On one hand, the behavior generates depth control

input, z, directly from the desired depth, z∗, parameter. On the other hand, it

computes the desired pitch angle, θ∗, by comparing desired and the current depth.

This behavior can control the depth for single propeller-driven torpedo-shaped

AUVs, and hover-capable AUVs and ROVs.

Equation 12 shows how the control inputs Uz and Uθ are computed. Desired

depth is denoted with z∗ and forward-looking distance in the vertical plane is

denoted with ∆v.

Uz = z∗

Uθ = atan(
z − z∗

∆v

)
(12)

If the parameter use heave velocity is set to true, depth tracking behavior

will take heave velocity into account while trying to achieve a certain depth as

shown in Equation 13.

Uz = z∗

Uθ = atan(
z − z∗

∆v

) + atan(
w

u
)

(13)

34

Table 5: Depth Tracing Behavior parameters.

Parameter Type Description

desided depth number Desired depth in meters, z∗.
forward distance number Forward-looking distance on ver-

tical plane ∆v.
max pitch number Absolute pitch angle limit in ra-

dians.
use heave velocity boolean Incorporate heave velocity when

computing required pitch

2.4.4 Periodic Surfacing

This behavior allows underwater vehicles to periodically surface at a user

defined interval. Parameters for periodic surfacing behavior are given in Table 6. It

uses a similar method as depth tracking behavior. The periodic surfacing behavior

generates depth and pitch control inputs for the low-level vehicle controller.

Waiting DisabledEnabled

Wait on the surface
Surface Duration

Wait under the water
Surface Periood

Climb to surface

Figure 11: Periodic surfacing behavior internal stages.

The behavior will guide the vehicle to climb up to the surface. The behavior

starts in the Enabled state and starts climbing to the surface. The Waiting stage

will be active when the vehicle is at the surface. The behavior will remain in this

stage until the time at the surface has exceeded a certain duration defined by the

surface duration parameter. Then the behavior enters the disabled stage and waits

until the duration defined by surface period is completed.

35

Table 6: Periodic surfacing parameters.

Parameter Type Description

forward distance number Forward-looking distance on ver-
tical plane ∆v.

max pitch number Absolute pitch angle limit in ra-
dians.

surface period number Incorporate heave velocity when
computing required pitch

surface duration number Incorporate heave velocity when
computing required pitch

2.4.5 Timer Behavior

The timer behavior enables users to implement timer-activated MVP-Helm

state changes. Parameters for timer behavior are shown in Table 7. When this

behavior is activated in a state, it starts the timer and waits for user defined

duration. After the elapsed time has exceeded the defined duration, the timer

behavior will request a state change to the FSM.

Table 7: Timer behavior parameters.

Parameter Type Description

duration number Duration in seconds.
transition to string State transition request.

2.5 Robot Localization Integration

ROS Robot Localization [2] is a generic sensor fusion program developed by

Charles River Analytics Inc. It contains implementations for the Extended Kalman

Filter and Unscented Kalman Filter, and it reads and writes directly to the ROS

transform tree.

36

Sensor Output data

DVL u, v, w

Pressure Sensor z

GPS latitude and longitude

AHRS ψ, θ, φ, ψ̇, θ̇, φ̇, u̇, v̇, ẇ

Table 8: Common navigation sensors and their outputs.

Most marine vehicles are equipped with navigation sensors such as Doppler

Velocity Logger (DVL), Attitude and heading reference system (AHRS), Global

Positioning System (GPS), and so on. DVL is used for measuring the velocity,

AHRS is used for measuring the vehicle attitude, and GPS is used for acquiring

the global position of the vehicle. For underwater vehicles, the pressure sensor is

used for measuring the depth of the vehicle. Table 8 shows the common navigation

sensors and their data outputs.

37

Global Odometry

DVL Pressure
Sensor AHRS

Local Odometry

ROS Robot Localization

ekf_localization_node

ROS Robot Localization

ekf_localization_node

GPS

ROS Robot Localization

navsat_transform_node

Figure 12: Robot Localization data flow diagram. Existing ROS packages are
shown in yellow. Data sources (essentially, sensor ROS drivers) for navigation are
shown in blue. The resulting odometry information is shown in grey. They can be
used for tracking waypoints in different coordinates.

In a normal operation, the data flow of the robot localization node is similar

to the graph shown in Fig. 12. The robot localization node, shown in red, fuses

the sensor readings from DVL, pressure sensor, and AHRS to produce odometry.

This robot localization node produces odometry information relative to the wake-

up position. The odometry message contains pose and velocity information of the

base link frame (attached to the vehicle) relative to the odometry frame (attached

to its wake-up position). It publishes the transform between the odometry frame

and the base link frame. The navsat transform node publishes the transform

between an earth-fixed frame and the odometry frame and publishes an odometry

message that only contains x, y, z position. The second robot localization node,

shown in yellow, fuses the continuous odometry data from the previous robot

localization node with GPS odometry data from navsat transform node. The

38

transform tree setup is often similar to that shown in Fig. 13. More information

about GPS integration can be found on the robot localization documentation page.

odom

base_link

world_ned

map

Global
Robot

Localization

Local

Robot

Localization

Static
transform
publisher

Figure 13: Robot Localization common TF tree.

Robot localization works explicitly in East North Up (ENU) coordinate sys-

tem. However, it is desirable to work in North East Down (NED) coordinate

system when working with marine vehicles. To achieve that a new frame called

world ned s published to the TF tree, as shown in Code 8.

1 <launch>

2 <node

3 name="world2ned"

4 pkg="tf2_ros"

5 type="static_transform_publisher"

6 args="0.0 0.0 0.0

7 1.570796327 0.0 3.141592653589793

8 world world_ned"

9 />

10 </launch>

Code 8: ENU to NED conversion.

39

List of References

[1] T. I. Fossen and T. A. Johansen, “A survey of control allocation methods for
ships and underwater vehicles,” in 2006 14th Mediterranean Conference on
Control and Automation, 2006, pp. 1–6.

[2] T. Moore and D. Stouch, “A generalized extended kalman filter implementa-
tion for the robot operating system,” in Proceedings of the 13th International
Conference on Intelligent Autonomous Systems (IAS-13). Springer, July
2014.

[3] A. I. Mourikis and S. I. Roumeliotis, “A multi-state constraint kalman filter
for vision-aided inertial navigation,” in Proceedings 2007 IEEE International
Conference on Robotics and Automation, 2007, pp. 3565–3572.

[4] C. Brommer, R. Jung, J. Steinbrener, and S. Weiss, “MaRS : A Modular and
Robust Sensor-Fusion Framework,” 2020.

[5] L. Zhao, M. Zhou, and B. Loose, “Towards under-ice sensing using a portable
rov,” in OCEANS 2022: Hampton Roads. IEEE, 2022.

[6] T. I. Fossen, “Guidance and control of ocean vehicles,” University of Trond-
heim, Norway, Printed by John Wiley & Sons, Chichester, England, ISBN: 0
471 94113 1, Doctors Thesis, 1999.

[7] B. Stellato, G. Banjac, P. Goulart, A. Bemporad, and S. Boyd, “OSQP: an
operator splitting solver for quadratic programs,” Mathematical Programming
Computation, vol. 12, no. 4, pp. 637–672, 2020. [Online]. Available:
https://doi.org/10.1007/s12532-020-00179-2

[8] R. Bachmayer, L. Whitcomb, and M. Grosenbaugh, “An accurate four-
quadrant nonlinear dynamical model for marine thrusters: theory and ex-
perimental validation,” IEEE Journal of Oceanic Engineering, vol. 25, no. 1,
pp. 146–159, 2000.

[9] M. Galassi, J. Davies, J. Theiler, B. Gough, G. Jungman, P. Alken, M. Booth,
F. Rossi, and R. Ulerich, GNU scientific library. Network Theory Limited,
2002.

[10] M. Zhou, E. C. Gezer, W. McConnell, and C. Yuan, “Acrobatic low-cost
portable hybrid auv (alpha): System design and preliminary results,” in
OCEANS 2022: Hampton Roads. IEEE, 2022.

[11] A. M. Lekkas and T. I. Fossen, “Line-of-sight guidance for path following of
marine vehicles,” Advanced in marine robotics, pp. 63–92, 2013.

40

https://doi.org/10.1007/s12532-020-00179-2

[12] N. Gu, D. Wang, Z. Peng, J. Wang, and Q.-L. Han, “Advances in line-of-sight
guidance for path following of autonomous marine vehicles: An overview,”
IEEE Transactions on Systems, Man, and Cybernetics: Systems, pp. 1–17,
2022.

41

CHAPTER 3

Simulation Validation

Simulation environments are helpful as it reduces field trial times and costs.

Depending on the requirement, the simulation environments can be simple as dy-

namic models [1] or very sophisticated 3-dimensional environments made with

physics engines. Dynamic model simulations can be derived from nonlinear mo-

tion equations of marine vehicles [2], then customized for the target platform with

matching dynamic coefficients. Physics engine-based simulations, on the other

hand, aim to simulate an entire virtual world including the target robotic platform

without needing nonlinear motion equations of the platform. Consequently, find-

ing the dynamic coefficients of the target platform is not necessary. Thus, they are

often generic and applicable to a variety of use cases.

Over the past decade, physics engines became extremely popular. Gazebo

[3] is one popular simulator that uses a physics engine, and it goes hand in hand

with ROS, the most popular robotics development middleware. It offers a great

sandbox environment for robotics software development, and it has been the ba-

sis of the very popular underwater vehicle simulator, UUV Simulator [4], and

Project Dave[5]. Meanwhile, there are also other emerging simulation environ-

ments. For instance, Stonefish [6] is a new simulator built based on the bulletin

physic [7] and used for simulating underwater vehicles [8]. Instead of defining

the hydrodynamic parameters manually by the users, Stonefish could estimate

the hydrodynamic terms, e.g., added mass and hydrodynamic damping coefficient

automatically based on the imported vehicle shapes. Moreover, Stonefish could

simulate different water turbidity conditions which could help validate underwater

computer vision algorithms.

42

Figure 14: Newly designed ALPHA AUV from Smart Ocean Systems Lab at Uni-
versity of Rhode Island, Graduate School of Oceanography.

In this work, we have integrated the MVP framework with the Stonefish to

simulate the operation of a newly developed AUV (shown in Fig. 14) [9].

When running the simulation environment, we mainly use two user interfaces.

Figure 15 shows the Stonefish simulator user interface (on the left) and RViZ

visualization tool (on the right) side by side. RViZ depicts the environment from

the perspective of the simulated robot in one window, while the Stonefish user

interface shows the environment from the human perspective in another window.

43

Figure 15: Stonefish simulation UI (on the left) and RViZ visualization tool (on
the right) with ALPHA AUV.

3.1 Stonefish Simulation Setup

Stonefish [6] is a relatively new robotics simulator, published in 2019, devel-

oped using the Bullet physics library. It has exceptional support for underwater

environment simulation compared to other open-source robotics simulators, be-

cause of its underwater environment visualization, added mass and hydrodynamic

damping coefficient estimation, and current simulating capabilities. It is not tied

to any robotics middleware. Instead, it is packaged as a standalone library. Thus,

users could develop their own interface with the stonefish simulator. So far Stone-

fish has been used in several projects successfully by several research groups in

Sweeden [10] and Spain [11].

3.1.1 Integration

We have modified the existing Stonefish wrapper for the ROS to work with

the MVP framework. The Stonefish MVP and Stonefish ROS packages are similar,

but the Stonefish MVP uses MVP ROS Messages and it uses a slightly different

scenario parser that allows defining custom topic names.

44

3.1.2 Configuration

Stonefish MVP is configured through slightly customized XML scenario files.

The scenario files contain details for the vehicle and the environment. The vehicle

configuration resembles the Universal Robot Description Format (URDF)1. One

significant difference that should be noted is that URDF uses East North Up

whereas the Stonefish simulator uses North East Down (NED). Because of this,

the same coordinates can not be used in both URDF and Stonefish scenario files.

Thus, two separate files were created that contain the same information in two

different formats and different coordinate frames, the URDF robot description,

and the Stonefish scenario file.

The integration of the Robot Localization [12] was also tested with the mea-

surements from the simulated sensors (including DVL, pressure sensor, AHRS,

and GPS) from the Stonefish simulator For the physical platform, the same set of

sensory information is sent to the same navigation stack as the simulated vehicle.

Different parts of the AUV are separated into different 3D model files. Two

sets of 3D model files were generated. The first group was used for visualization,

the second was used for physics calculations and estimations such as collisions,

drag coefficients, etc. Simpler 3D models are used in order to lower the number of

meshes stored in the memory.

3.2 Results

We first tested the MVP-Control in the simulation environment. During the

test runs, the implemented PID control law was validated and the controller’s

ability to control multiple degrees of freedom is validated. The MVP mission

architecture was tested following the validation of the low-level vehicle controller

capability.

1The Universal Robot Description Format (URDF) is used for describing robot links and
joints. More information can be found here: http://wiki.ros.org/urdf.

45

http://wiki.ros.org/urdf

During the heading test, the controller is commanded to turn the vehicle to

the heading of −60◦ and 60◦ with a 60 seconds period and the result is shown in

Figures 16 and 17.

0 100 200 300 400 500 600
-100

-50

0

50

100

Vehicle Heading

Desired Heading

Figure 16: Heading control results from Stonefish simulator. Control inputs are
shown in red, and control outputs are shown in blue.

0 100 200 300 400 500

-150

-100

-50

0

50

100

150

Yaw Error

Figure 17: Heading control error.

Next, we tested the MVP-Control for surge velocity, and the result is presented

in Figures 18 and 19. During this test, the vehicle is commanded to speed up to

0.5 m/s for 60 seconds and come to a complete stop for another 60 seconds.

46

0 100 200 300 400 500 600
-0.1

0

0.1

0.2

0.3

0.4

0.5
Vehicle Surge

Desired Surge

Figure 18: Surge control results from Stonefish simulator. Control inputs are
shown in red, and control outputs are shown in blue.

0 100 200 300 400 500

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Surge Error

Figure 19: Surge control error in the simulation.

After we have tested the control for individual DOFs, we evaluated the MVP-

Control performance for multiple DOFs. Figures 21 and 20 show the test result

where the MVP-Control controls the vehicle’s x, y, z position and the pitch angle.

Again, we have different desired values changing back and forth. During this test

requested pitch was changing between 0 and 15.0 degrees every 2 minute. The

requested pose was also changing from (x = 0, y = 0, z = 4) to (x = 5.0, y =

5.0, z = 6).

47

-1 0 1 2 3 4 5 6

-1

0

1

2

3

4

5

6

Trajectory

Start

End

Pose 1

Pose 2

Figure 20: Vehicle trajectory during the multi-DOF control tests. During this test
vehicle position, x, y, z, are the controlled states.

48

0 100 200 300 400 500 600
-2

0

2

4

6

8

Vehicle X position

Desired X position

(a) Station keeping performance on X axis.

0 100 200 300 400 500 600
-2

0

2

4

6

8

Vehicle Y position

Desired Y position

(b) Station keeping performance on Y axis.

0 100 200 300 400 500 600
2

3

4

5

6

7

Vehicle Z position

Desired Z position

(c) Station keeping performance on Z axis.

0 100 200 300 400 500 600

0

5

10

15

Vehicle Pitch angle

Desired Pitch angle

(d) Station keeping performance on pitch.

Figure 21: MVP-Controller results in Stonefish simulator for controlling X, Y, Z
position and pitch simultaneously.

Figure 22 show the test result where the MVP-Control controls the vehicle’s

depth, pitch, and yaw angle. During this test, the desired pitch was changing

49

between 0 and 15.0 degrees, yaw between −60 and 60, and depth between 2m and

4m on every 2 minute.

0 100 200 300 400 500 600
1

2

3

4

5

Vehicle Z position

Desired Z position

(a) Station keeping performance on Z axis

0 100 200 300 400 500 600
-100

-50

0

50

100

Vehicle Yaw angle

Desired Yaw angle

(b) Station keeping performance on Yaw rotation.

0 100 200 300 400 500 600

0

5

10

15

Vehicle Pitch angle

Desired Pitch angle

(c) Station keeping performance on Pitch rotation.

Figure 22: MVP-Controller results in Stonefish simulator for controlling Z position,
yaw, and pitch simultaneously.

After we have tuned the PID gains inside the MVP-Control, we evaluated

the MVP-Helm behaviors. In the result shown in Figure 23, the mission has

path following and depth tracking enabled in the survey state. In Figure 23,

the desired path and the depth are shown with red lines, and the actual vehicle

path and trajectory are shown in blue lines. During the simulation validation,

environmental disturbances such as water currents were not introduced. Therefore

50

cross track errors were small; the root-mean-square error was 0.740016m (see Fig.

24). The segment change results in cross-track error peaks up to 3 m, as the path-

following behavior changes to a new segment as soon as the vehicle approaches the

end of the segment closer than the acceptance radius.

0 20 40 60 80 100 120 140

-0.5

0

0.5

1

1.5

2

2.5

Vehicle Depth

Desired Depth

Figure 23: Trajectory Tracking mission execution in the Stonefish simulation. The
graph at the top shows the 3D trajectory of the vehicle during the test. The blue
color depicts the actual vehicle trajectory, while the red color shows the desired
path. The graph at the bottom shows the depth tracking performance. The red
line depicts the desired depth, whereas the blue shows the actual vehicle depth.

51

0 50 100 150

-1

0

1

2

3

Cross Track Error

Figure 24: Cross track error for path following mission in Stonefish simulator. The
cross-track error peaks indicate the line segment change in the desired path.

List of References

[1] C.-W. Chen, J.-S. Kouh, and J.-F. Tsai, “Modeling and simulation of an
auv simulator with guidance system,” IEEE Journal of Oceanic Engineering,
vol. 38, no. 2, pp. 211–225, 2013.

[2] T. I. Fossen and O.-E. Fjellstad, “Nonlinear modelling of marine vehicles in
6 degrees of freedom,” Mathematical Modelling of Systems, vol. 1, no. 1, pp.
17–27, 1995.

[3] N. Koenig and A. Howard, “Design and use paradigms for gazebo, an open-
source multi-robot simulator,” in 2004 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566), vol. 3,
2004, pp. 2149–2154 vol.3.

[4] M. M. M. Manhães, S. A. Scherer, M. Voss, L. R. Douat, and T. Rauschen-
bach, “Uuv simulator: A gazebo-based package for underwater intervention
and multi-robot simulation,” in OCEANS 2016 MTS/IEEE Monterey. IEEE,
2016, pp. 1–8.

[5] M. M. Zhang, W.-S. Choi, J. Herman, D. Davis, C. Vogt, M. McCarrin,
Y. Vijay, D. Dutia, W. Lew, S. Peters, and B. Bingham, “Dave aquatic vir-
tual environment: Toward a general underwater robotics simulator,” in 2022
IEEE/OES Autonomous Underwater Vehicle (AUV) Symposium, 2022, pp.
1–8.

[6] P. Cieślak, “Stonefish: An advanced open-source simulation tool designed for
marine robotics, with a ros interface,” in OCEANS 2019 - Marseille, 2019,
pp. 1–6.

[7] E. Coumans, “Bullet physics simulation,” in ACM SIGGRAPH 2015 Courses,
2015, p. 1.

52

[8] R. Pi, P. Cieślak, P. Ridao, and P. J. Sanz, “Twinbot: Autonomous under-
water cooperative transportation,” IEEE Access, vol. 9, pp. 37 668–37 684,
2021.

[9] M. Zhou, E. C. Gezer, W. McConnell, and C. Yuan, “Acrobatic low-cost
portable hybrid auv (alpha): System design and preliminary results,” in
OCEANS 2022: Hampton Roads. IEEE, 2022.

[10] S. Bhat, I. Torroba, Ö. Özkahraman, N. Bore, C. I. Sprague, Y. Xie, I. Ste-
nius, J. Severholt, C. Ljung, J. Folkesson, et al., “A cyber-physical system
for hydrobatic auvs: system integration and field demonstration,” in 2020
IEEE/OES Autonomous Underwater Vehicles Symposium (AUV). IEEE,
2020, pp. 1–8.

[11] J. Esteba, P. Cieślak, N. Palomeras, and P. Ridao, “Docking of non-holonomic
auvs in presence of ocean currents: A comparative survey,” IEEE Access,
vol. 9, pp. 86 607–86 631, 2021.

[12] T. Moore and D. Stouch, “A generalized extended kalman filter implementa-
tion for the robot operating system,” in Proceedings of the 13th International
Conference on Intelligent Autonomous Systems (IAS-13). Springer, July
2014.

53

CHAPTER 4

Field Test

Field trials were conducted with an AUV to validate the MVP framework. In

this chapter, the electronic and software design of ALPHA AUV and the results

from field tests are presented.

4.1 Overall System Architecture

ALPHA (Acrobatic Low-cost Portable Hybrid AUV), shown in Figure 25, is

a highly maneuverable underwater vehicle suitable for a variety of use cases such

as coastal water sampling, seabed mapping, and iceberg mapping.

Figure 25: ALPHA AUV Revision 2 in Narragansett Bay

ALPHA is controlled using thrusters. The communication with the vehicle is

established via a long-range RF (radio frequency) serial link, short-range WiFi link,

and Ethernet through a single twisted pair tether. Onboard navigation sensors are

GPS (Global Positioning System - U-Blox 7), DVL (Doppler Velocity Logger - Wa-

54

terlinked DVL A50), pressure sensor (BlueRobotics Bar30), and AHRS (Attitude

and Heading Reference System - Xsens MTI630).

Throughout the development process, ALPHA went over two main revisions.

In the first revision, ALPHA had 3 thrusters in total as shown in Figure 26. In

order to increase vertical stability a second tunnel thruster was added on the rear

side, and the wireless communication mast was moved to the middle of the vehicle.

The system diagram for ALPHA Revision 2 is shown in Figure 27.

Electronics
Batteries

Optional
Tether

Pressure

Sensor

GPS/WiFi/RF

Tunnel
Thrusters

DVL
Emergency

Drop
Weight

Main
Thruster

2x230Wh Li-ion
Batteries

CPU

AHRS

Figure 26: ALPHA AUV Revision 1 - Diagram

Electronics
Batteries

Optional
Tether

Pressure

Sensor

GPS/WiFi/RF

Tunnel
Thrusters

DVL
Emergency

Drop
Weight

Main
Thruster

2x230Wh Li-ion
Batteries

CPU

AHRS

Figure 27: ALPHA AUV Revision 2 - Diagram

55

4.2 Experiment Setup

Figure 28 presents the system diagram of the ALPHA. To begin with, It is

equipped with DVL, AHRS, GPS, and a pressure sensor for navigation, and sensor

fusion for navigation was configured as same as the simulation environment. For

processing, it has a Raspberry Pi 4 single board computer with 8-gigabyte memory

that runs Ubuntu 20.04 LTS and ROS Noetic.

Single Board Computer

Raspberry Pi 4

ETHERNET DVL
Waterlinked

UART AHRS

Xsens - MTI630

USB GPS

uBlox

I2C
Pressure Sensor

BlueRobotics Bar30

USB WiFi

TP-Link

USB RF

XBee

USB

Micro Controller

Raspberry Pi Pico

USBCamera

PWMLed Probe

USBScanning Sonar

UART

Science Payload

Teensy 4.1

CTD

DO

Chlorophyll

Communication

ETHERNET Tether Interface

BlueRobotics Fathom-X

NavigationMicro ControllerOnboard ComputerOptional Payloads

PWM
Thrusters

BlueRobotics T200

Actuation

I2C
Current Sensor

INA260

Safety RelayMagnet Driver

Misc

Figure 28: ALPHA AUV devices diagram. Devices that use hardware protocols
such as Ethernet and USB are connected to the single board computer. Other
devices that use protocols such as I2C and PWM are connected to the microcon-
troller. AHRS, because of the need for high-speed data transmission, is directly
connected to the single board computer using UART serial protocol.

Communication with the onboard computer can be established in three differ-

ent ways; WiFi (2.4 GHz), tether(single twisted pair), and RF(Radio Frequency -

900MHz). WiFi and tether link provides high-speed IPv4 (Internet Protocol ver-

sion 4) connection over a short range. SSH (Secure Shell) provides access to the

vehicle command line and the HTTP (Hypertext Transfer Protocol) relay server

provides access to DVL’s configuration interface over this link. In addition to

that, an RF link provides long-range communication ranging up to 28 miles (line-

56

of-sight) at 20 Kbps, but this link is much slower compared to a tether and WiFi

connection. This link simply provides a serial protocol connection. To make use of

this low-level hardware connection, getty program had been used. getty enables

access to the command line through a serial channel, and unlike SSH, getty shell

is not encrypted. Therefore, the security of the RF link is achieved natively using

AES Encryption.

ALPHA is integrated with a drop weight system designed using a permanent

electromagnet. It contains a separate circuit and an independent battery pack

source. The MCU is responsible for drop weight circuit operation by controlling a

relay. When the MCU is powered on, the relay is activated and the relay cuts the

drop weight circuit’s power. MCU can check for low-voltage battery state and can

decide to activate the drop weight system as well.

4.3 Results

Field trials have been conducted in Narragansett Bay with both revisions of

ALPHA. The presented results are from the field trials conducted in Narragansett

Bay on June 28th and August 15th, 2022. During the field trials, path following,

depth tracking, and periodic surfacing behaviors were used with the parameters

shown in Table 9.

June 28th August 15th August 15th

Vehicle Revision Rev 1 Rev 2 Rev 2

Figure Fig. 29 Fig. 31 Fig. 33
Mission Type Square Square Lawn Mover

Acceptance radius 3.0m 3.0m 3.0m
LOS Lookahead distance 3.0m 5.0m 5.0m

Surge Velocity 0.7m/s 0.8m/s 0.8m/s
Surface Duration 10s 10s 10s

Surface Period 120s 60s 60s
Depth 5.0m 2.0m 2.0m

Depth tracking lookahead distance 5.0m 8.0m 8.0m

Table 9: Behavior parameters for presented results

57

Figures 29, 31, and 33 show the vehicle trajectory, depth tracking, and heading

performance from the field trials. The vehicle trajectory is displayed in lines with

color indicating the elapsed time in a mission. The planned course is depicted with

black lines. The downward and upward-looking triangles show the mission start

and end, respectively. The middle plots in these figures indicate the depth change

during the mission. In depth plots (the middle plots in these figures), the yellow

data points indicate the vehicle depth when the periodic surfacing behavior was

active. For both heading (the bottom plots in these figures) and depth plots, blue

indicates the current vehicle state (e.g., heading and depth) and red indicates the

control input.

In the first mission (see Fig. 29) on June 28th, the vehicle (ALPHA Revision

1) was programmed to follow a 50 × 50m square. The path following performance

was acceptable since the root-mean-square (RMS) for the cross-track errors (1.16m)

was less than the vehicle length (∼ 1.5m) (See Fig. 30). Some deviations were

observed in the northern and the southern segments that may be caused by the

transversal currents which may impact the horizontal tunnel thruster for heading

keeping. In the East and West segments, the path tracking performance is better.

58

-10 0 10 20 30 40 50 60

0

10

20

30

40

50

Path Trajectory Start End

0 50 100 150 200 250 300 350 400 450

0

2

4

6

Vehicle Depth

Desired Depth

Surfacing phase

0 50 100 150 200 250 300 350 400 450
-200

-100

0

100

200
Vehicle Heading

Desired Heading

Figure 29: Field trial results from Narragansett Bay on 2022-06-28 with ALPHA
Revision 1. In the trajectory plot (top), blue indicates the trajectory closer to
the mission start, and green indicates the mission finish. The planned path is
shown in black lines. In the depth plot (middle), the yellow data points indicate
the surfacing phase, the red line indicates the desired depth, and the blue line
indicates the vehicle depth. The heading plot (bottom) shows the vehicle heading
in blue and the desired heading in red.

59

0 50 100 150 200 250 300 350 400

-6

-4

-2

0

2

4

Cross Track Error

Figure 30: Cross track error for mission presented in Fig. 29, RMS = 1.161493m

On August 15, we conducted another square path mission with ALPHA re-

vision 2 (see Fig. 31). In this mission, the vehicle was commanded to travel in

a 50 × 50m square as before. The most notable improvement on revision 2 AL-

PHA was the depth tracking performance. Yet, some oscillation on depth control

was observed in ALPHA revision 2 due to improper PID tuning. Path following

performance was acceptable with cross track error RMS value of 0.75m, but some

oscillations were observed on the vehicle path when following straight lines, (see

Fig. 32). Comparing the heading plots in Fig. 32 to Fig. 31, we found ALPHA

revision 2 has better heading maneuverability where the vehicle heading was kept

close to the desired heading commanded from the path following behavior.

60

-10 0 10 20 30 40 50 60

0

10

20

30

40

50

Path Trajectory Start End

0 100 200 300 400 500 600

0

1

2

3

Vehicle Depth

Desired Depth

Surfacing phase

0 100 200 300 400 500 600
-200

-100

0

100

200

Vehicle Heading

Desired Heading

Figure 31: Field trial results from Narragansett Bay on 2022-09-15 with ALPHA
Revision 2. In the trajectory plot (top), blue indicates the trajectory closer to
the mission start, and green indicates the mission finish. The planned path is
shown in black lines. In the depth plot (middle), the yellow data points indicate
the surfacing phase, the red line indicates the desired depth, and the blue line
indicates the vehicle depth. The heading plot (bottom) shows the vehicle heading
in blue and the desired heading in red.

61

0 50 100 150 200 250 300 350 400

-2

-1

0

1

2

3

Cross Track Error

Figure 32: Cross track error for mission presented in Fig. 31, RMS = 0.749717m

Figure 33 shows vehicle trajectory, depth control, and heading control results

for a lawn-mover pattern mission that was conducted with ALPHA revision 2.

This mission commands the vehicle to travel on five 50-m-long transects that are

25m apart. This mission lasted approximately 15 minutes. The MVP framework

successfully kept the vehicle on track with an RMS value of 0.71m (see Fig. 34 for

cross track error). Since the periodical surfacing interval was programmed with a

relatively short period (60 seconds), the resulting vehicle path in the vertical plane

is similar to a sawtooth pattern similar to underwater gliders.

62

-40 -20 0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

Path Trajectory Start End

0 200 400 600 800 1000 1200

0

1

2

3

Vehicle Depth

Desired Depth

Surfacing phase

0 200 400 600 800 1000 1200
-200

-100

0

100

200

Vehicle Heading

Desired Heading

Figure 33: Field trial result from Narragansett Bay on 2022-09-15 with ALPHA
Revision 2. In the trajectory plot (top), blue indicates the trajectory closer to
the mission start, and green indicates the mission finish. The planned path is
shown in black lines. In the depth plot (middle), the yellow data points indicate
the surfacing phase, the red line indicates the desired depth, and the blue line
indicates the vehicle depth. The heading plot (bottom) shows the vehicle heading
in blue and the desired heading in red.

63

0 100 200 300 400 500 600 700 800 900

-4

-3

-2

-1

0

1

2

3

Cross Track Error

Figure 34: Cross track error for mission presented in Fig. 33, RMS = 0.706909m

64

CHAPTER 5

Conclusion and Future Work

In this thesis, a generic ROS-based software framework, ROS-MVP, is pre-

sented for marine robotic platforms, such as AUVs and ASVs. The introduced ar-

chitecture has two main components; a low-level vehicle controller (MVP-Control),

and a mission controller stack (MVP-Helm and behaviors). The first component,

MVP-Control, provides generic multiple DOF vehicle controllers using MIMO-PID

with QP optimization. It uses odometry information from a navigation source, such

as the ROS robot localization [1]. The second component, MVP-Helm, pilots the

vehicle by executing behaviors and sending their outputs to the vehicle controller.

A finite state machine in the MVP-Helm decides behavior execution and a priority

pool selects the actions with the highest priority from the behavior results. Finally,

MVP-Behavior offers a basic interface for the construction of behavior.

MVP framework performance and functionality have been validated both in

simulation and field trials with ALPHA AUV [2]. It was shown that the MVP

framework is capable of controlling the ALPHA AUV in different environments.

In the future, the MVP framework is planned to be further tested on the ASV

platforms and AUV platforms.

The current version of the MVP architecture has several limitations. First,

it currently doesn’t support control surfaces such as fins and masts, and azimuth

thrusters. The availability of testing platforms is the main reason leading to the

limitation. However, within the development process, the Stonefish [3] simulator

is found to be a sufficient sandbox environment for developing and testing such a

feature. Secondly, MVP is only tested in Ubuntu 20.04 operating system and is

only compatible with ROS1. As the robotics community migrates to ROS2[4], it

65

remains to be a crucial limitation. Plans have been outlined to upgrade the MVP

framework for ROS2 and the author has taken ROS2 migration into consideration

during the current development.

All the source code for the MVP-Framework was made public on the source

code sharing platform, github.com 1,2. It is planned to be maintained on that

platform as well to increase its longevity. In the future, these two limitations and

future issues will be resolved with the open-source contributions from both the

author and the users.

Overall, with these changes and further developments, we expect to provide

a customizable ROS-compatible GNC framework for marine vehicles that gives a

head start on future initiatives involving new marine vehicles.

List of References

[1] T. Moore and D. Stouch, “A generalized extended kalman filter implementa-
tion for the robot operating system,” in Proceedings of the 13th International
Conference on Intelligent Autonomous Systems (IAS-13). Springer, July 2014.

[2] M. Zhou, E. C. Gezer, W. McConnell, and C. Yuan, “Acrobatic low-cost
portable hybrid auv (alpha): System design and preliminary results,” in
OCEANS 2022: Hampton Roads. IEEE, 2022.

[3] P. Cieślak, “Stonefish: An advanced open-source simulation tool designed for
marine robotics, with a ros interface,” in OCEANS 2019 - Marseille, 2019, pp.
1–6.

[4] S. Macenski, T. Foote, B. Gerkey, C. Lalancette, and W. Woodall,
“Robot operating system 2: Design, architecture, and uses in the wild,”
Science Robotics, vol. 7, no. 66, p. eabm6074, 2022. [Online]. Available:
https://www.science.org/doi/abs/10.1126/scirobotics.abm6074

1Git repository for MVP Control is hosted at https://github.com/uri-ocean-robotics/

mvp_control.
2Git repository for MVP Mission is hosted at https://github.com/uri-ocean-robotics/

mvp_mission.

66

https://www.science.org/doi/abs/10.1126/scirobotics.abm6074
https://github.com/uri-ocean-robotics/mvp_control
https://github.com/uri-ocean-robotics/mvp_control
https://github.com/uri-ocean-robotics/mvp_mission
https://github.com/uri-ocean-robotics/mvp_mission

BIBLIOGRAPHY

Bachmayer, R., Whitcomb, L., and Grosenbaugh, M., “An accurate four-quadrant
nonlinear dynamical model for marine thrusters: theory and experimental
validation,” IEEE Journal of Oceanic Engineering, vol. 25, no. 1, pp. 146–
159, 2000.

Benjamin, M. R., Schmidt, H., Newman, P. M., and Leonard, J. J., “Nested
autonomy for unmanned marine vehicles with moos-ivp,” Journal of Field
Robotics, vol. 27, no. 6, pp. 834–875, 2010.

Bhat, S., Torroba, I., Özkahraman, Ö., Bore, N., Sprague, C. I., Xie, Y., Stenius,
I., Severholt, J., Ljung, C., Folkesson, J., et al., “A cyber-physical system
for hydrobatic auvs: system integration and field demonstration,” in 2020
IEEE/OES Autonomous Underwater Vehicles Symposium (AUV). IEEE,
2020, pp. 1–8.

Brommer, C., Jung, R., Steinbrener, J., and Weiss, S., “MaRS : A Modular and
Robust Sensor-Fusion Framework,” 2020.

Caress, D. W., Thomas, H., Kirkwood, W. J., McEwen, R., Henthorn, R., Clague,
D. A., Paull, C. K., Paduan, J., Maier, K. L., Reynolds, J., et al., “High-
resolution multibeam, sidescan, and subbottom surveys using the mbari auv
d. allan b,” Marine habitat mapping technology for Alaska, pp. 47–69, 2008.

Carreras, M., Hernández, J. D., Vidal, E., Palomeras, N., Ribas, D., and Ridao,
P., “Sparus ii auv—a hovering vehicle for seabed inspection,” IEEE Journal
of Oceanic Engineering, vol. 43, no. 2, pp. 344–355, 2018.

Chen, C.-W., Kouh, J.-S., and Tsai, J.-F., “Modeling and simulation of an auv sim-
ulator with guidance system,” IEEE Journal of Oceanic Engineering, vol. 38,
no. 2, pp. 211–225, 2013.

Cieślak, P., “Stonefish: An advanced open-source simulation tool designed for
marine robotics, with a ros interface,” in OCEANS 2019 - Marseille, 2019,
pp. 1–6.

Coumans, E., “Bullet physics simulation,” in ACM SIGGRAPH 2015 Courses,
2015, p. 1.

Daniel, T., Manley, J., and Trenaman, N., “The wave glider: enabling a new
approach to persistent ocean observation and research,” Ocean Dynamics,
vol. 61, no. 10, pp. 1509–1520, 2011.

67

DeMarco, K., West, M. E., and Collins, T. R., “An implementation of ros on the
yellowfin autonomous underwater vehicle (auv),” in OCEANS 2011. IEEE,
2011, pp. 1–7.

Duecker, D. A., Bauschmann, N., Hansen, T., Kreuzer, E., and Seifried, R.,
“Hippocampusx–a hydrobatic open-source micro auv for confined environ-
ments,” in 2020 IEEE/OES Autonomous Underwater Vehicles Symposium
(AUV). IEEE, 2020, pp. 1–6.

Edge, C., Enan, S. S., Fulton, M., Hong, J., Mo, J., Barthelemy, K., Bashaw,
H., Kallevig, B., Knutson, C., Orpen, K., et al., “Design and experiments
with loco auv: A low cost open-source autonomous underwater vehicle,” in
2020 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE, 2020, pp. 1761–1768.

Esteba, J., Cieślak, P., Palomeras, N., and Ridao, P., “Docking of non-holonomic
auvs in presence of ocean currents: A comparative survey,” IEEE Access,
vol. 9, pp. 86 607–86 631, 2021.

Foote, T., “tf: The transform library,” in Technologies for Practical Robot Appli-
cations (TePRA), 2013 IEEE International Conference on, ser. Open-Source
Software workshop, April 2013, pp. 1–6.

Fossen, T. I., “Guidance and control of ocean vehicles,” University of Trondheim,
Norway, Printed by John Wiley & Sons, Chichester, England, ISBN: 0 471
94113 1, Doctors Thesis, 1999.

Fossen, T. I. and Fjellstad, O.-E., “Nonlinear modelling of marine vehicles in 6
degrees of freedom,” Mathematical Modelling of Systems, vol. 1, no. 1, pp.
17–27, 1995.

Fossen, T. I. and Johansen, T. A., “A survey of control allocation methods for
ships and underwater vehicles,” in 2006 14th Mediterranean Conference on
Control and Automation, 2006, pp. 1–6.

Freitag, L., Grund, M., Von Alt, C., Stokey, R., and Austin, T., “A shallow
water acoustic network for mine countermeasures operations with autonomous
underwater vehicles,” Underwater Defense Technology (UDT), pp. 1–6, 2005.

Galassi, M., Davies, J., Theiler, J., Gough, B., Jungman, G., Alken, P., Booth, M.,
Rossi, F., and Ulerich, R., GNU scientific library. Network Theory Limited,
2002.

Griffiths, A., Dikarev, A., Green, P. R., Lennox, B., Poteau, X., and Watson,
S., “Avexis—aqua vehicle explorer for in-situ sensing,” IEEE Robotics and
Automation Letters, vol. 1, no. 1, pp. 282–287, 2016.

68

Gu, N., Wang, D., Peng, Z., Wang, J., and Han, Q.-L., “Advances in line-of-sight
guidance for path following of autonomous marine vehicles: An overview,”
IEEE Transactions on Systems, Man, and Cybernetics: Systems, pp. 1–17,
2022.

Hoegh-Guldberg, O., “Reviving the ocean economy: the case for action,” 2015.

Jones, C., Allsup, B., and DeCollibus, C., “Slocum glider: Expanding our under-
standing of the oceans,” in 2014 Oceans - St. John’s, 2014, pp. 1–10.

Kimball, P., Bailey, J., Das, S., Geyer, R., Harrison, T., Kunz, C., Manganini, K.,
Mankoff, K., Samuelson, K., Sayre-McCord, T., Straneo, F., Traykovski, P.,
and Singh, H., “The whoi jetyak: An autonomous surface vehicle for oceano-
graphic research in shallow or dangerous waters,” in 2014 IEEE/OES Au-
tonomous Underwater Vehicles (AUV), 2014, pp. 1–7.

Koenig, N. and Howard, A., “Design and use paradigms for gazebo, an open-
source multi-robot simulator,” in 2004 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566), vol. 3,
2004, pp. 2149–2154 vol.3.

Lekkas, A. M. and Fossen, T. I., “Line-of-sight guidance for path following of
marine vehicles,” Advanced in marine robotics, pp. 63–92, 2013.

Macenski, S., Foote, T., Gerkey, B., Lalancette, C., and Woodall, W.,
“Robot operating system 2: Design, architecture, and uses in the wild,”
Science Robotics, vol. 7, no. 66, p. eabm6074, 2022. [Online]. Available:
https://www.science.org/doi/abs/10.1126/scirobotics.abm6074

Manhães, M. M. M., Scherer, S. A., Voss, M., Douat, L. R., and Rauschenbach,
T., “Uuv simulator: A gazebo-based package for underwater intervention and
multi-robot simulation,” in OCEANS 2016 MTS/IEEE Monterey. IEEE,
2016, pp. 1–8.

Marthiniussen, R., Vestgard, K., Klepaker, R., and Storkersen, N., “Hugin-auv
concept and operational experiences to date,” in Oceans ’04 MTS/IEEE
Techno-Ocean ’04 (IEEE Cat. No.04CH37600), vol. 2, 2004, pp. 846–850
Vol.2.

Mayer, L., Jakobsson, M., Allen, G., Dorschel, B., Falconer, R., Ferrini, V.,
Lamarche, G., Snaith, H., and Weatherall, P., “The nippon foundation—gebco
seabed 2030 project: The quest to see the world’s oceans completely mapped
by 2030,” Geosciences, vol. 8, no. 2, p. 63, 2018.

Meinig, C., Lawrence-Slavas, N., Jenkins, R., and Tabisola, H. M., “The use of
saildrones to examine spring conditions in the bering sea: Vehicle specification
and mission performance,” in OCEANS 2015 - MTS/IEEE Washington, 2015,
pp. 1–6.

69

https://www.science.org/doi/abs/10.1126/scirobotics.abm6074

Moore, T. and Stouch, D., “A generalized extended kalman filter implementation
for the robot operating system,” in Proceedings of the 13th International Con-
ference on Intelligent Autonomous Systems (IAS-13). Springer, July 2014.

Mordy, C. W., Cokelet, E. D., De Robertis, A., Jenkins, R., Kuhn, C. E., Lawrence-
Slavas, N., Berchok, C. L., Crance, J. L., Sterling, J. T., Cross, J. N., et al.,
“Advances in ecosystem research: Saildrone surveys of oceanography, fish,
and marine mammals in the bering sea,” Oceanography, vol. 30, no. 2, pp.
113–115, 2017.

Mourikis, A. I. and Roumeliotis, S. I., “A multi-state constraint kalman filter
for vision-aided inertial navigation,” in Proceedings 2007 IEEE International
Conference on Robotics and Automation, 2007, pp. 3565–3572.

Newman, P. M., “Moos-mission orientated operating suite,” 2008.

Palomeras, N., El-Fakdi, A., Carreras, M., and Ridao, P., “Cola2: A control ar-
chitecture for auvs,” IEEE Journal of Oceanic Engineering, vol. 37, no. 4, pp.
695–716, 2012.

Pi, R., Cieślak, P., Ridao, P., and Sanz, P. J., “Twinbot: Autonomous underwater
cooperative transportation,” IEEE Access, vol. 9, pp. 37 668–37 684, 2021.

Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R.,
Ng, A. Y., et al., “Ros: an open-source robot operating system,” in ICRA
workshop on open source software, vol. 3, no. 3.2. Kobe, Japan, 2009, p. 5.

Ribas, D., Palomeras, N., Ridao, P., Carreras, M., and Mallios, A., “Girona 500
auv: From survey to intervention,” IEEE/ASME Transactions on Mechatron-
ics, vol. 17, no. 1, pp. 46–53, 2012.

Rudnick, D. L., Davis, R. E., Eriksen, C. C., Fratantoni, D. M., and Perry, M. J.,
“Underwater gliders for ocean research,” Marine Technology Society Journal,
vol. 38, no. 2, pp. 73–84, 2004.

Schofield, O., Kohut, J., Aragon, D., Creed, L., Graver, J., Haldeman, C., Kerfoot,
J., Roarty, H., Jones, C., Webb, D., et al., “Slocum gliders: Robust and
ready,” Journal of Field Robotics, vol. 24, no. 6, pp. 473–485, 2007.

Snyder, M., Weaver, J. N., and Bays, M. J., “Ros-ivp: Porting the interval pro-
gramming suite into the robot operating system for maritime autonomy,” in
OCEANS 2016 MTS/IEEE Monterey, 2016, pp. 1–6.

Stellato, B., Banjac, G., Goulart, P., Bemporad, A., and Boyd, S., “OSQP: an
operator splitting solver for quadratic programs,” Mathematical Programming
Computation, vol. 12, no. 4, pp. 637–672, 2020. [Online]. Available:
https://doi.org/10.1007/s12532-020-00179-2

70

https://doi.org/10.1007/s12532-020-00179-2

Viquez, O. A., Fischell, E. M., Rypkema, N. R., and Schmidt, H., “Design of a
general autonomy payload for low-cost auv r&d,” in 2016 IEEE/OES Au-
tonomous Underwater Vehicles (AUV), 2016, pp. 151–155.

Wang, W., Shan, T., Leoni, P., Fernández-Gutiérrez, D., Meyers, D., Ratti, C.,
and Rus, D., “Roboat ii: A novel autonomous surface vessel for urban envi-
ronments,” in 2020 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), 2020, pp. 1740–1747.

Wang, X., Shang, J., Luo, Z., Tang, L., Zhang, X., and Li, J., “Reviews of power
systems and environmental energy conversion for unmanned underwater ve-
hicles,” Renewable and Sustainable Energy Reviews, vol. 16, no. 4, pp. 1958–
1970, 2012.

Widditsch, H., “Spurv-the first decade,” WASHINGTON UNIV SEATTLE AP-
PLIED PHYSICS LAB, Tech. Rep., 1973.

Wolek, A., McMahon, J., Dzikowicz, B. R., and Houston, B. H., “Tracking multiple
surface vessels with an autonomous underwater vehicle: Field results,” IEEE
Journal of Oceanic Engineering, vol. 47, no. 1, pp. 32–45, 2022.

Yoerger, D. R., Bradley, A. M., Walden, B. B., Singh, H., and Bachmayer, R.,
“Surveying a subsea lava flow using the autonomous benthic explorer (abe),”
International Journal of Systems Science, vol. 29, no. 10, pp. 1031–1044, 1998.

Zhang, L., Merrifield, R., Deguet, A., and Yang, G.-Z., “Powering the world’s
robots—10 years of ros,” Science Robotics, vol. 2, no. 11, p. eaar1868, 2017.

Zhang, M. M., Choi, W.-S., Herman, J., Davis, D., Vogt, C., McCarrin, M., Vijay,
Y., Dutia, D., Lew, W., Peters, S., and Bingham, B., “Dave aquatic vir-
tual environment: Toward a general underwater robotics simulator,” in 2022
IEEE/OES Autonomous Underwater Vehicle (AUV) Symposium, 2022, pp.
1–8.

Zhao, L., Zhou, M., and Loose, B., “Towards under-ice sensing using a portable
rov,” in OCEANS 2022: Hampton Roads. IEEE, 2022.

Zhou, M., Gezer, E. C., McConnell, W., and Yuan, C., “Acrobatic low-cost
portable hybrid auv (alpha): System design and preliminary results,” in
OCEANS 2022: Hampton Roads. IEEE, 2022.

71

	A Generic Guidance Navigation and Control Framework For Marine Vehicles
	Recommended Citation

	ABSTRACT
	ACKNOWLEDGMENTS
	DEDICATION
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	Introduction
	Background
	ASVs and AUVs
	Related Work
	Summary of Contribution
	List of References

	Marine Vehicle Packages (MVP)
	Overview of the framework
	Low-level controller - MVP-Control
	Control Law
	Control Allocation
	Configuration

	Mission controller - MVP Helm
	Finite State Machine
	Behaviors

	MVP Behaviors
	Path Following
	Waypoint Tracking
	Depth Tracking
	Periodic Surfacing
	Timer Behavior

	Robot Localization Integration
	List of References

	Simulation Validation
	Stonefish Simulation Setup
	Integration
	Configuration

	Results
	List of References

	Field Test
	Overall System Architecture
	Experiment Setup
	Results

	Conclusion and Future Work
	List of References

	BIBLIOGRAPHY

