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ABSTRACT

Deep convolutional neural networks (CNNs) have greatly accelerated com-

puter vision tasks such as object detection in recent years. Still, their applicability

is limited in some cases due to their need for data. For example, in systems which

frequently learn new objects. Deep Template-based Object Instance Detection

(DTOID) is a model potentially useful for this task. Common methods require

training with many examples labeled by a human to detect new objects. DTOID

is unique due to only requiring a single 3D model of an object of interest (target).

This unique property makes DTOID especially useful in scenarios where new ob-

jects are frequently learned. However, DTOID’s object detection performance has

a significant room for improvement.

Due to DTOID’s potential usefulness but lack of object detection performance

this study focuses on improving DTOID. Simple scenes with textureless objects are

considered to replicate industrial settings where CAD models are readily available.

This study contributes three alterations to DTOID and answers the question of if

these alterations can improve DTOID’s object (instance) detection performance.

The first alteration investigated is the addition of a feature pyramid network (FPN)

to DTOID’s backbone. In addition, a novel method called viewpoint loss weighting

is proposed which provides more importance to target samples with less robust-

ness perturbation. Lastly, a transformer is integrated into DTOID to replace the

methods used to aggregate information from input images and target data.

As a result of this investigation it was found that the addition of a FPN into

DTOID and the proposed viewpoint loss weighting strategy improve performance.

However, the addition of a transformer did not improve performance. The poor

performance of the transformer variant of DTOID is investigated, with a possible

flaw discussed.
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CHAPTER 1

Introduction

In the past decade great progress has been made in allowing computers to

understand the world through media such as audio and especially images. The

progress made in computer-based visual understanding, known as computer vision,

has been made largely possible through deep neural networks, especially convolu-

tional neural networks (CNNs) [1]. One area of computer vision accelerated by

deep learning is a task known as object detection. Object detection involves the

process of both locating and identifying objects of interest in an image. Today

deep learning is being increasingly applied in many industries. For example, to

detect pedestrians for collision avoidance systems in autonomous cars [2], ana-

lyze farmland in agricultural settings [3], and analyzing defects in manufactured

components [4].

While CNN based object detection models are highly effective they are limited

in their ability to learn new objects to detect. Training a CNN based detector from

scratch can require thousands of images at a minimum. As a result, problems which

involve constantly adding new objects to classify would become impractical given

such assumptions. However, prior knowledge of similar problems can be used to

enhance training for new ones. This process is known as transfer-learning and is

the primary way many machine learning problems are solved without requiring

impractical quantities of data.

The process of training a model for a new task which has already been trained

to perform a related task is known as fine-tuning. Few-shot methods specifically

focus on the task of training models with minimal amounts of data and often involve

fine-tuning. In the context of few-shot methods, images containing the object of

1



interest are called support images while the image to perform object detection on is

called the query image. While fine-tuning methods have been shown to be effective

they still have the fundamental limitations of requiring labeled data and training.

Training itself can require tens or hundreds of model evaluations as well as updates

to model parameters. This increases computation time and may require increased

complexity and implementation costs for specialized hardware solutions.

Meta-learning is another method which can be used to perform few-shot object

detection. Support images are used as model inputs rather than for training.

Features created with support images are then combined with the features of the

query image to perform object detection. While computation is still required to

process support images it is typically considerably less than that compared to

training since only a single evaluation is required for each image example and no

weight updates are required. Also, it is common for support branches to have

smaller input images, further reducing computational cost.

Zero-shot methods attempt to solve the problem of data collection and la-

beling completely by using data which is correlated with a desired target object

rather than using images of the object itself. Deep Template-based Object In-

stance Detection (DTOID) is a model which can be considered zero-shot due to

the fact that it is designed to use synthetic support images (templates) rather than

real ones. By using synthetic images only a single 3D model of the desired target

object is required. 3D CAD models are often readily available for components

manufactured in industrial settings, a focus area of this study.

Object detection performance or accuracy can be described as how well a given

object detector is able to find and locate objects of interest in a given query image.

While DTOID provides a significant advantage over trained models and even typi-

cal meta-learning few-shot object detectors in terms of data requirements, it is still

2



highly limited by object detection performance. This study focuses on applying a

combination of novel and existing methods to improve the performance of DTOID

in terms of object detection performance. 5 chapters provide an overview of deep

learning for object detection, related work, methods, experimental results and a

conclusion. Ultimately this work contributes three methods of altering DTOID

and an experimental investigation demonstrating the ability of those methods to

enhance DTOID’s performance.

Chapter 2 provides an overview of object detection using deep learning. Mul-

tilayer perceptrons (MLPs) are discussed in detail which form a basis for convolu-

tional neural networks (CNNs). Convolutional neural networks are then described,

including methods that allow the training of deep CNNs. Methods related to object

detection are then discussed, including one-stage detectors, two-stage detectors,

and feature pyramid networks. Finally, other deep learning methods applicable to

this study are introduced such as image segmentation and transformers.

Chapter 3 focuses on work directly related to the way this study presents

DTOID. In particular, methods for few-shot object detection are discussed. Suc-

cessful fine-tuned and meta-learning methods are described and compared, includ-

ing methods which are similar to those used in DTOID. Several problems involving

data and training requirements are researched. It is found that DTOID requires

significantly less effort in terms of collecting data compared to other methods,

especially in scenarios where 3D models of objects to recognize are available. In

addition, DTOID is reviewed in detail in terms of its architecture and training

methodologies. However, the original DTOID work shows object detection perfor-

mance with a significant room for improvement.

Chapter 4 discusses methods which are broken up into the alterations investi-

gated and data creation. Three alterations to DTOID are proposed and discussed

3



with a primary research question of if these methods can improve the object (in-

stance) detection performance of DTOID. Object detection performance is mea-

sured based on six metrics from the popular object detection benchmark COCO

[5]. Feature pyramid networks (FPNs) [6] are a well studied object detection

subnetwork which are used to improve performance on small objects. The first

alteration integrates a FPN into DTOID. During training DTOID perturbs the

view of objects present in template images to increase robustness. However, exam-

ples with greater perturbation are given the same value. The second alteration is

a novel viewpoint loss weighting strategy which biases training towards template

examples which more accurately correspond with the query image. Lastly, trans-

formers [7] are a recently highly investigated deep learning method applied to a

variety of domains such as computer vision. The third alteration is the addition

of a transformer to replace current methods used to aggregate query and template

features. The data sampling and generation process used for training and evalua-

tion is discussed in the second part of chapter 4. Emphasis is put on untextured

components in simple scenes similar to industrial settings. The algorithm used to

choose objects for training and testing is described, as well as the process used to

creating query and template image data.

Finally, in Chapter 5 experimental results are presented and discussed. It is

found that the addition of an FPN is able to substantially increase performance.

In addition, viewpoint loss weighting appears to provide a modest increase in

performance when considering trial averages. Lastly, the transformer model is

functional but does not have performance on par with the base model. The cause

of failure in the transformer variant of DTOID is investigated, with a possible flaw

in it’s design discussed. A conclusion is then provided summarizing results and

discussing future work.

4
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CHAPTER 2

Convolutional Neural Networks for Object Detection

2.1 Machine Learning and Neural Networks

Deep learning itself is a sub-sect of machine learning or ML. A common defi-

nition used for ML is [1]:

A computer program is said to learn from experience E with respect to
some class of tasks T and performance measure P, if its performance
at tasks in T, as measured by P, improves with experience E.

The experience E can being anything from a few measurements to an image

or more and is usually the input to a machine learning model. The task T is then

the operation which the machine learning model is trained to perform, for example

identifying E which is called classification or providing an action based on E such

as the direction to move a vehicle. P then provides a objective measure of the

quality on T given E. P is often what is used to train a model so that it can learn.

2.1.1 Machine Learning

Machine learning algorithms are characterized by their ability to use experi-

ence to improve their performance on a given task. A non-ML algorithm would

then be one which does not learn, and has all decision making processes defined

by a human designer. ML is often used to deal with problems involving infor-

mation which is often regarded as being too difficult to reason with by means of

human-described decision making processes. ML can be seen as a subsect of ar-

tificial intelligence, as ML can be used to reason and interpret information which

typically can only be understood by human intelligence directly. For example,

deep learning machine learning models have excelled at tasks such as recognizing

the type of object that is in an image, or translating text from one language to

another.
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Supervised machine learning is one of the most common machine learning

methods used and researched. Supervised machine learning methods deal with

tasks that involve matching a set of inputs x ∈ X , called features (also known

as covariates or predictors) to a set of outputs y ∈ Y , called labels (also known

as targets or responses) [2]. Both features and labels are most often represented

numerically as most machine learning algorithms are numerical in nature. A set

of N input-output pairs D = {(xn,yn)}Nn=1 can then be used to provide a machine

learning model experience. D can be used to train the model in which case D

may be called a training dataset. D may also be used to evaluate the model’s

performance, in which case D may be called a testing dataset.

Features can be any data associated with the task at hand. It is common for

features to be a vector so X = RD, with each element containing a single feature.

For example, if a task involves classifying birds then two possible features could

be wingspan and height, in which case X = R2.

Two common problems which are often solved through supervised learning

include classification and regression. In classification the labels Y = {1, 2, ..., C}

are a set of natural numbers where each value belongs to a specific type of class.

Binary classification is classification which involves two classes and often deals

with problems in which an output is either true or false. A class is some category

which is given to some subset of inputs which match the classes criteria. In the

context of the bird example, a classification problem may have three classes for

eagles, falcons, and pigeons. On the other hand regression deals with labels which

are real valued, for example Y = R when the output is the top speed of a given

bird.
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Figure 1: Example of linear regression with Y = X = R and µy = 2x+ 1.
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Often a particular set of features cannot be mapped to a given class or value

with complete confidence. In the bird example, birds will have different heights

and wingspans that follow a probability distribution of some kind. It is possible

that these distributions have some overlap, as a result some birds of a particular

class may have similar heights and wingspans of another class. Further, the features

provided may just not be enough to make unique mappings between x and y in the

context of supervised learning. Birds of the same height and wingspan may have

different top speeds. Even in the case of images it may be difficult to distinguish

a bird in flight due to image resolution, weather, or any number of factors. As

a result the outputs of a machine learning algorithm are inherently probabilistic.

To include probability in classification the output of a machine learning model

f(x) is typically a probability distribution given the features p(y|x). To integrate

probability into regression the output is typically interpreted as the mean of the

distribution conditioned on a given set of features E[y|x].

A straight forward way to build f(x) is with a real-valued mathematical func-

tion. One possible function is a combination of a linear function and a translation,

also called an affine function.

f(x; w, b) = wᵀx + b : x ∈ RD×1,w ∈ R1×D, b ∈ R

This is sufficient for regression assuming a linear relationship between x and y.

Such a model is called a linear regression model. A dataset of input, output

regression pairs along with a possible linear regression solution for Y = X = R is

given in Figure 1.

Similarly, a real-valued function can be used to perform binary classification

by representing a surface which separates two distinct groups. In the context of

machine learning the surface boundary is also called the decision boundary. Such a

boundary can be formed using the affine function as in linear regression. However,
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the resulting function output would have a domain of R. This issue can be resolved

by applying the sigmoid function given

σ(a) ,
1

1 + e−a
: a ∈ R

which will collapse the range of output values to [0, 1]. Applying the sigmoid

to the affine function gives a model which can output a probability for binary

classification.

p(y|x; w, b) =

{
1− σ(f(x; w, b)) y = 0

σ(f(x)) y = 1

Such a model is called a binary logistic regression model. An example of

binary logistic regression is given in Figure 5. To deal with N > 2 classes several

surfaces can be defined using the following linear function:

f(x; W,b) = Wx + b : W ∈ RC×D,b ∈ RC×1
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Figure 2: Example of binary logistic regression with X = R2, C = {0, 1} with
means µ0 = [1.5, 0.5]> and µ1 = [0.5, 1.5]>.

While the sigmoid function can scale individual outputs to [0, 1] it is insuffi-

cient to create a probability distribution for N > 2 since it does not guarantee that

the sum of probabilities will equal one. An analog to sigmoid for N > 2 classes is

the softmax function which can be used to deal with this problem.

σ(a)c ,
eac∑C
i=1 e

ai

Using softmax on the above gives a model for multiclass logistic regression.

p(y|x; W,b) = σ(f(x; W,b))y

Multiclass logistic regression is also often referred to as multinomial logistic re-
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gression. A graphical representation of linear regression, binary logistic regression,

and multinomial logistic regression is given in Figure 3.

Figure 3: Graphical representation of linear regression (left), binary logistic regres-
sion (center), and multinomial logistic regression (right) with X = R5. Blue nodes
represent input values and green nodes represent outputs. Yellow edges represent
multiplication by a weight value while black edges represent multiplication by 1.
Note biases are represented using a weight connected to a fixed value of 1.

2.1.2 Neural Networks

Both linear and logistic regression are limited to problems where relationships

between inputs and outputs are linear. To form more complex decision boundaries

many linear decision boundaries can be combined. Consider binary logistic regres-

sion to form a single decision boundary. Such a model will output a probability

value, taking on a value of 0.5 on the decision boundary. N of such functions

{σ(f(x; w1, b1)), σ(f(x; w2, b2)), . . . , σ(f(x; wN , bN))} can be applied to form dif-

ferent decision boundaries which have some area of overlap. In other words, there

is some region x̃ ∈ X for which f(x̃; wi, bi) ≥ 0 for all i ∈ {1, 2, . . . , N}. To com-

bine the results of each model, the outputs of each σ(f(x; wi, bi)) can be formed

into a new vector x1 = [σ(f(x; w1, b1)), σ(f(x; w2, b2)), . . . , σ(f(x; wN , bN))] and

passed into another logistic regression model defined by σ1(f(x1; w1
1, b

1
1)) to form
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the final decision. A simple non-linear decision boundary is shown in Figure 4

with N = 2 decision boundaries used for the solution. The resulting x1 of that

set of data is then plotted with a possible decision boundary for f(x1; w1
1, b

1
1). By

transforming x into x1 it is possible to solve the presented problem using logistic

regression. The process of transforming features into new features which are more

readily interpreted is called feature extraction.

Figure 4: Example of decision boundaries for a two-layer MLP for X = R2,
C = {0, 1}. Two hidden neurons are used to form two linear decision bound-
aries (top). The resulting transformation is then linearly separable allowing binary
classification at the output neuron (bottom).

Such a combination of logistic regression models can be interpreted as a

simple neural network called a multi-layer perceptron or MLP. In the context of

neural networks each σi(f(xi; w
i
j, b

i
j)) is called a neuron, with wi

j being called
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the weight and bij being called the bias. In addition, the function σi(·) applied

to the affine operation, sigmoid in the case of logistic regression models, is

called the activation function. Activation functions other than sigmoid are

commonly used in deep learning models due to problems encountered with

the sigmoid function when performing learning. MLPs are often described in

layers. In the above example a two-layer MLP is described where x is called

the input layer, x1 is called a hidden layer, and x2 = [σ1(f(x1; w1
1, b

1
1))] is

called the output layer. More hidden layers could be added after x1 to create

x2,x3, . . . ,xM with xM being the output layer. Similar to multi-class logistic

regression when dealing with multiple classes, each layer of neurons xi =

[σi−1(f(xi−1; wi−1
1 , bi−1

1 )), σi−1(f(xi−1; wi−1
2 , bi−1

2 )), . . . , σi−1(f(xi−1; wi−1
N , bi−1

N ))]

can be described using a single weight matrix and bias vector

xi = si−1(xi−1) = σi−1(f(xi−1; Wi−1,bi−1) : Wi−1 ∈ RNi×Ni−1 ,bi−1 ∈ RNi

f(x; W,b) = Wx + b

where σi−1(·) is the specific activation function used for layer i − 1. The above

is more generally called a linear layer, fully connected layer, or dense layer. An

entire MLP of depth M can then be given as

f(x; θ) = sM−1(sM−2(. . . s1(s0(x)) . . . ))

where θ represents all weights and biases in the network. The output layer xM

can be interpreted as a logistic regression model either using sigmoid or softmax

activations for binary or multiclass classification respectively. Other activations,

such as the identity function, can be used on the output layer for regression prob-

lems.

Historically, MLPs originate from the perceptron in the 1950s, which is essen-

tially a neuron with a unit step as an activation function [3]. It has been shown

14



Figure 5: Graphical representation of multinomial logistic regression (left), and a
2 layer MLP classifier (right) with X = R5 and Y = {1, 2, 3}. The MLP presented
has 1 hidden layer with 6 neurons. Blue nodes represent input values and green
nodes represent outputs. Yellow edges represent multiplication by a weight value
while black edges represent a multiplication by 1. Note biases are represented
using a weight connected to a fixed value of 1.

that any solution can be found with a MLP containing a single hidden layer [4].

However, the number of hidden neurons required can grow exponentially for cer-

tain problems [5]. On the other hand MLPs and other neural networks which use

more layers rather than having larger (wider) layers have shown great promise [6].

These deep neural networks can be interpreted as producing a solution hierarchi-

cally, using each layer to produce more general features. Deep neural networks

have become a major interest area in recent times.

2.1.3 Stochastic Gradient Descent and Backpropagation

Most methods used for training neural networks, especially deep models, are

gradient based. Let f(x, θ) be a deep neural network which takes a set of features

x and has parameters θ. Using a sample (xi,yi) from a training dataset D a pre-

diction ŷi = f(xi, θ) can be made. Gradient based methods rely on creating a

single scalar value from a model’s prediction using what is called the loss function
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l(yi, ŷi) = l(yi, f(xi, θ)) = l(θ; xi,yi) ∈ R. The loss function is intended to mea-

sure the models performance by producing a larger value when a prediction is more

“incorrect” and a value close to 0 when it is correct. For example, in regression, a

common loss function is L2 distance.

lL2(yi, ŷi) =
1

2
||yi − ŷi||L2

In binary classification binary cross entropy (BCE) loss is common, where ŷi

is a probability, usually coming from a sigmoid activation.

lBCE(yi, ŷi) = [yi log ŷi + (1− yi) log(1− ŷi)]

To generalize to N > 2 classes cross entropy (CE) loss is used. In general

cross entropy loss is the negative log probability of the probability of the correct

class.

lCE(yi, ŷi) = − log((ŷi)yi)

Using a single input xi the loss function can be seen as a function of all model

parameters θ. Stochastic Gradient Descent (SGD) optimizes a model by taking

a step ∆θ which reduces the value of l(θ; xi,yi). This is done in a series of steps

t = 1, 2, . . . at which a different sample of data (xi(t),yi(t)) is used to compute the

gradient ∇θl(θ; xi(t),yi(t))t. The step ∆θ is then chosen to move in the direction

opposite the gradient. SGD is described by the update rule

θt+1 = θt − α∇θl(θ; xi(t),yi(t))t

where α is the learning rate, a value which determines how far to step in the

direction opposite the gradient. Each step of SGD disregards all elements in the

dataset except for the one used. To optimize with respect to all data points batch
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gradient descent can be used which is performed the same way, but calculates the

gradient for every datapoint in a single iteration. To compute a final gradient

update, all computed gradients are averaged.

θt+1 = θt −
α

N

N∑
i=1

∇θl(θ; xi,yi)t

Batch gradient decent more accurately matches the full dataset as it optimizes

with respect to all data samples. However, batch gradient descent takes signifi-

cantly more time to compute per iteration. To provide a compromise mini-batch

gradient descent is commonly used which uses a small collection of data samples

at each iteration.

To actually compute the gradients of each parameter in θ a method known as

backpropagation is used. Backpropagation is essentially another term for chain-

rule from calculus and is the process of finding the partial derivatives of the loss

function with respect to all trainable model parameters. Backpropagation is de-

scribed as such because all gradients are dependent on gradients from deeper in

the network, meaning gradient computation moves backward with respect to the

forward pass.

2.2 CNNs and Image Classification

MLPs encounter a number of issues when applied to images. For one, they

do not scale well. High resolution images typically contain millions of pixels so

the weights for MLPs can easily become on the order of billions for image tasks.

Also, they lack what is known as inductive bias for image tasks. An inductive bias

is a set of assumptions a machine learning model makes prior to learning. This

is helpful to both reduce computation and enhance accuracy. For images, many

transformations can be applied that are reversible and often represent the same

information. For example, rotating, scaling, and translations applied to an image
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will result in a similar set of features. However, since images are made of discrete

pixels a translation is the only operation of the above which can trivially be made

and result in the same set of features. A transitionally-invariant inductive bias is

what forms the basis of convolutional neural networks (CNNs).

2.2.1 Convolutions

CNNs can perform typical machine learning tasks such as classification and

regression. However, unlike an MLP they take a structured input such that X =

RC×H×W where x is often an image. If x is an image H and W are the height and

width of the image, and C is the number of color channels, typically 3 for RGB

images.

Convolutional layers form the main building block of CNNs. Convolutional

layers are similar to linear layers but are different in two main aspects. First,

the weight is a tensor w ∈ RC×Wk×Hk . This weight is often also called the kernel.

Secondly, when applied the convolutional layer only considers a small portion of the

input image equal to the shape of the kernel. To generate an output this weight is

applied in a sliding window fashion across the whole input image to produce what

is essentially a new transformed image called a feature map. The value at location

x, y of the output feature map y given yx,y for input x can be given as follows.

yy,x = σ(
C−1∑
i=0

Hk−1∑
j=0

Wk−1∑
k=0

xi,y+j,x+k ·wi,j,k + b)

Kernel sizes are usually small and odd numbered in size such as 3×3, 5×5 or

7×7. Also, to preserve height and width x is often bordered with empty values. It

is also common to increase the step size performed, called the stride, to be greater

than one. Incorporating stride S into the above equation gives the following.
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yy,x = σ(
C−1∑
i=0

Hk−1∑
j=0

Wk−1∑
k=0

xi,S·y+j,S·x+k ·wi,j,k + b)

If D convolutional layers are used, the output then has depth D giving

yz,y,x = σ(
C−1∑
i=0

Hk−1∑
j=0

Wk−1∑
k=0

xi,S·y+j,S·x+k ·wz,i,j,k + b) : w ∈ RD×C×Hk×Wk

Figure 6: Visualization of a 3 × 3 × 3 convolution applied to a 3 × 7 × 7 input.
Each output value (green) corresponds to the same operation applied to different
locations in the input image (blue).

The amount of information captured for a single convolution layer depends on

the kernel size. Alternatively, several convolutions can be applied consecutively.

By applying several consecutive convolutional layers each layer will absorb spatial

information of some area in the previous feature map. As a result with each

additional convolutional layer a larger area of the original input is processed as

demonstrated in Figure 7. The area of the input which a single feature map pixel

considers at a given layer is called the receptive field.

2.2.2 Pooling

In addition to convolutions, CNNs typically have many other operations which

are applied to feature maps. Pooling layers are another common layer which

function by down-sampling feature maps. Specifically for some pooling operation
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Figure 7: Visualization of two cascaded convolutions with stride 1 and a kernel
size of 3× 3.

y = f(x) with x ∈ RC×Hi×Wi ,y ∈ RC×Ho×Wo the input and output spatial sizes

change such that Wo < Wi, Ho < Hi. Pooling is useful for condensing information

where global information is needed such as in image classification. Pooling may

also be used to reduce computation. One common pooling method is Max Pooling

in which the maximum is taken over the input kernel

yz,y,x = max
i=0,1,2,...,Hk−1

max
j=0,1,2,...,Wk−1

xz,Sy+i,Sx+j

Max Pooling was seen commonly in earlier CNN models. Global Average

Pooling is another common operation which takes an average of an entire feature

map spatially to produce a fixed size vector.
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yz,y,x = yz =
1

HkWk

Hk−1∑
i=0

Wk−1∑
j=0

xz,i,j

Global Average Pooling is commonly used to produce a vector which can be

used for other machine learning methods such as MLPs.

2.2.3 ReLU and Other Deep CNN Methods

One last major building block for deep CNNs are ReLU and related activation

functions [7]. A common issue in deep learning is known as the vanishing gradient

problem. When dealing with many cascaded linear layers or convolutions the

resulting gradient for any given layer is a function of the product of preceding

layer activation functions. Assuming an MLP the loss with respect to layer l as a

function of the gradient with respect to some deeper layer L can be given

∇xL
l = ∇xL

L∇zL−1
xL∇xL−1

zL−1∇zL−2
xL−1 . . .∇zlxl+1∇xl

zl

∇xL
l = ∇xL

Lσ′(zL−1)∇xL−1
zL−1σ

′(zL−2) . . . σ′(zl)∇xl
zl

where xi = σ(zi−1). For sigmoid, the maximum value of the gradient is 1/4 mean-

ing there is a decrease in magnitude for each activation. The vanishing gradient

problem describes the phenomenon of decreasing gradient magnitude during back-

propagation which will eventually be rounded to zero for floating point arithmetic.

Since the sigmoid activation results in a decrease of gradient magnitude it may

increase the risk of shrinking the gradient arbitrarily with depth and causing the

vanishing gradient problem. ReLU can simply be defined as y = max(x, 0) and

solves the above by reducing the gradient to 0 or keeping it the same as the pre-

ceeding layer during backpropagation. As a result positive-valued activations at

any given layer are not reduced by the activation function gradient.

Historically CNNs can arguably be seen to originate from LeNet-5 created

by Yann LeCun in the 1980s [8]. However, it wasn’t until the early 2010s with
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the creation of AlexNet [7] that they saw significant research interest in the form

of deep convolutional neural networks. Earlier CNNs such as AlexNet, ZF [9]

and VGG-16 [10] used exclusively fully connected layers, max-pooling, ReLU, and

convolutional layers. However further improvements such as Batch Normalization

[11], Kaiming Initialization [12], and residual connections [13] showed to have great

importance for training networks on the order of hundreds of layers. ResNet [13]

and DenseNet [14] are two widely cited models which use the above mentioned

methods to build very deep vision models.

2.3 Object Detection

Object detection is a task in which several objects in an image are both si-

multaneously located and classified. More formally an object detection model

takes an image x and produces an output ŷ consisting of a set of object detec-

tions ŷ = {ŷ1, ŷ2, ..., ŷM} for M detections in total. Every object detection ŷi is

a set ŷi = {ĉi, b̂i} containing a label ĉi ∈ {1, 2, ..., C + 1} and a bounding box

b̂i = {b̂i,1, b̂i,2, b̂i,3, b̂i,4}. Typically for C classes C + 1 labels are used to account

for an additional background class which is anything not labeled by the C classes.

The values of the bounding box often define the center, width, and height of the

smallest box which fully encloses the associated object and is aligned with the

axes of the image. CNNs have shown great success in object detection tasks. CNN

object detectors are often said to perform object detection in stages. Each stage

provides further refinement and strengthens object detection performance.

2.3.1 One-stage Detectors

One-stage object detectors can usually be broken up into two components

called the backbone and detection head. The backbone is a CNN which produces a

feature map. Object detectors commonly use existing CNN classifier architectures

22



by removing all linear and classification layers. It is also common to use CNNs

which are already pretrained on a large scale image classification dataset such as

ImageNet [15]. ImageNet contains several million images from 1000 classes.

The detection head may consist of several convolutional layers, with the last

layers consisting of two convolutional networks applied in parallel which are com-

monly referred to as the classification branch and the regression branch. Both

branches consider prior bounding boxes which are called anchors. Anchors can be

considered hyperparameters and are usually defined by different sizes and aspect

ratios. For k anchors and C classes, the classification head outputs kC values

at each feature map location, with each value containing the probability that the

associated anchor contains the associated class. The regression head contains 4k

outputs which regress with respect to each associated anchor to refine the predicted

bounding box. Typically regression values are chosen to be scale-agnostic . For

an anchor A = (Ax, Ay, Aw, Ah) the predicted bounding box B̂ = (B̂x, B̂y, B̂w, B̂h)

given for predicted regression values t = (t1, t2, t3, t4) is given by the following as

follows [16].

B̂x = Awt1 + Ax

B̂y = Aht2 + Ay

B̂w = Awexp(t3)

B̂h = Ahexp(t4)

The result of the detection head is two feature maps which indicate class

probabilities and regression offsets for each anchor at each feature map location.

A visualization of a object detector regressor with 3 anchors is given in Figure 8

Since neighboring feature map locations encapsulate similar receptive fields many
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duplicate predictions may result from using raw outputs directly. To prevent dupli-

cates post-processing is applied to remove similar detection results. Non-maximum

suppression (NMS) is a common algorithm used to solve this issue as given in Algo-

rithm 1. NMS functions by iterating bounding boxes and keeping those which have

a score higher than all other bounding boxes which meet a certain IoU threshold.

The IoU between bounding boxes B1 and B2 can be given

IoU =
B1 ∩B2

B1 ∪B2

As a result NMS is able to remove many of the duplicates created using CNN

detectors and is vital for their performance in practical applications.

One-stage detectors are often the fastest in terms of inference speed but usu-

ally lower performing in terms of accuracy compared to those with more stages

[17]. The description of one-stage and two-stage detectors was originally defined

in Faster RCNN [17]. RetinaNet [18] is a one-stage model which closely matches

the architecture described above.

Figure 8: Visualization of a one-stage object detector bounding box regressor with
three anchors. Each output feature map position is associated with a different
anchor and input feature map position.
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Algorithm 1 Non-Maximum Suppression (NMS) for a set of bounding boxes B
and associated scores s. λNMS defines the IoU threshold for NMS.

procedure NMS(B,s)
Bnms ← ∅
for bi ∈ B do

keep← True
for bj ∈ B do

if IoU(bi, bj) > λNMS then
if sj > si then

keep← False
end if

end if
end for
if keep then

Bnms ← Bnms ∪ bi
end if

end for
return Bnms

end procedure

2.3.2 Two-stage Detectors

Two-stage detectors differ from one-stage detectors in that prior to detection

the input image is analyzed to create a set of class-agnostic bounding boxes called

region proposals or regions of interest (RoI). Region proposals are meant to con-

tain areas of an image which may contain an object. Early object detectors such

as RCNN [16] and Fast RCNN [19] used non-ML algorithmic methods such as Se-

lectiveSearch [20] to obtain region proposals. Many two-stage methods are based

off of Fast RCNN. Fast RCNN handles region proposals by applying an operation

called RoI Pooling to create fixed size vectors. RoI pooling functions by taking

the section of the feature map of size h×w associated with a region proposal and

dividing it into sub windows of size h/H × w/W . Max pooling is applied to each

sub window to produce a fixed size output H × W which can be flattened into

a fixed size vector. The resulting RoI feature vector is then passed into an MLP

which has two parallel outputs with one performing classification with respect to
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C + 1 classes and the other performing regression to create scale-invariant offsets

with respect to the region proposal.

Faster RCNN [17] extends Fast RCNN by using a CNN to create region pro-

posals called the Region Proposal Network (RPN). The RPN is the same as a

one-stage detector with binary output which classifies objectness. Regression off-

sets from the RPN are then applied to their associated anchors to create a large

quantity of region proposals. A final set of region proposals is then created by

applying NMS and taking the top k scoring. After computing region proposals,

Faster RCNN is functionally the same as Fast RCNN. A comparison of Fast RCNN

and Faster RCNN architectures is given in Figure 9

2.3.3 Training Detectors

During a forward pass many anchors and regions of interest may closely match

a single ground truth. During inference this issue is dealt with using NMS or some

other post-processing algorithm. One way to assign bounding boxes to ground

truths is by using the highest IoU per ground truth. However, this will greatly

reduce the number of examples for training per image. Hundreds or thousands of

anchors and RoIs may be available for training while there might only be tens of

ground truth labels. Rather than producing unique assignments between predic-

tions and ground truths multiple anchors or RoIs can be assigned to each ground

truth. Some IoU threshold is chosen and all anchors and RoIs which meet this

threshold are assigned to their associated ground truth. Originally IoUfg = 0.5

for Fast RCNN and IoUfg = 0.7 for the RPN. To provide background examples a

similar process is done where IoU with all object instances must be less than some

threshold, with IoUbg = 0.5 for Fast RCNN and IoUbg = 0.3 for the RPN. While

this provides more foreground examples for training it will provide significantly

more background examples still. To balance foreground and background examples
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Figure 9: Comparison of one-stage (top) and two-stage (bottom) detectors. Two
classes and one anchor are considered for simplicity.

a fixed number of anchors or RoIs per image is used, for example N = 256. Up to

Nfg are then chosen for foreground examples, while the remaining are chosen from

background examples. This image-centric fixed size and ratio sampling strategy

can be seen to originally be introduced in Fast RCNN [19]. An image containing a

set of example anchor assignments for N = 32 and Nfg = N
2

is given in Figure 10.

2.3.4 Feature Pyramid Networks

CNN research was initially highly focused on image classification. As a result,

many CNN models are designed to gain global understanding. Deeper networks

which are high performing in image classification often have lower resolution fea-
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Figure 10: Bounding boxes for N = 32 sampled anchors. Anchors with IoU > 0.5
with the groundtruth (blue) are sampled for foreground examples (green) while
bounding boxes with IoU < 0.4 are sampled for background examples (red).

.

ture maps and larger receptive fields which results in poor performance for localiza-

tion. Using the intermediate layers of a backbone can help. However intermediate

layer features are lower level, encapsulate a small receptive field and have weaker

semantic information.

Feature Pyramid Networks (FPNs) [21] solve this issue by utilizing interme-

diate outputs from a CNN during the forward pass to construct higher resolution

feature maps. Each intermediate layer is associated with a new feature map of the

same level which contains stronger features. Specifically, starting from the back-

bone output, nearest neighbors upscaling is applied to create a new feature map

which has the same size as the previous intermediate output. A 1× 1 convolution

is applied to the intermediate output and summed with the upscaled feature map

as shown in Figure 11. The process is repeated for each intermediate output. The

original FPN paper also considers applying convolutions to each feature pyramid
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Figure 11: Feature pyramid network architecture. Aliasing convolutions are omit-
ted. Source [21].

level to reduce aliasing caused by upsampling. The result of applying an FPN is

several feature maps of different resolution which contain the same features. Each

feature map level is usually associated with a different set of anchors, with higher

resolution feature maps being used for small anchors and low resolution feature

maps being used for large anchors. FPNs are often designed so that there is a

fixed scaling ratio between pyramid levels in terms of resolution allowing the same

detection head to be used for each level.

2.3.5 Image Segmentation

A common task similar to object detection is image segmentation. Image

segmentation considers an image and provides a label for each pixel. Two widely

investigated types of image segmentation include semantic segmentation and in-

stance segmentation. Semantic segmentation performs pixel labeling by assign-
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ing each pixel in the input image x to ŝ ∈ R(C+1)×H×W labeling C classes and

background. Semantic segmentation does not distinguish different instances of ob-

jects and is useful for determining environmental attributes. On the other hand

instance segmentation does consider object instances and can be considered the

same as object detection but bounding boxes are replaced with some segmenta-

tion mask ŝi ∈ RH×W indicating the pixels in which the associated instance is

present. A comparison of different computer vision tasks including variations of

image segmentation are presented in Figure 12

Mask RCNN [22] is an extension to Faster RCNN which incorporates a third

parallel detection branch which predicts segmentation masks. To maintain spatial

information pooled RoI features are interpreted as a feature map of fixed height and

width rather than a vector. Mask RCNN also extends RoI Pooling by creating RoI

Align which performs interpolation in feature map pixels to create a more accurate

RoI feature map. Segmentation masks are not predicted with respect to the input

image as previously described. Instead Mask RCNN predicts segmentation masks

with respect to given region of interest creating a fixed scale output.

2.3.6 Measuring Object Detection Performance

Measuring the performance of object detection systems poses a few major chal-

lenges. For one, there isn’t a direct association between predictions and ground

truth values. It is also possible that the number of predictions made exceeds or is

less than the number of ground truths. In addition, anchors and predictions are

going to be overwhelmingly filled with predictions with high background probabil-

ity without significant filtering. Filtering predictions also poses it’s own challenge

as a specific prediction score threshold may be required.

Assume that every class is considered individually. In other words, only a

single class is treated as foreground and all others are treated as background.
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Figure 12: Comparison of common computer vision tasks. Image from [23].

Assume also that every prediction is assigned to either a ground truth bounding

box of that single class or the background. Choosing a score threshold can be

thought of as a problem of balancing between false negatives and false positives.

Decreasing the prediction threshold will tend to result in more positive predictions

and as a result less false negatives. Lowering the threshold on the other hand will

tend to result in less positive results, and as a result decrease false positives.

Let Y be the set of all positive samples and Ŷ be the set of predictions. For

a given score threshold t the set of positive predictions is given Ŷt ∈ {yi : yi >

t and yi ∈ Ŷ}. To quantify the performance at a given threshold the metrics of

precision and recall can be used.

precision =
|Ŷt ∩ Y|
|Ŷ|

recall =
|Ŷt ∩ Y|
|Y|
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Precision measures performance in terms of false positives while recall mea-

sures performance in terms of false negatives. One way to measure performance

independent of threshold is to consider all thresholds possible. For a set of N

samples there are up to N + 1 thresholds which result in different prediction la-

bels. The simplest way to obtain all possible sets is to sort the values in Ŷ and

selecting the top k ∈ [0, N ] scoring to use as positive examples creating a total of

N+1 sets of predictions as desired. Each prediction set can be used to compute an

associated precision and recall which can be plotted to produce a precision-recall

curve as shown in Figure 13. It is common alter the precision-recall curve p(r) to

apply interpolation as follows.

p(r)interp = max
r̄:r̄>=r

p(r̄)

Interpolation of this kind is done to reduce the effect of small variations or

’wiggles’ in the precision-recall curve [24].

To obtain a single value the precision-recall curve is integrated numerically as

follows to obtain average precision or AP.

AP =
∑
i

(ri − ri−1)p(ri)

Where it is assumed recall values are sorted in non-decreasing order. AP can

be computed for each class and then averaged to create a single performance metric

typically called mean AP or mAP. AP solves many of the previously mentioned

issues that could be encountered with other metrics, such as class imbalance. How-

ever, predictions still require assignment. To assign predictions to bounding boxes

in detection IoU is used. A specific IoU threshold with a ground truth bounding

boxes is required for a prediction to be considered a positive. If multiple predic-

tions meet the specified IoU threshold with the same ground truth then typically
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Figure 13: Precision-recall curve with interpolation created using a binary logistic
regression model.

only the highest IoU prediction is marked as a positive. The remaining are consid-

ered negatives or may be assigned to other ground truths. Common IoU thresholds

include 0.5 and 0.7. An example of possible assignments used for calculating AP

is given in Figure 14.

2.4 Transformers

In recent times a type of deep learning model known as the transformer has

been achieving high performance on various AI tasks. Transformers were origi-

nally created for natural language processing (NLP) [25] and are designed to work

with sequences. Common NLP tasks performed with transformers include sequence

prediction, machine translation, and text summarization. Today transformers out-
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Figure 14: Example of prediction assignment for an IoU threshold of 0.5. Ground
truths (white) are assigned to the prediction with the highest IoU over 0.5 (green).
Predictions which do not get assigned to ground truths (red) are considered incor-
rect.

perform previous NLP methods such as RNNs in many benchmarks [25, 26], and

more recently CNNs [27, 28] in vision benchmarks. In addition, many alterations

and variations have been created, analogous to the improvements brought about

by methods such as batch norm and residual connections for CNNs [29].

On a high level the original (vanilla) transformer [25] consists of two modules,

an encoder and a decoder. The encoder takes the entire input sequence and creates

what is called memory. The memory is then used with the decoder and some initial

decoder input to perform some kind of prediction. The vanilla transform used the

decoder in an auto-regressive manner, predicting the next sequence token using all

previous decoder outputs and the encoder memory. This auto-regressive process

is applicable to areas such as machine translation and sequence prediction.

The encoder and decoder modules themselves rely heavily on a function called
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attention. Attention performs a comparison of three input sequences. A query se-

quence is intended extract some information about a key sequence by applying

each query element to each key element. A value sequence is then used to weigh

the resulting queried keys after applying normalization. As a result a global com-

parison of different sequence elements is performed. For sequences of length Nq

and Nk with inputs Q ∈ RNq×dk , K ∈ RNk×dk , and V ∈ RNk×dv attention is given

for sequence position i as

Attention(Q,K, V )i = Softmax(
QiK

T

√
dk

)V

The authors of the vanilla transformer theorized that the basic attention oper-

ation was limited in that each element could only perform a single query. To

combat this an operation called multi-headed attention is proposed which projects

query, key, and value elements into different subspaces. Each projection is then

used to perform attention independently, the results are then concatenated and

projected again to form a final result. Typically the query Qm ∈ RNq×dmodel , key

Km ∈ RNk×dmodel , and value Vm ∈ RNk×dmodel sequences have the same depth dmodel

but may have different projection depths dk and dv. An image from the vanilla

transformer paper is provided in Figure 15. h head multi-headed attention is given

as follows.

MultiHeadAttn(Qm, Km, Vm) = Concat(head1, ..., headn)WO

headi = Attention(QmW
Q
i , KmW

K
i , VmW

V
i )

WQ
i ∈ Rdmodel×dk

WK
i ∈ Rdmodel×dk

W V
i ∈ Rdmodel×dv

WO ∈ Rhdv×dmodel
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In the vanilla transformer multi-headed attention comes in two varieties.

Multi-headed self-attention (MHSA), where query, key, and values derive from the

same input, and multi-headed cross-attention (MHCA), where the query comes

from a different input than the key and value.

Figure 15: Multi-headed attention. Image from [25].

Figure 16: Architecture of the vanilla transformer. Image from [25].

The encoder consists of six architecturally identical layers each consisting of

a MHSA sublayer and a simple MLP. The decoder also consists of six identical
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layers with a similar architecture which differs with the presence of MHCA be-

tween MHSA and the MLP. Layers in both the encoder and decoder do not share

weights. MHCA is used in the decoder by using the decoder sequence as the query

and the full encoder output memory as the key and value. At the output of each

sublayer in the encoder and decoder layers dropout, a residual summation, and

a normalization operation are applied. One last important detail is the presence

of positional encoding which is summed with the encoder and decoder input se-

quences prior to input into the transformer. Positional encoding allows awareness

of spatial relationships, something which transformers fundamentally lack since all

operations are invariant of absolute position. The full architecture of the vanilla

transformer is given in Figure 16 and additional information can be found in [25].

In terms of computer vision transformers have been applied for most widely

studied tasks. In most cases images are used by flattening into a sequence and rely-

ing on positional encoding to determine spatial relationships. Vision Transformer

(ViT) [27] is one work which uses transformers directly for image classification.

ViT showed that transformers outperform CNN methods when data is abundant.

However, due to their computational complexity image pixels are not taken as di-

rect inputs. Instead CNN feature maps are used or patches of pixels are linearly

projected. DETR [28] is a foundational work for object detection and instance

segmentation with transformers. Unlike CNN methods, DETR does not create

duplicate outputs which need to be filtered. In addition anchors are not used,

anchors are problematic in CNN detectors since performance is highly influenced

by how they are defined. Both ViT and DETR have demonstrated the power

transformers can have in the image domain.
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CHAPTER 3

Few-shot Object Detection

3.1 Fine-tuning CNNs

For many applications the types of objects being considered for object detec-

tion is dynamic. For example, a robot may learn to recognize new objects or a

autonomous car may need to learn to identify a new vehicle model. When training

CNNs from scratch a significant amount of data is usually required. It has been

shown that CNN detectors continue to increase in performance as data grows to

the size of tens of millions of images and even more [1]. As a result it is impractical

to consider training CNN object detectors from scratch in many of the previously

stated scenarios.

Fine-tuning is a common approach used to overcome data requirements for

CNN object detectors and machine learning in general when encountering new

domains [2]. Many of the features in a new (novel) dataset of interest may share

similarities with a large scale (base) dataset which already exists. As a result a

model trained on a large scale dataset will contain features which are useful for

learning the novel dataset. This makes CNNs trained on general datasets such

as ImageNet [3] especially useful. The process of using knowledge from one task

to enhance learning of another is known as transfer learning. Fine-tuning is the

process of training an already trained (pre-trained) model on a novel dataset and

is a application of transfer learning. When considering the previous task of adding

a single new object class to an existing dataset fine-tuning can be used. By adding

a single neuron to the output layer of the last stage classifier branch, and possibly

four more to the last stage regression branch for detection, a new class can be

added. Training is then done with a new dataset which contains both old classes

and the new class.
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3.1.1 Few-shot Object Detection

Few-shot and one-shot methods focus on learning with minimal training exam-

ples [4], with few-shot methods considering several examples and one-shot methods

considering a single example. Few-shot methods are often framed by considering

a model which takes two inputs, a query image x ∈ X and a set of N support

images s = {s1, s2, . . . , sN} : si ∈ X . The query image is the image on which

object detection is performed on and is equivalent to the input image in a typical

object detection model. On the other hand query images are labeled images which

contain the object of interest to detect, also known as the target. An episode

of training or testing for a few-shot model in which there are M classes with N

examples each is referred to as M-Way N-Shot [5]. An example of 5-Way 1-Shot

detection is given in Figure 17

Figure 17: Example of 5-Way 1-Shot object detection. Image from [6].
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3.1.2 Few-shot Object Detection with Fine-tuning

Many few-shot methods focus exclusively on the task of enhancing fine-tuning.

One of the earliest attempts at few-shot object detection was LSTD [7] which fo-

cuses on fine-tuning only for target classes. LSTD utilizes an architecture which

combines elements from both SSD [8] and Faster-RCNN. Bounding box regression

is done based on SSD to increase robustness to object size variation. In addi-

tion, two regularization functions are proposed for few-shot fine-tuning. The first,

background depression regularization, penalizes background activations when con-

sidering novel class data. The other, transfer-knowledge regularization, enhances

novel class learning by incorporating knowledge of similar classes from the base

dataset.

Many later works differ from LSTD in that they consider a testing scenario

which includes both base classes and novel classes. Such a scenario presents a new

challenge as novel feature information must be incorporated into the model with-

out disturbing base class performance. TFA [9] finds that performance is highly

improved by freezing all network weights except for the last layers of the detection

head. In addition, a balanced dataset is used containing equal examples for all

classes from both the base and novel datasets. Another method for maintaining

performance on base classes is presented in Retentive RCNN [10]. Retentive RCNN

achieves high performance by both freezing network components and adding addi-

tional RPN and detection heads. To create region proposals the objectness score of

an anchor is determined by the maximum of both fine-tuned and base RPN scores.

In addition, the fine-tuned detection head is trained on both novel and base classes

as it was found that training on the small amount of examples present in novel class

data was harmful. More recent fine-tuning works focus on various other problems.

For example, MPSR [11] focuses on enhancing robustness to limited scale variance
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by introducing multi-scale positive sample refinement which resizes RoI features.

FSCE [12] adds a contrastive branch to the detection head to maximize inter-class

distance and minimize intra-class distance.

3.2 Meta-learning Few-shot Methods

While transfer learning using fine-tuning is an effective approach for few-shot

object detection in novel domains it can have issues when dealing with the task

of continuously adding new classes. The first major issue is that the dataset

size used for fine-tuning increases with each additional class added. If N images

are required per class for training then the addition of a new class with K base

classes will require N(K + 1) forward and backward passes for a full epoch of

training. As a result, training time increases linearly with respect to the total

number of classes used. If only novel classes are used for fine-tuning than a problem

known as catastrophic forgetting can occur. Catastrophic forgetting describes the

phenomenon by which is there is a rapid decrease in performance on base classes

[13] when they are not included in training. Some work has been put into solving

catastrophic forgetting [14, 15], and even specifically for object detection [16],

however it still remains a fundamental problem.

It is possible to achieve few-shot fine-tuning without linear growth in training

set size with respect to total class count. One possibility is the addition of a new

network head for each set of novel classes added similar to Retentive RCNN [10].

However, during inference if all object classes are to be considered each detection

head must be used individually increasing evaluation time linearly with respect

to the number of novel class groups. In addition, each head must still be trained

which requires many forward and backward passes with weight updates.

A similar strategy to that done in Retentive RCNN can be achieved with

meta-learning. Meta-learning methods differ from fine-tuning methods in that
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they can learn at inference time. Meta-learning few-shot object detection methods

use support images as network inputs rather than using them to perform weight

updates. Generally a meta-learning object detection model will extract features

from both query and support images and aggregate them to perform object de-

tection. Similar to the Retentive RCNN strategy, these methods will have linear

evaluation time with respect to total classes present. However, the creation of

support features differs from training in fine-tuning methods. The networks used

to create support features are not necessarily as complex as the query branch. In

addition, no back-propagation or weight updates are required meaning weights for

meta-learning methods can be read-only and as a result be more easily integrated

into hardware solutions.

3.2.1 Distance Metric Learning Methods

While many meta-learning few-shot object detectors use CNNs for feature

extraction the method used for feature comparison differs significantly. Distance

Metric Learning (DML) methods were some of the first which performed inference

without weight updates. While DML methods are typically not considered to be

meta-learning, in the context of few-shot object detection they are functionally

similar. RepMet [6] is one of the first major DML methods used for few-shot

object detection. RepMet functions by embedding the feature maps of target

class RoIs into a vector space in which object similarity can be measured with

L2 distance. In addition, RoI embeddings serve to function as modes of a multi-

modal Gaussian distribution. To perform few-shot object detection the embeddings

of several target class RoIs are computed. The posterior of each class is then

determined by evaluating each classes associated distribution for a given query

image RoI. Other similar DML methods such as NP-RepMet [17] and PNPDet

[18] have been proposed.
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3.2.2 Aggregating Query and Support Features

A more common approach for meta-learning few-shot object detectors involves

channel-wise multiplication between query features and support features in a slid-

ing window fashion similar to convolution. This is also often called depth-wise

cross-correlation, cross-correlation, or simply correlation in the context of CNN

methods. Depth-wise cross-correlation can be described for support feature F and

query feature X as

F ∈ RC×K×K X ∈ RC×H×W

Yc,y,x =
K−1∑
j=0

K−1∑
i=0

Xc,y+j,x+i · Fc,j,i

Y = X ? F

Meta YOLO [19] and Meta RCNN [20] are early meta-learning few-shot object

detection methods which use depth-wise cross-correlation. In both cases meta-

learning is used to enhance fine-tuning, so these methods can be considered to be

hybrids. Training is done in a similar manor to typical fine-tuning methods where

training is split into pre-training on a set of base classes, and fine-tuning on a

small dataset consisting of both novel and base classes. CNNs are used to create

1×1 vectors from support images which are depth-wise cross-correlated with query

image features for aggregation.

Meta YOLO is based on YOLOv2 [21] which can be considered a one-stage

detector while Meta RCNN is based on the two-stage Faster RCNN framework.

Despite being two-stage Meta RCNN only considers feature combination after the

RPN. As a result the RPN may miss regions which belong to novel classes. Some

works such AttentionRPN [22] and OSWF [23] deal with this by also applying

depth-wise cross-correlation to features used in the RPN input. Both of these

works also do not require fine-tuning for novel detection and use more sophisti-

cated combination methods rather than just depth-wise cross-correlation. Specif-
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Figure 18: High level design of a two-stage meta-learning few-shot object detector.
A common backbone is used to create the query image features X and support
image features F . Pooled query image features are aggregated with support image
features using φdet. In addition some models aggregate query and support features
prior to the RPN using φrpn.

ically AttentionRPN considers three different detection heads which take query

and support feature maps of equal size to aggregate global information, spatially

local information, and intermediate patches. OSWF has a module which functions

similarly to the intermediate patch head of AttentionRPN.

Both AttentionRPN and OSWF consider the concatenation of query and sup-

port features. Other methods such as OSIS [24], FsDetView [25] and Meta Faster-

RCNN [26] concatenate the result of multiple aggregation methods and incorporate

a subtraction operation. Depth-wise subtraction can be described for support fea-

ture F and query feature X as follows.

F ∈ RC×K×K X ∈ RC×H×W

Yc,y,x =
K−1∑
j=0

K−1∑
i=0

Xc,y+j,x+i − Fc,j,i

Y = X − F

Meta Faster RCNN differs slightly from the other two methods in that independent

convolutions are applied prior to concatenation to each aggregation method result.
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In addition, OSIS and FsDetView include raw query features in the concatenation

while Meta Faster RCNN includes a convolution applied to concatenated raw query

and support features. A comparison of aggregation methods for OSIS, FsDetView,

and Meta Faster RCNN is shown in Figure 19.

Figure 19: Meta-learning aggregation methods for OSIS[24], FsDetView[25], and
Meta Faster RCNN[26].
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More recently attention based methods have been increasingly used for few-

shot object detection. DCNet [27] and DAnA [28] integrate aggregation methods

inspired by attention. Some models also integrate transformers. AIT [29] and

Meta-DETR [30] are two recently developed transformer based few-shot object

detection models which have been shown to be effective.

Despite this progress few-shot methods are still limited by the fact that they

require some kind of labeled data. Zero-shot methods [31] overcome this limitation

by using some kind of correlated or auxiliary data related to the desired target class.

Many zero shot methods use word embeddings which encode statements of natural

language to create what are equivalent to supports [32, 33]. While this is useful

for high level descriptions it may be less so for situations where precise object

descriptions are required. An alternative representation useful for such a scenario

is a 3D model.

Renders of 3D models can be created rapidly and are analogous to support

images in typical few-shot object detection models. Unlike word embeddings, 3D

models can precisely describe an object. In addition, 3D models are readily avail-

able for industrially manufactured components in the form of CAD files. Industri-

ally manufactured components tend to be consistent and lack variation, as a result

a 3D model makes a well suited representation. Using a zero-shot object detector

which relies on 3D models for industrially manufactured components makes data

collection significantly less than that required by few-shot methods which require

several labeled examples of each target. In addition, renders of 3D models can

be used as input into a model using meta-learning removing the need for fine-

tuning. The use of synthetic target images using 3D models forms the basis for

Deep Template-based Object Instance Detection (DTOID) [34].
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3.3 Deep Template-based Object Instance Detection

DTOID is a deep neural network designed to take three inputs, a query image

x ∈ X and two types of template images which contain the target object named

the global template tg ∈ T and the local template tl ∈ T . Template images

are analogous to support images in few-shot object detection but differ in that

the domain of query images is not equal to that of templates. Query images

are intended to be images from practical scenarios where object detection is to

be employed. Template images on the other hand are derived from simple and

fast rendering synthetic images created using 3D model representations of target

objects. The two types of templates used in DTOID achieve different comparisons.

The global template image is used to compare low level features such as textures

and colors. On the other hand the local template is designed to compare high

level information such as shapes and components of objects. In addition, unlike

previously mentioned models, DTOID focuses on object instance detection. Object

instance detection is a slightly simpler task than object detection where a query

image x is assumed to contain a single instance of the target object. As a result

the model output is always a single detection ŷ = {ĉ, b̂} containing confidence ĉ

and bounding box b̂.

3.3.1 Architecture

DTOID consists of two modules called the correlation stage and detection

stage which are analogous to the backbone and detection heads of a typical object

detector. The correlation stage consists of three subnetworks: the backbone, the

object attention branch (OAB) and the pose specific branch (PSB). The backbone

primarly deals with query image features while the OAB and PSB create features

from global and local templates respectively. The full architecture of DTOID is

given in Figure 20.
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Figure 20: DTOID Architecture, image from [34].

Correlation Stage

During the forward pass a query image is processed by the first convolutional

layer of the backbone. DTOID uses DenseNet121 [35] which has a first layer

convolution with a kernel size of 7 × 7 and stride of 2. Applying global features

after this convolution reduces computation considerably and allows working with

low level extracted features. Global template features consist of a Cglobal × 3 × 3

tensor and are combined with the first layer query image features with depth-wise

cross-correlation and a residual summation. The resulting features are then passed

through the rest of the Densenet121 backbone. Local template features consist of a

Clocal×3×3 and Clocal×1×1 embedding. The Clocal×3×3 embedding is intended to

retain some relative spatial information about the template while the Clocal×1×1

embedding contains only global information about the local template. Both are

compared with the backbone feature map using depth-wise cross-correlation. In

addition, the Clocal × 1 × 1 embedding is subtracted as this is shown to improve

performance in other works [36]. The results of the three comparison operations

are combined in a manor similar to Meta Faster-RCNN. Each of the three resulting

feature maps have a separate convolution applied which reduces the depth from

Clocal = 640 to Ccat = 256. The results are then concatenated depth-wise and one
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last additional convolution is applied resulting in a depth of Cout = 512.

The OAB is used to create global features and consists primarily of a modified

SqueezeNet v1.1 [37] CNN. SqueezeNet is intended to be a highly lightweight CNN,

minimizing the computational requirements required for creating global template

features. An input template of a fixed size of 124× 124 is used which is concate-

nated with a binary segmentation mask. The SqueezeNet is modified to allow the

additional segmentation mask channel by adding an additional convolution initial-

ized with Kaiming Initalization [38] to the input layer. All other network weights

are kept from the Torchvision pretrained model. The SqueezeNet is split in half

resulting in two feature maps, one of which derives from a shallower intermediate

layer and the other coming from the full CNN output. These feature maps are con-

catenated depth-wise after downsampling the higher resolution feature map from

the first half of the network. The resulting 7 × 7 feature map has two additional

3 × 3 convolutions applied giving the final Cglobal × 3 × 3 tensor used for global

feature comparison.

The PSB is used to create the two local feature embeddings and has a similar

architecture to the OAB. The PSB has the same architecture as the OAB up to

before the last two 3× 3 convolutions. To create the Clocal × 3× 3 embedding two

additional 3× 3 convolutions are applied to the 7× 7 feature map given from the

concatenated SqueezeNet features as done in the OAB. The Clocal×1×1 embedding

is created by applying global average pooling to the 7× 7 feature map given from

the concatenated SqueezeNet features.

Detection Stage

The feature map created by the correlation module is used with four task heads

to perform object instance detection, segmentation and center-point prediction.

Segmentation and center-point prediction are considered to be auxiliary tasks and
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are not considered during inference. Auxiliary tasks have been shown in previous

work to enhance overall object detection performance [39]. The bounding box and

regression heads are designed in a similar manner to single stage detectors such as

RetinaNet by providing confidence values and regression offsets with respect to k

anchors. 24 anchors are used deriving from 3 aspect ratios of {1 : 2, 1 : 1, 2 : 1} and

8 scales of {302, 602, 902, 1202, 1502, 1802, 2102, 2402}. The segmentation network

uses a combination of vanilla convolutions and nearest neighbor upsampling to

create a segmentation mask of a size equal to that of the input image. The center-

point on the other hand is created using a single 3 × 3 convolution resulting in a

low resolution heat map.

3.3.2 Datasets

Unlike few-shot detectors, DTOID considers images coming from two different

domains. These domains are the query image domain X and template image

domain T . X is intended to represent a realistic and practical object detection

domain. T on the other hand consists of images which are intended to be easy to

create synthetically while containing information which is highly correlated with

the associated target in the query image domain X . Templates in T are created

using simplified lighting techniques which can be rendered in a small fraction of

a second on lower-end hardware. By comparison realistic methods such as ray

tracing are much more computationally expensive.

Query Images

Unlike most of the models discussed so far the training dataset used for

DTOID is created synthetically. DTOID requires object pose which is not present

in many detection datasets. In addition, DTOID benefits from using a high quan-

tity of object classes to increase generalization, something which many large scale
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object detection datasets lack. Lastly, 3D models of objects are needed to generate

templates. Due to these constraints the use of synthetically generated data is much

more practical than creating a new dataset from real images.

For training, DTOID considers 125 objects from the 3D pose-estimation

benchmarks in BOP [40]. 10,000 Query images were created to be similar to the

scene of the LINEMOD [41] dataset which was being used for testing. Specifically

250 scenes were created where the objects are placed on top of a table surrounded

by four walls, a floor, and a ceiling. It is stated that randomization is applied to

‘the texture of the environment (walls, floor and table), lighting (placement, type,

intensity and color), object materials (diffuse and specular reflection coefficients)

and anti-aliasing (type and various parameters)’. This type of non-domain specific

randomization is called domain randomization and is used to increase generalizing

capabilities. Four to thirteen objects are sampled with 50% of simulations drop-

ping objects with a physics simulation and the other 50% having them placed on

the table so that they are standing upright. 40 images are created for each scene

using 20 randomly placed camera positions. Each camera performs two renders,

one using realistic physics based rendering (PBR) and another which lacks light-

ing and shadows. An additional 10,000 images are generated using a fast OpenGL

renderer by randomly placing objects in an open space in front of a background

sampled from the Sun3D dataset [42]. In total 20,000 images are generated and

used for training. Example images provided from [34] are given in Figure 21.

Template Images

Template images are rendered using a fast OpenGL renderer. Objects are

rendered with diffuse reflectance and ambient occlusion with lighting provided by

a global ambient light and a single overhead directional light. Objects are rendered

such that the largest length in the image plane is in the range of 100 to 115 pixels.
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Figure 21: Images from the DTOID query image simulator, image from [34].

A border is then added to achieve the template image size of 124 × 124 pixels.

Examples images are given in Figure 22.

Figure 22: Example templates from DTOID, images from [34].

3.3.3 Training and Inference

During training heavy data augmentation is applied. Data augmentation is

the process of applying label-preserving transformations to data samples. Data

augmentation is typically applied online during training to artificially increase the

amount of data available. The hue, saturation, and brightness are randomly altered

in both the query and template using the object’s segmentation mask. Image wide

augmentation is applied such as brightness shifts, Gaussian blur, Gaussian noise,

horizontal and vertical flips, and random translations and scaling. A random hue

is applied to the whole image and template 50% of the time. Motion blur is then

applied 20% of the time using a line kernel.

Loss L is computed as a weighted sum of losses from the four task heads.

L = λclsLcls + λregLreg + λmaskLmask + λcenterLcenter
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Classification loss Lcls is focal loss [43] given by

Lcls = −α(1− py)γ log py

where α and γ are hyperparameters and py is the probability of the groundtruth

class. Focal loss is designed to provide more weight towards predictions which have

low confidence (are more incorrect). Focal loss has shown to be effective when all

anchors are used during training, rather than sampling. Regression loss Lreg is

smooth L1 loss [44] given by

Lreg =

{ 1
2β

(ŷ − y)2, |ŷ − y| < β

|ŷ − y| − β
2
, otherwise

which is a combination of L1 and L2 loss resistant to outliers. β is a hyperparameter

which determines the size of the region in which L2 loss is used. Segmentation mask

loss Lmask and center-point loss Lcenter are binary cross entropy loss and L1 loss

respectively.

A forward pass during training consists of a single query image, a single global

template and a single local template. Global templates are chosen using a random

pose while local templates are chosen to match the pose present in query images.

To increase robustness to pose variations the local template pose is perturbed

by selecting a random rotation vector and rotating by a random quantity. It

was found in [34] that a maximum perturbation angle of 30 degrees is optimal.

During inference a single global template is used to extract backbone features. 160

local templates are then used deriving from 16 different viewpoints. Each local

template is applied independently in the correlation module to create a different

set of detection results. The final detection result is acquired by taking the top

scoring result.
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Methods Linemod (2D BBox) Occluded Linemod (mAP)

Tjaden et al [45] 78.50 N/A
LINE-2D [46] 86.50 21.0
TDID corrs. [36] 54.37 34.13
SiamMask corrs. [47] 68.23 41.47
DTOID [34] 77.92 50.71

Table 1: Comparison of DTOID with other methods on Linemod and Occluded
Linemod datasets. The 2D BBox metric is discussed in [34] while mAP is given at
an IoU of 0.5.

3.3.4 Detection Performance

Data from [34] is given in Table 1 showing performance in mAP for an IoU

of 0.5 on Occluded Linemod and a metric called 2D BBox on Linemod. The

models shown were not aware of test-time models during training. Unlike the

methods previously discussed methods compared are not few-shot focused. Instead

compared methods include a mixture of classical and deep learning based models

for tasks such as pose estimation and object tracking which are capable of object

instance detection. Linemod and Occluded Linemod are from the BOP benchmark

[40]. These sets are similar and contain the same objects, they differ mainly in

that Occluded Linemod contains objects which may be only partially visible while

Linemod does not. Comparing the results it can be seen that DTOID performs

about 10% worse than the best model on Linemod but about 20% better than the

second best on Occluded Linemod. As a result the data suggests that DTOID is

best suited for environments which are less structured and in which occlusion may

occur compared to other methods.

Comparing to standard object detectors DTOID is arguably weak in terms of

detection performance. Performance of different Faster RCNN variants published

in 2017 [39] show mAP at an IoU of 0.5 in the range of 55 to 60 on the COCO

dataset. COCO is arguably more sophisticated then the scenario DTOID was

tested in. For example, unlike Occluded Linemod COCO contains images in which
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an object class may appear multiple times in close proximity, images with highly

variable environments, significantly more intra-class variance, and about seven

times more classes.
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CHAPTER 4

Methods

4.1 Changes Investigated

The potential usefulness but lack of performance in DTOID provide a reason

for improvement. Three different alterations to DTOID are investigated in an

attempt to improve recognition performance. The first is the alteration of a feature

pyramid network (FPN) to the backbone to improve detection performance on

small objects. Experiments are performed for different FPN variants. The second

alteration investigates a modification of the loss function. A weight is applied to

the loss which is a function of the difference between query and template object

poses. As a result higher loss is applied to local templates which are more similar

to the pose presented in query images. Lastly, the third alteration investigates

the usage of a transformer as a replacement for depth-wise cross-correlation in the

correlation module.

4.1.1 Feature Pyramid Networks

To increase performance on small objects an FPN is integrated into DTOID

using the torchvision [1] utilities. The DenseNet121 backbone of DTOID can be

broken up into several sections called denseblocks which vary in produced feature

map resolution. Three FPN levels {P4, P3, P2} are used deriving from the outputs

of denseblock 4, 3, and 2 with base anchor scales of {1282, 642, 322}. Each FPN

level has 15 anchors with 3 aspects ratios {1 : 2, 1 : 1, 2 : 1} and 5 scales deriving

from {1, 21/5, 22/5, 23/5, 24/5}. All FPN parameters are initialized using the pytorch

default of Kaiming initialization [2] using a uniform distribution,. A large number

of anchors is used to have comparable results with the basemodel in terms of anchor

density while also having logarithmically progressing scales which allows the same
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detection head to be used on all FPN levels. As shown in Figure 23, a vast majority

of instances have a scale
√
HW which lies within the range of the two highest

resolution feature maps meaning anchor quantity may not have a significant bias

(24 for the baseline vs 30 in the first two feature maps). An additional experiment

is performed using the baseline model with the above stated 45 anchors to control

for anchors selected.

The depths of convolutions used in the correlation module are changed to re-

duce computation and provide a more fair comparison with the baseline. Specifi-

cally each FPN level takes on an output depth of 256 rather than 640. Convolutions

applied to the three depth-wise correlated feature maps deriving from the query

image backbone and the local template features have a depth which is reduced

from 256 to 96. The depth of the final convolution applied after concatenation is

then reduced from 512 to 192. The original architecture is also tested to control

for these changes.

To maintain having a single output for segmentation and center-point pre-

diction the resulting correlation module outputs for all FPN levels are fused. Fu-

sion is performed by upsampling all feature maps to the size of the largest. The

upscaled feature maps are then aggregated to produce a single feature map. Ag-

gregation methods investigated include the averaging of up-scaled featured maps

and a concatenation followed by depth reducing convolution. In addition, different

up-scaling methods are also investigated including nearest neighbor upsampling

and bicubic interpolation. The methods of correlation module aggregation tested

when using the FPN are displayed in Figure 24.

The anchor sampling strategy used for the FPN variants differ from the base-

line. The baseline model uses focal loss [3] which is designed to use all anchors

during training. Rather than using all anchors, the FPN variant uses the Fast
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Figure 23: Distribution of bounding boxes scales
√
HW for the training dataset.

RCNN anchor sampling strategy as discussed in Chapter 2. This decision was

made based on performance comparisons with the FPN variant which showed

worse performance when not using sampled anchors. For the sake of comparison

experiments are also performed on the baseline model and baseline FPN model

using both anchor sampling strategies.

4.1.2 Viewpoint Loss Correction

Local templates are chosen during training to have a pose which matches

that of the target in the associated query image. A perturbation is then applied
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Figure 24: Diagram of pyramid level fusion via concatenation (middle) and aver-
aging (bottom). Both methods take upsampled feature maps (top) by applying
either nearest neighbor upsampling or bicubic interpolation to FPN feature maps.

to local template object poses to increase robustness to pose variation during

inference. However, despite perturbations not giving an accurate correspondence

between query image and template viewpoints all perturbation values are given

equal weight. To compensate for variation in perturbations the loss L is weighted

based on the perturbation angle θ using a cosine function.

Lviewpoint = cos(α · θ) · L : α ∈ [0,
π

2θmax
], θ ∈ [0, θmax]

Where α is a hyperparameter determining how rapidly perturbation magni-

tude effects loss and θmax is the maximum possible perturbation angle. For the

query image base orientation matrix Q and perturbed orientation matrix P the

perturbation angle can be calculated using the difference between rotations as

follows
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θ = arccos(
tr PQ> − 1

2
)

Values α = 1, 2, 3 are investigated where α = 3 is the largest possible α for

when the maximum perturbation angle is 30 degrees. An additional experiment is

also performed to control for learning rate variation by using a randomly sampled

θ unrelated to perturbation angle.

4.1.3 Transformers

Figure 25: Usage of a vanilla transformer to aggregate local template and backbone
features.

Transformers have been shown to be highly effective in the image domain.

Methods such as AIT [4] and Meta-DETR [5] have further demonstrated the capa-

bility of transformers for few-shot object detection. Depth-wise cross-correlation is

fundamentally limited by the fact that orientation is highly important. Viewpoint

variations such as in-plane rotation may impact overall detection performance as

different features maps result. This can be partially alleviated by averaging tem-

plate feature maps spatially but as a result information is destroyed. In addition

features may also be viewpoint specific. Depth-wise cross-correlation is a very

simple comparison that essentially amounts to template-matching. Transformers

have shown to be capable in domains such as image classification [6] and object
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detection [7]. The usage of attention in transformers allows global comparison

of sequence elements. With the global comparing capability of transformers it is

possible that higher level understanding can be achieved which is less dependent

on object pose. As a result it is possible that support feature poses become less

important, increasing robustness to query and template pose discrepancies.

The integration of a transformer into DTOID is presented in Figure 25. A

vanilla transformer is used to replace the correlation module. The pytorch [8] im-

plementation is used specifically with default parameters. Local template features

taken from the PSB are used as encoder inputs while backbone features are taken

as decoder inputs. Prior to input into the transformer backbone and template

feature maps are flattened into a sequence and are summed with a sinusoidal posi-

tional encoding as done in DETR[7]. The decoder produces a new sequence which

is then reshaped into a new feature map with the same shape as the decoder input.

After reshaping the result is passed to the detection module.

The choice of using a vanilla transformers is done primarily for implementa-

tion simplicity. Attention or transformers are not applied to the detection stage as

done in other works such as DETR. Instead, transformers are used as a direct re-

placement for depth-wise cross-correlation to improve the aggregation of template

and query image features.

4.2 Dataset Creation

In DTOID the evaluation task consists of a cluttered table containing textured

objects. Both training and testing objects are from BOP Challenge [9] datasets.

After contacting the authors it was found that the original dataset and dataset

generation source code were lost. Instead of attempting to create a new dataset

with similar parameters an alternative task is considered which involves untextured

objects in a simple flat environment. Such a setting more closely mimics the
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industrial environments this study focuses on.

4.2.1 Object Data

It was found that increasing the number of object classes used during training

increased performance in DTOID. The Thingy10K [10] dataset contains 10,000 un-

textured CAD models suitable for providing a large number of untextured objects.

However, the Thingy10K dataset was designed to accurately represent data on the

Thingyverse platform. As a result, models come in varying file formats and may

be corrupted. In addition, object scale varies largely and some objects are disjoint.

Many of these issues make direct use of the Thingy10K dataset unsuitable so a

filtering procedure is applied to extract usable models. First, all models over 1MB

in size are removed to speed up processing time. Next, all models which are not

disjoint and are in STL format are loaded into Blender 2.93 [11] using a script. A

metadata file provided by the Thingy10K dataset is used to determine if objects

are disjoint. Objects which failed to load into Blender are also filtered out of the

selection process. Once loaded all models have planar decimation applied with

default settings to remove redundant surfaces. Objects are centered about their

center of mass calculated using surface area. Each model has a scale parameter

si which is equal to the largest distance between any possible vertex pair of the

object. An empirically chosen set of scaling values emin = 3cm, ē = 13.5cm, and

emax = 20cm are used to rescale and filter the remaining models. The average scale

of all models s̄ is used to scale models on all dimensions producing a new scale for

each object s′i = si
ē
s̄
. Objects for which emin < s′i < emax are then kept. Before

exporting to ply format models are decomposed into meshes containing only trian-

gles for compatibility purposes and have red vertex coloring applied. Full Python

scripts for the filtering algorithm are given in Appendix A which should be able to

recreate the original set in a deterministic fashion. As a result of the filtering pro-
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cess 3424 models remained. 800 are used for testing and 200 for online validation

leaving 2424 for training.

4.2.2 Query Images

Figure 26: Cross section diagram of the query image generation scene. Red indi-
cates the region where objects are placed, green indicates the region the camera
is placed in, and blue indicates the region where the light is placed in. Note the
camera sampling region is inside the light sampling region.

All query image data is created synthetically using BlenderProc 1.10.0 [12],

a synthetic dataset generation automation tool based on Blender. BlenderProc

provides mechanisms to describe scene creation and data sampling. Training,

testing and validation splits are created using the same generation procedure, only

differing by the objects used. All images are derived from one or more cameras in

a generated scene. Scenes are created by placing a flat 2x2 meter gray plane at the

origin surrounded by gray walls 1 meter in height to create a room with no roof.

Up to 10 objects are chosen at random without replacement and placed 20cm to
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50cm above the surface in a square with 40cm side length centered on the origin.

Objects are given a random orientation and dropped using a physics simulation

which runs until the objects have settled. Lighting is provided by a single point

light placed randomly in a shell with a distance 50cm to 90cm from the origin

and with a maximum angle of 60 degrees with the surface plane normal. Light

colors are chosen from each color RGB channel independently at random with

normalized intensity between 0.8 and 1.0 and a total energy of 10 watts. Object

materials are also modified randomly, with specular and roughness values chosen

randomly between 0 and 1. Camera locations are chosen in a manor similar to

the point light by placing randomly in a shell 60cm to 90cm from the origin and

with a maximum angle of 50 degrees with the surface plane normal. Cameras are

oriented such that they point at the origin and have a random in-plane rotation.

All query image cameras use a horizontal field of view of 48.45◦. A cross section

diagram is shown in Figure 26. All images are 480× 640 in size and are rendered

using CYCLES, a physics based rendering (PBR) engine, unlike [13] which uses a

combination of PBR and OpenGL renders. The full BlenderProc configuration file

used is given in Appendix C. In total 80,000 training images were generated with 4

images per scene, 2,000 testing images with 1 image per scene, and 200 validation

images with 1 image per scene. Examples query images are given in Figure 27.

Figure 27: Example query images generated using BlenderProc.
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4.2.3 Template Images

Template images are created using the BOP Toolkit [14] which provides a fast

C++ based OpenGL renderer that can run without a display using OSMesa [15].

Phong shading is used for all template renders. Scenes are created by placing the

object centered in front of the camera. The placement distance is chosen to be the

closest distance such that the smallest sphere centered at the object’s origin which

could enclose the object fits in the camera frame. An additional distance is added

which is randomly chosen between 0% and 10% of the object’s scale for training

and fixed to 5% of the object’s scale for testing. Lighting is achieved through a

combination of ambient lighting and a point light placed randomly on a sphere

with distance 1km. Both lights produce a neutral white color. After rendering a

fixed padding of 8 pixels is then added to templates resulting in a final image size

of 124× 124.

Figure 28: Visual example of the effect of perspective projection on object view.
Images right of the center object have the same pose but appear increasingly
different the further from the center they are. Images left of the center have been
rotated to correct for this discrepancy.

During training templates are rendered online. Global template poses are
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chosen randomly while local template poses are chosen based on the query image

pose similar to DTOID. Local template poses are also perturbed by rotating about

a random rotation vector up to 30 degrees, the optimal perturbation angle found

in DTOID.

Objects were placed in front of the camera rather than at their true location to

ease implementation when using the BOP Toolkit renderer. However, moving the

object position results in a discrepancy between query and template images. The

pose associated with a target object results in a local template image view which

is more dissimilar with the query image view the further a query image object is

from the image center as demonstrated in Figure 28. To counter this problem the

perturbed query image pose is rotated to more closely align the template image

view with the query image view. Specifically, for a given scene let Rm2c and

tm2c represent the orientation matrix and translation vector respectively that map

objects from model space to the camera space. Assuming the camera points in the

negative z axis, the base pose is rotated about r by angle φ in camera space using

the following.

t̂m2c =
tm2c

||tm2c||

k̂ =

0
0
1


r = t̂m2c × k̂

φ = arcsin(||r||)

During inference eight scenes are created with 20 images each sampled from

the vertices of a dodecahedron. In each scene the point light location, object pose,

and camera in-plane rotations are chosen randomly. As a result 160 templates are
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generated for use during inference. Example template images are given in Figure

29.

Figure 29: Example template images.
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CHAPTER 5

Experiments

5.1 Experimental Setup

All experiments are performed with similar training parameters. Data aug-

mentation is also applied to both query and template images. All numerical results

are presented using the 6 COCO AP [1] metrics.

5.1.1 Training Details

Unless stated otherwise training is performed with the following parameters.

The total training duration is 400,000 iterations with a batch size of 4 resulting

in 20 epochs of training. AMS-Grad is used with a base learning rate of 10−4 and

weight decay of 10−6 as done in DTOID [2]. The learning rate is decayed using a

gamma of 0.1 at epoch 10 and epoch 15. During each epoch images are sampled

uniformly at random without replacement.

Similar to DTOID, heavy data augmentation is applied. Images are randomly

flipped vertically and horizontally with a probability of 0.5. Random cropping is

also applied, with the result being rescaled to match the original image resolution.

Cropping is achieved by selecting a random region which is fully contained within

the image and has a size equal a fraction of the original image size sampled between

2/3 and 1. For query images Gaussian blur with a radius of 3 is applied with a

probability of 0.2, Gaussian noise with σ = 5 is applied with probability 0.2, and

brightness is altered by multiplying the image by a random factor between 0 and 2

with a probability of 0.2. In addition, the hue of both the query image and template

image are changed to the same random value with probability 0.5. Although it

is not investigated, augmentations with Gaussian blur, Gaussian noise, brightness

and hue should enhance performance in real image scenarios and is mainly kept
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Name GPU VRAM RAM CPU

dlmachine 2x 3090 48GB 128GB AMD 3960X
aurora 1x 3090 24GB 128GB Intel i7-10700KF
lambda 4x 2080 Ti 44GB 128GB Intel i9-9920X

Table 2: List of machines used for running experiments.

due to being present in DTOID. All experiments were performed between the three

machines presented in Table 2.

The same loss function is used as in DTOID with only loss weights adjusted.

The total loss L can be written as a weighted sum of classification loss Lcls, re-

gression (bounding box) loss Lreg, segmentation loss Lmask and center-point loss

Lcenter.

L = λclsLcls + λregLreg + λmaskLmask + λcenterLcenter

Originally λcenter, λmask = 20 with other values being 1 but it was found that λcls =

1
16

with other values being 1 gave better results and was used for all experiments.

For loss function hyperparameters α = 0.25 and γ = 2 are used for focal loss in Lcls

and β = 1/9 is used for smooth L1 loss. In addition, center-point loss is adjusted

slightly. In [2] center-point annotations are created using an isotropic bimodal

Gaussian with a mean equal to that of the object position and standard deviation

of 5. A standard deviation of 1 is used instead as a standard deviation of 5 was

found to be too imprecise.

5.1.2 Evaluation Details

Results are presented in terms of the 6 COCO AP metrics as presented in

Figure 30. All COCO metrics are calculated as an average across all classes. Three

metrics focus on AP at specific IoUs: AP IoU=0.50 (AP50), AP IoU=0.75 (AP75) and

AP IoU=0.50:0.05:0.95 (AP (COCO)). While AP50 and AP75 only consider AP at

IoUs of 0.5 and 0.75 respectively, AP (COCO) takes an average across all IoUs
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inclusively between 0.5 and 0.95 at 0.05 increments. AP large (APL), APmedium

(APM) and AP small (APS) are similar to AP (COCO) but only consider ground

truth bounding boxes which meet certain size criteria as given in Figure 30. Note

that the term AP will refer to AP (COCO) throughout the rest of this chapter.

Figure 30: COCO Metrics. Table from [1].

To evaluate trained models only the objects in a given test image are con-

sidered. Due to high variations in performance each configuration is trained four

times. Results are given by providing the max and average of the four trials across

each metric. Every 10,000 training iterations the model is evaluated using the val-

idation split and a model snapshot is taken. Graphs for validation performance for

all six metrics during training can be found in the Appendix B. For each trained

model testing is performed by applying the test split on the last three snapshots

and taking an average of performance results. As a result trial averages are actually

an average of 12 evaluations.

5.2 Experimental Results

Experiments are performed for FPNs, viewpoint loss weighting and transform-

ers as discussed in Chapter 4. All numerical results are provided using COCO AP.

Four trials are performed per experiment unless stated otherwise with maximum
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and average performance provided. Image evaluation examples are provided for

some experiments.

5.2.1 Feature Pyramid Networks

FPN experiments are broken up into three main sections. First, anchor con-

figuration and anchor sampling strategies are investigated for the the baseline and

FPN variant to provide a fair comparison. Next, strategies used to combine fea-

ture pyramid levels for segmentation and center-point prediction are investigated.

Lastly, a larger FPN variant is trained to investigate model size. All FPN vari-

ants are trained with a base learning rate of 2.5 · 10−5 which was found through a

learning rate search. All other training parameters remain the same.

Anchor Sampling

As discussed in Chapter 4 three baseline models are used for comparison.

DTOID is the baseline intended to replicate the original DTOID paper. DTOID-

45R is trained the same as DTOID but uses the 45 anchors used in the FPN

variant. Lastly DTOID-45B is the same as DTOID-45R but uses Fast RCNN

anchor sampling as discussed in Chapter 2.

When comparing baseline performance for anchor sampling strategies in

DTOID-45R and DTOID-45B performance does not show much of a substantial

difference in terms of AP as shown in Table 3 However, looking at AP75 shows

that DTOID-45R performs about 100% better on average while performing over

12 AP50 less as compared to DTOID-45B. AP50 is often considered a poor metric

for object recognition performance [3] so DTOID-45R can arguably be considered

a better object (instance) detector. Both DTOID-45R and DTOID-45B perform

substantially better than DTOID on most metrics.

Two FPN variants are used to compare anchor sampling strategies.
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DTOID+FPN-B uses the Fast RCNN anchor sampling strategy done in DTOID-

45B while DTOID+FPN-R uses all anchors as done with DTOID-45R. Results in

Table 3 show opposite trends in DTOID+FPN-B and DTOID+FPN-R compared

to DTOID-45B and DTOID-45R. DTOID-FPN-B performs better DTOID+FPN-

R on all metrics. Focal loss with full anchor sampling was originally developed

for FPN detectors [4] so these results may require additional investigation. For

all other FPN experiments the Fast RCNN sampling strategy is used as done in

DTOID+FPN-B.

When comparing the best variants from the baseline FPNs and baseline con-

trols, DTOID+FPN-B and DTOID-45R, a significant improvement can be seen as

shown in Table 3 when using FPNs. An increase of 6.4 points is seen for AP run

averages. In addition, APM and APS are increased 5.7 and 11.1 points respec-

tively suggesting a benefit from using FPNs for small objects. However, APL is

decreased 7.2 points. This can possibly be attributed to the use of lower resolution

feature maps for large scale objects. AP is likely not highly impacted from this

due to the lack of objects with HW > 962 as shown in Figure 23.

Figure 31: Visual comparison of DTOID (top) and DTOID+FPN-LARGE (bot-
tom) variants. Images are randomly sampled. Best viewed electronically.
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Pyramid Fusion

To fuse pyramid levels for segmentation and center-point prediction

DTOID+FPN-B performs nearest neighbor upsampling on feature pyramid levels

then averages the result. As previously discussed segmentation and center-point

prediction are not used at test time and are only used to increase object instance de-

tection performance. DTOID+FPN-BICUBIC and DTOID+FPN-CONCAT are

based on DTOID+FPN-B and investigate alternative strategies to fuse pyramid

levels. DTOID+FPN-BICUBIC applies bicubic upsampling and shows a signifi-

cant drop in performance in terms of trial averages for all metrics as show in Table

3. It is possible that the mixing of features which results from bicubic upsampling

harms localization performance. DTOID+FPN-CONCAT applies a convolution

to concatenated pyramid levels rather than averaging. DTOID+FPN-CONCAT

shows a possible slight increase in performance indicating that it may be best to

consider pyramid levels independently.

Model Size

Lastly, DTOID+FPN-LARGE shares configuration with DTOID+FPN-B but

uses the original DTOID convolution depths for local template correlation as de-

scribed in Chapter 4. As shown in Table 3 DTOID+FPN-LARGE is the best

performing model overall in terms of AP achieving 43.1 points, 4.6 points higher

than DTOID+FPN-B and 11 points higher than DTOID-45R. These results sug-

gest that the performance on FPN variants does not originate from over-fitting in

the baseline model and that additional performance may be achievable by further

increasing model size. Example inference images are shown in Figure 31 comparing

DTOID and DTOID+FPN-LARGE.
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Model AP AP50 AP75 APL APM APS Size

DTOID 26.7/33.5 51.6/64.7 22.2/28.0 42.0/48.5 29.8/37.7 8.2/10.6 33M
DTOID-45R 32.1/36.9 60.4/66.7 27.7/35.3 43.3/52.8 37.3/42.1 14.5/16.1 33M
DTOID-45B 32.5/33.9 72.9/74.9 13.8/15.4 39.4/40.2 37.8/39.3 17.4/17.7 33M
DTOID+FPN-B 38.5/40.4 65.0/68.4 41.3/43.5 35.5/38.1 43.0/45.0 25.6/27.3 18M
DTOID+FPN-R 14.5/19.3 26.7/35.6 13.2/18.1 15.6/18.6 17.3/22.3 11.3/19.5 18M
DTOID+FPN-CONCAT 40.0/42.4 69.3/73.9 40.7/43.7 36.0/40.0 44.6/47.0 27.7/31.6 20M
DTOID+FPN-BICUBIC 32.7/40.3 55.8/69.6 34.2/41.4 28.6/37.8 36.6/45.5 22.1/26.6 18M
DTOID+FPN-LARGE 43.1/45.7 74.5/78.6 44.0/47.3 41.1/43.6 48.2/51.0 28.4/30.6 45M

Table 3: Comparison of baseline and FPN variants. Metrics are given in the format
average/maximum.

5.2.2 Viewpoint Loss

Three models were trained with viewpoint loss weighting as discussed in Chap-

ter 4 named DTOID+VPL-α for α = 1, 2, 3. Comparisons with the baseline are

presented in Table 4. For the three models tested DTOID+VPL-3 performed the

best in terms of average performance for AP. Compared to DTOID, DTOID+VPL-

3 performs better in all metrics with a 2.6 increase in AP when considering av-

erages. However, when considering the maximum performance across the four

trials tested the baseline and DTOID+VPL-2 performed the best in terms of AP.

When considering run averages it appears that the use of viewpoint loss weighting

provides an increase in performance.

In addition, DTOID+VPL-3-RAND displays the performance of

DTOID+VPL-3 when θ is randomly sampled unrelated to perturbation an-

gle. It is found that performance is decreased compared to DTOID and

DTOID+VPL-3 suggesting variations in learning rate are not the source of

increased performance in viewpoint loss variants.

When considering the three values of α used it appears that higher α values

result in a higher performance when considering averages as demonstrated in Figure

32. Since α = 3 is the maximum α value for θmax = 30◦ it is advisable to always

set α to its maximum configurable value α = π
2θmax

.
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Figure 32: AP, AP50, and AP75 for run averages with respect to α.

5.2.3 Transformers

A transformer is integrated into DTOID as described in Chapter 4. Due to

computational and time constraints only a single trial is performed. In addition,

an alternative training configuration is used. A batch size of 8 is used with a base

learning rate of 2 · 10−5 found through a learning rate search. 10x more training

is performed as in [5] for a total of 2,000,000 iterations, or 200 epochs. Learning

rate is inspired by AIT [6] and is computed as follows during training

lr = base lr ·min(steps/warm steps, (gamma)bsteps/step periodc)
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Model AP AP50 AP75 APL APM APS

DTOID 26.7/33.5 51.6/64.7 22.2/28.0 42.0/48.5 29.8/37.7 8.2/10.6
DTOID+VPL-1 24.1/28.9 49.3/58.5 17.2/21.6 35.4/41.6 27.5/32.4 7.8/10.7
DTOID+VPL-2 28.7/33.4 55.8/66.8 23.6/25.8 45.0/52.2 31.9/36.5 8.9/11.3
DTOID+VPL-3 29.3/32.7 58.0/62.6 23.5/28.6 42.2/46.4 33.2/36.5 9.6/10.7

DTOID+VPL-3-RAND 24.8/28.7 49.6/56.4 18.9/22.5 39.8/46.1 28.2/32.5 7.0/9.1

Table 4: Comparison of baseline and viewpoint loss variants. Metrics are given in
the format average/maximum.

Model AP AP50 AP75 APL APM APS

DTOID 26.7/33.5 51.6/64.7 22.2/28.0 42.0/48.5 29.8/37.7 8.2/10.6
DTOID+TF 20.2 41.7 15.8 34.7 22.7 5.6

Table 5: Comparison of baseline and transformer variant.

Where warm steps is set to 20,000 and step period is set to 80,000. Learning rate

grows linearly up to the base learning rate for the first 20,000 iterations, followed

by a learning rate decay by a gamma of 0.9 every 80,000 iterations. Validation is

done every 20,000 iterations rather than every 10,000 iterations as done in other

experiments. Snapshots are still taken every 10,000 iterations for testing.

Figure 33: Visual comparison of DTOID (top) and DTOID+TF (bottom) variants.
Images are randomly sampled. Best viewed electronically.

Numerical and visual comparisons with DTOID can be seen in Table 5 and Fig-

ure 33 with DTOID+TF indicating the transformer variant. While DTOID+TF

was successfully trained to perform object instance detection its overall perfor-

mance is substantially less than that of the baseline, DTOID. Validation per-

84



Figure 34: Validation performance in AP during training for DTOID+TF. Addi-
tional data can be found in Appendix B.

formance during training is shown in Figure 34. Performance appears to have

plateaued suggesting the model was sufficiently trained. Visual results shown in

Figure 33 show no strange or unusual failure conditions. Many incorrect predic-

tions in DTOID+TF appear to be associated with the wrong object which also

often happens in DTOID.

One notable difference from DTOID+TF and other transformer models is that

the inputs for the encoder and decoder can be considered to be reversed. Typically

the encoder takes the sequence to be transformed. For example, vanilla transform-

ers performing machine translation will take the source language as the encoder

input. For vision both DETR [5] and ViT [7] take images as encoder inputs. We

instead use image data input at the decoder with the intent to transform it for

object detection using template features. While this allows a feature map of the

same size as the input to be created it is separated from the general philosophy

typically used for transformers and may be the cause of worsened performance.

As a result future work may benefit from taking an alternative approach based on
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this observation.
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CHAPTER 6

Conclusion

This study investigates improving the object instance detection performance of

DTOID, a zero-shot meta-learning object instance detection model. Most few-shot

object detection models use fine-tuning, or in some cases meta-learning, to learn

from few labeled examples. By comparison, DTOID uses 3D models of objects

to create controlled renders in place of labeled data. However, DTOID’s object

detection performance has a significant room for improvement providing a reason

for this study.

Experiments are conducted on untextured components in a simple setting

intended to mimic objects manufactured industrial settings. Objects produced

in industrial settings often have CAD models readily available making DTOID

particularly useful in such a scenario. Both training and testing data derive from

over 3000 3D models extracted from the Thingi10k dataset [1]. 80,000 images were

generated for training using physics based rendering in Blender. In addition, fast

template rendering allowed online generation of template examples for training.

Three alterations to DTOID were proposed and investigated with a primary

research question of if they can improve object instance detection performance.

Six numerical performance metrics from the COCO [2] benchmark are used to

compare performance. In addition, visual examples are provided. As a result of

this study three alterations to DTOID are contributed in addition to experimental

results demonstrating the object instance detection capability of those methods.

The first alteration investigated is the addition of a feature pyramid network

(FPN) to DTOID’s backbone. FPNs are highly researched and are commonly used

to enhance performance on small objects in object detection. Several experiments
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are performed using FPNs controlling for factors such as anchors used, model

parameter size and training method. Results show an increase in performance in-

dependent of the anchors used. In addition, a large parameter FPN-based DTOID

variant is able to achieve an over 60% performance gain compared to the baseline

model.

The second alteration investigated involves a novel loss weighting strategy

During training local template images contain objects which are perturbed with

respect to the query image to increase robustness at test time. However, these per-

turbed images are given equal weight during training compared to ones with high

correspondence to query image data. A novel viewpoint loss weighting strategy

is proposed to give more value to examples with less perturbation. By employing

this strategy a modest increase in object instance detection performance of 2.5

AP is found when considering trial averages. In addition, the hyperparameter α

used by viewpoint loss weighting is found to have a positive correlation with object

instance detection performance. Lastly, an experiment is performed which applies

viewpoint loss weighting with a randomly sampled perturbation value unrelated

to the one actually used. When using a unrelated perturbation value for view-

point loss weighting it is found that performance decreases suggesting that VPL

increases performance as result of viewpoint correspondence and not as a result of

learning rate change.

The third alteration investigated is the usage of a transformer to aggregate

query and template features. Transformers have received significant attention in

recent year in a variety of tasks including computer vision. Different hyperpa-

rameters are used to better suite the transformer variant of DTOID. Despite this,

performance is unable to meet that of the baseline. Possible causes are discussed,

including the difference in how transformer inputs are treated in this work com-
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pared to others.

In the future transformers may be of further interest for investigation due to

the power they have shown in other works. Rather than integrating transformers

into the current DTOID architecture it may be more effective to utilize existing

transformer based object detectors such as DETR [3]. DETR using image features

as encoder inputs and a set of learned embeddings called object queries for decoder

inputs. Object queries are what ultimately represent detected objects in DETR’s

output. One possible way to incorporate templates into DETR is by transforming

template features into object queries. Lastly, transformers may allow the usage of

multiple templates for PSB input to allow better 3D understanding of objects. In

addition, multi-template input may provide an advantage over fine-tuned and other

meta-learning methods since significant computation may be shared. Ultimately

it may be possible to encode 3D models into a single feature directly rather than

rendering them, removing the need to have images of target objects completely.

List of References

[1] Q. Zhou and A. Jacobson, “Thingi10k: A dataset of 10,000 3d-printing mod-
els,” arXiv preprint arXiv:1605.04797, 2016.

[2] “Coco metrics,” https://cocodataset.org, accessed: 2022-06-23.

[3] N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and S. Zagoruyko,
“End-to-end object detection with transformers,” CoRR, vol. abs/2005.12872,
2020. [Online]. Available: https://arxiv.org/abs/2005.12872

89

https://cocodataset.org
https://arxiv.org/abs/2005.12872


APPENDIX A

Blender Scripts

A.1 Main Script
1 import logging

2 import numpy as np

3 import shutil

4 import subprocess

5 import sys

6 import os

7 import glob

8 import yaml

9 import tarfile

10 import json

11 import requests

12 import click

13 import random

14 import gdown

15 import datetime

16 from tqdm import tqdm

17 from pathlib import Path

18
19 project_dir = Path(__file__).resolve().parents[1]

20 sys.path.append(str(project_dir))

21
22 import src.config as config

23
24 sys.path.append(config.BOP_TOOLKIT_PATH)

25
26 from bop_toolkit_lib import inout

27 from bop_toolkit_lib import misc

28
29
30 ldr_tmp = '/tmp/dtoid_model.ldr'

31 obj_tmp = '/tmp/dtoid_model.obj'

32 output_dir = 'data/raw/models'

33 output_tfile = os.path.join(output_dir, 'obj_{:06d}.ply')

34 split_file = 'data/raw/bop_data/extemps_query/split_obj_ids.yaml'

35
36
37 # vertex color to apply to all objects

38 color = ["255", "0", "0"]

39
40
41 def md5_file(f):

42 return subprocess.check_output("md5sum {}".format(f)).strip()

43
44
45 def load_obj(f):

46 verts = []

47 norms = []

48 faces = []

49 with open(f, 'r+') as m:

50 for row in m:

51 line = row[:-1].split(' ')

52 if line[0] == 'v':

53 verts.append(np.array(line[1:]).astype(np.float))

54 elif line[0] == 'vn':

55 norms.append(line[1:])

56 elif line[0] == 'f':

57 # ignore texture coordinates

58 if any('//' in v for v in line):

59 line = [v.split('//')[0] for v in line]

60 face = (np.array(line[1:]).astype(int) - 1).astype(str).tolist()

61 faces.append(face)

62 return verts, norms, faces

63
64
65 def export_dataset(split_data):

66
67 logger = logging.getLogger(__name__)

68
69 # save split file object ids

70 with open(split_file, 'w') as s:

71 yaml.dump(split_data, s, sort_keys=False)

72
73 models_info = {}

74 for model_tpath in glob.glob(os.path.join(output_dir, '*.ply')):

75
76 obj_id = int(os.path.split(model_tpath)[1].split('.')[0].split('_')[1])

77
78 logger.info('Processing model of object {}...'.format(obj_id))
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79
80 model = inout.load_ply(model_tpath)

81
82 # Calculate 3D bounding box.

83 ref_pt = np.array(list(map(float, model['pts'].min(axis=0).flatten())))

84 size = np.array(list(map(float, (model['pts'].max(axis=0) - ref_pt).flatten())))

85
86 # Calculated diameter.

87 diameter = misc.calc_pts_diameter(model['pts'])

88
89 models_info[obj_id] = {

90 'min_x': ref_pt[0], 'min_y': ref_pt[1], 'min_z': ref_pt[2],

91 'size_x': size[0], 'size_y': size[1], 'size_z': size[2],

92 'diameter': diameter

93 }

94
95 # Save the calculated info about the object models.

96 models_info_path = os.path.join(output_dir, 'models_info.json')

97 inout.save_json(models_info_path, models_info)

98
99

100 @click.command()

101 @click.argument('dataset', type=click.Choice(['thingyverse', 'leocad']))

102 def main(dataset):

103 """ Pulls models given in manifest and processes them for usage

104 """

105 logger = logging.getLogger(__name__)

106 logger.info('Starting...')

107
108 if not os.path.isdir(output_dir):

109 os.makedirs(output_dir)

110 else:

111 # remove old files

112 for f in glob.glob(os.path.join(output_dir, '*')):

113 os.remove(f)

114
115 if dataset == 'thingyverse':

116 dataset_dir_raw = 'scripts/thingyverse_raw'

117 dataset_dir_raw_loc = '{}/Thingi10K/raw_meshes'.format(dataset_dir_raw)

118 dataset_dir = 'scripts/thingyverse'

119 dataset_dir_loc = '{}/Thingi10K/raw_meshes'.format(dataset_dir)

120 out_file_name = 'Thingi10K.tar.gz'

121 dataset_file = 'scripts/{}'.format(out_file_name)

122 src_url = 'https://drive.google.com/u/0/uc?id=0B4_KyPW4T9oGRHdMTGZnVDFHLUU'

123 mapping_file = 'scripts/thingyverse_mapping_output.yaml'

124
125 archive_sum = 'caf1c2e65c97aea8618a2431506c04c5'

126 manifest_file = 'scripts/thingyverse_manifest.yaml'

127 # TODO add integrity checks

128 if not os.path.isdir(dataset_dir):

129 logger.info("Missing processed models, checking raw models")

130 # TODO add integrity checks

131 if not os.path.isdir(dataset_dir_raw):

132 logger.info("Missing raw models, checking compressed models")

133 # TODO add integrity checks

134 if not os.path.isfile(dataset_file):

135 logger.info("Missing compressed models, starting download...")

136 gdown.download(src_url, dataset_file, quiet=False)

137 with tarfile.open(dataset_file) as t:

138 t.extractall(dataset_dir_raw)

139 logger.info("Finished extracting")

140 total_dropped = 0

141 for stl_file in glob.glob(os.path.join(dataset_dir_raw_loc, "*.stl")):

142 # drops files larger than 1MB

143 size = os.path.getsize(stl_file)

144 if size >= 1e6:

145 os.remove(stl_file)

146 total_dropped += size

147 logging.info("Removed {}| MB".format(total_dropped // 1e6))

148 p = subprocess.Popen("blender -b -P scripts/process_models.py", shell=True)

149 p.wait()

150 if p.returncode != 0:

151 raise Exception("Blender failed to process models!")

152
153 # export models to ply

154 with open(manifest_file, 'r') as f:

155 manifest = yaml.safe_load(f)

156 mapping = {}

157 mapping['created'] = str(datetime.datetime.now(datetime.timezone.utc))

158 idx = 1

159 split_obj_ids = {}

160 ply_models = glob.glob(os.path.join(dataset_dir_loc, "*.ply"))

161 key_fn = lambda x: int(os.path.splitext(os.path.split(x)[1])[0])

162 ply_models = sorted(ply_models, key=key_fn)

163 # handle test and val which have fixed size

164 for split, counts in manifest.items():

165 mapping[split] = {}

166 obj_ids = []

167 if counts <= 0:

168 counts = len(ply_models)
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169 for i in range(counts):

170 ply = ply_models.pop(0)

171 output_file = output_tfile.format(idx)

172 logging.info("{} is {} of {}".format(ply, output_file, split))

173 mapping[split][output_file] = ply

174 shutil.copyfile(ply, output_file)

175 obj_ids.append(idx)

176 idx += 1

177 split_obj_ids[split] = obj_ids

178
179 inout.save_json(mapping_file, mapping)

180
181 export_dataset(split_obj_ids)

182
183 elif dataset == 'leocad':

184 manifest_file = 'scripts/leocad_manifest.yaml'

185
186 # export models to ply

187 with open(manifest_file, 'r') as f:

188 manifest = yaml.safe_load(f)

189 idx = 1

190 split_obj_ids = {}

191 for split, model_names in manifest.items():

192 obj_ids = []

193 for model_name in model_names:

194 logger.info('{} : {}'.format(idx, model_name))

195 # need to convert leocad format for their models

196 # create ldr for model

197 with open(ldr_tmp, 'w') as m:

198 m.write('1 4 0 0 0 1 0 0 0 1 0 0 0 1 {}'.format(model_name))

199 # export to obj

200 p = subprocess.Popen(

201 'leocad -obj {} {}'.format(obj_tmp, ldr_tmp), shell=True)

202 p.wait()

203 if p.returncode != 0:

204 exit(p.returncode)

205 # convert obj to ply

206 verts, norms, faces = load_obj(obj_tmp)

207
208 # geometrically center the object

209 verts_nd = np.stack(verts)

210 geo_mean = verts_nd.mean(0)

211 verts_nd -= geo_mean

212 verts = verts_nd.astype(str).tolist()

213
214 # ply export

215 with open(output_tfile.format(idx), 'w') as m:

216 m.write("ply\n")

217 m.write("format ascii 1.0\n")

218 m.write("element vertex {}\n".format(len(verts)))

219 m.write("property float x\n")

220 m.write("property float y\n")

221 m.write("property float z\n")

222 m.write("property float nx\n")

223 m.write("property float ny\n")

224 m.write("property float nz\n")

225 m.write("property uchar red\n")

226 m.write("property uchar green\n")

227 m.write("property uchar blue\n")

228 m.write("element face {}\n".format(len(faces)))

229 m.write("property list uchar uint vertex_indices\n")

230 m.write("end_header\n")

231 for vert, norm in zip(verts, norms):

232 vertstr = " ".join(

233 vert +

234 norm +

235 color) + "\n"

236 m.write(vertstr)

237 for face in faces:

238 line = [str(len(face))] + face

239 m.write(" ".join(line) + "\n")

240
241 obj_ids.append(idx)

242 idx += 1

243
244 split_obj_ids[split] = obj_ids

245
246 export_dataset(split_obj_ids)

247
248 if __name__ == '__main__':

249 log_fmt = '%(asctime)s - %(name)s - %(levelname)s - %(message)s'

250 logging.basicConfig(level=logging.INFO, format=log_fmt)

251
252 main()
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A.2 Blender Processing Script
1 import bpy

2 import numpy as np

3 import math

4 import os

5 import csv

6 import glob

7 import shutil

8 import logging

9 import sys

10 from scipy.spatial import distance

11
12 input_dir = './scripts/thingyverse_raw/Thingi10K/raw_meshes'

13 output_dir = './scripts/thingyverse/Thingi10K/raw_meshes'

14 meta_file = './scripts/thingyverse_meta.csv'

15
16 log_fmt = '%(asctime)s - %(name)s - %(levelname)s - %(message)s'

17 logging.basicConfig(level=logging.INFO, format=log_fmt)

18 logger = logging.getLogger(__name__)

19
20 min_size = 30

21 target_scale = 135

22 max_size = 200

23
24 if os.path.isdir(output_dir):

25 shutil.rmtree(output_dir)

26 os.makedirs(output_dir)

27
28 model_info = {}

29 with open(meta_file) as f:

30 reader = csv.DictReader(f)

31 for row in reader:

32 model_info[row['ID']] = row

33
34
35 non_single = 0

36 failed = 0

37 files = glob.glob(os.path.join(input_dir, "*.stl"))

38 logger.info("{} models found".format(len(files)))

39 for i, stl_file in enumerate(files):

40 print("{}/{}".format(i, len(files)))

41
42 file_name = os.path.split(stl_file)[1]

43 name = os.path.splitext(file_name)[0]

44 output_file = os.path.join(output_dir, name + ".ply")

45
46 if name not in model_info or model_info[name]['Single Component'] == 'FALSE':

47 non_single += 1

48 continue

49
50 try:

51 bpy.ops.import_mesh.stl(filepath=stl_file)

52 obj = bpy.context.selected_objects[0]

53
54 scene = bpy.context.scene

55
56 # decimate to remove redundant faces

57 obj.modifiers.new('decimator', 'DECIMATE')

58 obj.modifiers.values()[0].decimate_type = 'DISSOLVE'

59
60 # center to center of mass

61 bpy.ops.object.origin_set(

62 type='ORIGIN_CENTER_OF_MASS', center='MEDIAN')

63
64 if len(obj.to_mesh().vertices.items()) == 0:

65 raise Exception("empty mesh")

66
67 # center

68 obj.location = [0, 0, 0]

69
70 bpy.ops.export_mesh.ply(filepath=output_file,

71 use_selection=True, use_mesh_modifiers=True)

72
73 # clean up

74 bpy.ops.object.delete()

75 except:

76 # for various reasons some models fail to load, we just drop them

77 if os.path.isfile(output_file):

78 os.remove(output_file)

79 failed += 1

80
81 logger.info("{} removed due to consisting of multiple parts".format(non_single))

82 logger.info("{} removed due to unknown loading error".format(failed))

83
84 sizes = {}

85
86 files = glob.glob(os.path.join(output_dir, "*.ply"))

87 logger.info("{} remain".format(len(files)))

88 logger.info("getting object sizes")

89 for i, ply_file in enumerate(files):
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90 print("{}/{}".format(i, len(files)))

91 bpy.ops.import_mesh.ply(filepath=ply_file)

92 obj = bpy.context.selected_objects[0]

93
94 size = len(obj.to_mesh().vertices.values())

95 verts = np.empty(size*3, dtype=np.float64)

96 obj.to_mesh().vertices.foreach_get('co', verts)

97 verts.shape = (size, 3)

98
99 dists = distance.cdist(verts, verts, 'euclidean')

100 diameter = np.max(dists)

101
102 sizes[ply_file] = diameter

103
104 bpy.ops.object.delete()

105
106 scale_factor = target_scale / np.mean(list(sizes.values()))

107 logger.info("pre-filter size: {}".format(len(sizes)))

108 scaled_sizes = dict(map(lambda x: (x[0], x[1] * scale_factor), sizes.items()))

109 filtered_sizes = dict(filter(lambda x: x[1] > min_size and x[1] < max_size, scaled_sizes.items()))

110 logger.info("post-filter size: {}".format(len(filtered_sizes)))

111
112 logger.info("scaling and filtering object files")

113 files = glob.glob(os.path.join(output_dir, "*.ply"))

114 for i, ply_file in enumerate(files):

115 print("{}/{}".format(i, len(files)))

116 if ply_file not in filtered_sizes.keys():

117 os.remove(ply_file)

118 else:

119 bpy.ops.import_mesh.ply(filepath=ply_file)

120 bpy.ops.transform.resize(value=[scale_factor]*3)

121
122 # convert to triangles to be compatiable with bop toolkit

123 bpy.ops.object.mode_set(mode='EDIT')

124 bpy.ops.mesh.select_all(action='SELECT')

125 bpy.ops.mesh.quads_convert_to_tris()

126
127 # set vertex colors to red, similar to leocad

128 bpy.ops.object.mode_set(mode='VERTEX_PAINT')

129 mesh = bpy.context.active_object.data

130
131 for polygon in mesh.polygons:

132 for i, index in enumerate(polygon.vertices):

133 loop_index = polygon.loop_indices[i]

134 mesh.vertex_colors.active.data[loop_index].color = [1, 0, 0, 1]

135 bpy.ops.object.mode_set(mode='OBJECT')

136
137 bpy.ops.export_mesh.ply(filepath=ply_file,

138 use_selection=True, use_mesh_modifiers=True, use_ascii=True, use_colors=True)

139 bpy.ops.object.delete()

140
141 files = glob.glob(os.path.join(output_dir, "*.ply"))

142 logger.info("{} remain".format(len(files)))

143 logger.info("min: {}, mean: {}, max: {}".format(min(filtered_sizes.values()), np.mean(list(filtered_sizes.values())), max(filtered_sizes.values())))
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APPENDIX B

Validation Performance

B.1 DTOID
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B.2 DTOID+FPN
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B.3 DTOID+VPL
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B.4 DTOID+TF
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APPENDIX C

BlenderProc Config

The provided config file was used with BlenderProc 1.10.0 for all image gen-

eration. It is intended to function as a reference for the generation procedure used

rather than as a functional configuration. Several components are needed for func-

tional usage, including the customized BOP Toolkit used, camera data, scripts

to create segmentation maps from hd5f files and scene.blend file. The associated

scene.blend file contains a single rectangular prism with a size of 0.4m×0.4m×2m

placed at 0, 0,−1cm called Cube used for object placement. The other required

files will be available in the used codebase should it be released in the future.
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1 {

2 "version": 3,

3 "setup": {

4 "blender_install_path": "/home_local/<env:USER>/blender/",

5 "pip": [

6 "h5py",

7 "imageio", "scikit-image"

8 ]

9 },

10 "modules": [

11 {

12 "module": "main.Initializer",

13 "config": {

14 "global": {

15 "output_dir": "<args:0>",

16 "output_is_temp": True,

17 "sys_paths": ["../../../src/lib/bop_toolkit"]

18 }

19 }

20 },

21 {

22 "module": "loader.BlendLoader",

23 "config": {

24 "path": "<args:1>",

25 "load_from": "/Object",

26 "entities": ".*"

27 }

28 },

29 {

30 "module": "manipulators.WorldManipulator",

31 "config": {

32 "cf_set_world_category_id": 0

33 }

34 },

35 {

36 "module": "lighting.LightSampler",

37 "config": {

38 "lights": [

39 {

40 "location": {

41 "provider": "sampler.Shell",

42 "center": [0, 0, 1],

43 "radius_min": 0.5,

44 "radius_max": 0.9,

45 "elevation_min": 30,

46 "elevation_max": 89.999,

47 "uniform_elevation": True

48 },

49 "color": {

50 "provider": "sampler.Color",

51 "min": [0.8, 0.8, 0.8, 1.0],

52 "max": [1.0, 1.0, 1.0, 1.0]

53 },

54 "type": "POINT",

55 "energy": 10

56 }

57 ]

58 }

59 },

60 {

61 "module": "constructor.BasicMeshInitializer",

62 "config": {

63 "meshes_to_add": [

64 {

65 "type": "plane",

66 "name": "ground_plane0",

67 "scale": [1, 1, 1],

68 "location": [0, 0, 1]

69 },

70 {

71 "type": "plane",

72 "name": "ground_plane1",

73 "scale": [1, 0.5, 1],

74 "location": [0, -1, 1.5],

75 "rotation": [-1.570796, 0, 0]

76 },

77 {

78 "type": "plane",

79 "name": "ground_plane2",

80 "scale": [1, 0.5, 1],

81 "location": [0, 1, 1.5],

82 "rotation": [1.570796, 0, 0]

83 },

84 {

85 "type": "plane",

86 "name": "ground_plane4",

87 "scale": [0.5, 1, 1],

88 "location": [1, 0, 1.5],

89 "rotation": [0, -1.570796, 0]

90 },
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91 {

92 "type": "plane",

93 "name": "ground_plane5",

94 "scale": [0.5, 1, 1],

95 "location": [-1, 0, 1.5],

96 "rotation": [0, 1.570796, 0]

97 },

98 ]

99 }

100 },

101 {

102 "module": "manipulators.EntityManipulator",

103 "config": {

104 "selector": {

105 "provider": "getter.Entity",

106 "conditions": {

107 "name": ".*"

108 }

109 },

110 "cp_physics": False,

111 "cp_category_id": 0

112 }

113 },

114 {

115 "module": "loader.BopLoader",

116 "config": {

117 "bop_dataset_path": "data/processed/bop_data/extemps_query",

118 "model_type": "",

119 "mm2m": True,

120 "sample_objects": True,

121 "num_of_objs_to_sample": <args:4>,

122 "obj_instances_limit": 1,

123 "split": "<args:3>",

124 "obj_ids": <args:5>,

125 "add_properties": {

126 "cp_bop_dataset_name": "extemps_query",

127 "cp_physics": True

128 },

129 "cf_set_shading": "SMOOTH"

130 }

131 },

132 {

133 "module": "manipulators.MaterialManipulator",

134 "config": {

135 "selector": {

136 "provider": "getter.Material",

137 "conditions": {

138 "name": "bop_extemps_query_vertex_col_material.*"

139 }

140 },

141 "cf_set_specular": {

142 "provider": "sampler.Value",

143 "type": "float",

144 "min": 0.0,

145 "max": 1.0

146 },

147 "cf_set_roughness": {

148 "provider": "sampler.Value",

149 "type": "float",

150 "min": 0.0,

151 "max": 1.0

152 }

153 }

154 },

155 {

156 "module": "object.OnSurfaceSampler",

157 "config": {

158 "objects_to_sample": {

159 "provider": "getter.Entity",

160 "conditions": {

161 "cp_physics": True

162 }

163 },

164 "surface": {

165 "provider": "getter.Entity",

166 "index": 0,

167 "conditions": {

168 "name": "Cube"

169 }

170 },

171 "pos_sampler": {

172 "provider": "sampler.UpperRegionSampler",

173 "to_sample_on": {

174 "provider": "getter.Entity",

175 "index": 0,

176 "conditions": {

177 "name": "Cube"

178 }

179 },

180 "min_height": 0.2,
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181 "max_height": 0.5,

182 "use_ray_trace_check": False,

183 },

184 "min_distance": 0.02,

185 "max_distance": 2,

186 "rot_sampler": {

187 "provider": "sampler.Uniform3d",

188 "max": [0,0,0],

189 "min": [6.28,6.28,6.28]

190 }

191 }

192 },

193 {

194 "module": "object.PhysicsPositioning",

195 "config": {

196 "min_simulation_time": 3,

197 "max_simulation_time": 10,

198 "check_object_interval": 1,

199 "solver_iters": 25,

200 "friction": 100.0,

201 "linear_damping": 0.99,

202 "angular_damping": 0.99

203 }

204 },

205 {

206 "module": "camera.CameraSampler",

207 "config": {

208 "cam_poses": [

209 {

210 "number_of_samples": <args:2>,

211 "location": {

212 "provider": "sampler.Shell",

213 "uniform_elevation": True,

214 "center": [0, 0, 1],

215 "radius_min": 0.6,

216 "radius_max": 0.9,

217 "elevation_min": 40,

218 "elevation_max": 89.999

219 },

220 "rotation": {

221 "format": "look_at",

222 "value": [0, 0, 1],

223 "inplane_rot": {

224 "provider": "sampler.Value",

225 "type": "float",

226 "min": -3.14159,

227 "max": 3.14159

228 }

229 }

230 }

231 ]

232 }

233 },

234 # hide the sampling surface

235 {

236 "module": "object.ObjectPoseSampler",

237 "config":{

238 "max_iterations": 1,

239 "objects_to_sample": {

240 "provider": "getter.Entity",

241 "index": 0,

242 "conditions": {

243 "name": "Cube"

244 }

245 },

246 "pos_sampler": [100, 100, 0],

247 "rot_sampler": [0, 0, 0]

248 }

249 },

250 {

251 "module": "renderer.SegMapRenderer",

252 "config": {

253 "map_by": ["instance", "class", "name"]

254 }

255 },

256 {

257 "module": "writer.Hdf5Writer",

258 "config": {

259 "output_is_temp": False,

260 "append_to_existing_output": True,

261 "output_dir": "data/interim/hdf5_query/<args:3>"

262 }

263 },

264 {

265 "module": "renderer.RgbRenderer",

266 "config": {

267 "samples": 50,

268 "render_distance": True,

269 "image_type": "JPEG"

270 }
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271 },

272 {

273 "module": "writer.BopWriter",

274 "config": {

275 "dataset": "extemps_query",

276 "append_to_existing_output": True,

277 "output_is_temp": False,

278 "depth_scale": 0.1,

279 "ignore_dist_thres": 50.,

280 "postprocessing_modules": {

281 "distance": [

282 {"module": "postprocessing.Dist2Depth"}

283 ]

284 }

285 }

286 }

287 ]

288 }
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