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ABSTRACT 

Current methods to model species habitat use through space and diel time are 

limited. Development of such models is critical when considering rapidly changing 

habitats where species are forced to adapt to anthropogenic change, often by shifting their 

diel activity across space. The first chapter of this manuscript focuses on redeveloping 

occupancy models to incorporate hypotheses on species diel habitat use. This alternative 

occupancy framework, called the multi-state diel occupancy model (MSDOM), can 

evaluate species diel activity against continuous response variables which may impact 

diel activity within and across seasons or years. We used two case studies on fosa, a 

mesocarnivore endemic to Madagascar, and coyote in Chicago, USA, to conceptualize 

the application of this model and to quantify the impacts of human activity on species’ 

spatial use in diel time.  We found support that both species altered their diel activity 

across intensity of human disturbance—in and across years, and by degree of human 

disturbance. Our results exemplify the importance of understanding animal diel activity 

patterns and how human disturbance can lead to temporal habitat loss. This adapted 

model will allow future studies to answer explicit questions in regards to species diel 

habitat use and direct conservation efforts to protecting habitats over shorter, diel, 

periods. Chapter two of this manuscript focuses on incorporating human dimension 

research to understand relationships between people and wildlife. Human dimension 

research in ecology is especially needed in urban landscapes where more wildlife are 

living among and adapting to human dominated landscapes. Thus, we focus on 

understanding the complex drivers of human-wildlife relationships that have become 

increasingly important for managing both people and wildlife. A common approach to 



 
 

researching these drivers is via survey questionaries and the use of Likert items and 

scales, which require analytical techniques that handle their unique structure. Here, we 

apply a hierarchical Bayesian modeling framework to conduct ordinal regression that is 

well suited to Likert response data and allows the evaluation and comparison of model 

hypotheses. Our case study focuses on two objectives, understanding how people value 

coyotes and the frequency in which people interact with coyotes. We measured how 

people value coyotes with a Likert scale on peoples perceived risks and benefits of 

having coyotes on a landscape and measure frequencies of interactions with two Likert 

items on people’s sightings and incidents (growling, stalking attacking people or owned 

animals) with coyotes. We investigated how people’s demographics, knowledge of 

coyotes, and relationship with nature impacted the above response variables. We found 

strong support that decreasing connectedness to nature, fear of coyotes, and incidents 

between coyotes and owned animals (pets or livestock), negatively impacts people’s 

value of coyotes while pet ownership positively impacted peoples value of coyotes. 

Additionally, we found value of coyotes to vary across gender and counties; specifically, 

we found females to value coyotes more positively than males and found people from 

Bristol and Newport counties to have the most negative value coyotes. We found strong 

support that animal ownership and fear of coyotes, positively impacted coyote sightings 

and incidents. Coyote sightings and incidents also varied across counties and occurred 

most frequently in Bristol and Newport. These results highlight that human demographics 

and characteristics can shape people’s value and interactions with endemic wildlife. 

Through the application of ordinal regression, we were able to estimate how human 

demographics and characteristics impact people value of wildlife (positively or 



 
 

negatively) and how the frequency of interactions vary across groups of people. Through 

these findings, conservationists and wildlife managers can target mitigation and 

educational efforts to specific constituents which least value or most interact with 

coyotes. Importantly, this study highlights the importance of fear in shaping people’s 

value and interactions with coyotes, therefor we encourage more research on assuaging 

fear of local wildlife.  
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PREFACE 

The two chapters of this thesis have been provided in the manuscript format of the 

respective journals they were submitted to. Manuscript 1 (includes Tables, Figures, and 

References A) follows the American Naturalist journal guidelines, and Manuscript 2 

(includes Tables, Figures, and References B) follows the Urban Ecosystems journal 

guidelines. The end of each chapter contains references. 
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1. INTRODUCTION 

“No description of where an animal lives and what it does can be complete without 

considering when the activity takes place.” -- (Enright, 1970) 

Understanding a species’ or communities’ habitat is one of the most fundamental 

aims of ecology (Mitchell, 2005) and conservation (Campomizzi et al., 2008). 

Historically, habitat was defined by Odum et al. (1971) as “the place where an organism 

lives, or place where one would go to find it.” This fundamental definition has evolved in 

recent years to address both space and time, such as “a description of a physical place, at 

a particular scale of space and time, where an organism either actually or potentially 

lives” (Kearney, 2006). Redefining habitat to encompass both spatial and temporal scales 

has allowed studies to improve hypotheses of how organisms interact with their 

environment (Kearney, 2006; Morano et al., 2019), which better recognizes how space 

and time are two fundamental axes of a species’ niche (Pianka, 1973). 

Empirical knowledge of species’ habitat has grown with the development of spatial 

modeling, including species distribution (Segurado and Araújo, 2004), occupancy 

(MacKenzie et al., 2017), and resource selection models (Northrup et al., In Press). 

Inferences from these models have helped identify critical habitats of threatened species 

(Guisan et al., 2013), manage invasive species (Guisan et al., 2013), and understand how 

landscape structure (e.g., landcover) impacts species habitat use (Angelieri et al., 2016; 

Hirzel et al., 2006). However, while the application of these models can identify fine 

scale spatial information of a species’ habitat, they focus on larger temporal patterns, 

such as seasonal or yearly scales (Fidino and Magle, 2017; MacKenzie et al., 2003). 

Species activity over diel time, typically described via defined modalities like diurnal or 

nocturnal (Anderson and Wiens, 2017), also has a fundamental role in their space use 
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(Pianka, 1973). These studies ignore this critical temporal period, making it difficult to 

understand how rapidly changing conditions and landscapes impact a species’ daily 

activity (Ellis et al., 2010; Gaston, 2019; Helm et al., 2017). The limited studies that do 

consider space use and diel activity, predominantly treat them separately (not modeled in 

a single framework), or observations are associated with categorical predictor variables 

rather than more informative scales, or continuous predictor variables (e.g. distance from 

important features, etc.) Thus these models only provide descriptive inferences, as done 

with circular kernel density methods (Ridout and Linkie, 2009), rather than an explicit 

estimation of hypothesized effects (James et al, 2013). Therefore, past studies have 

largely focused on ‘average daily conditions rather than those prevailing at the time of 

day when individuals would tend to be most active’ (Gaston, 2019).  

Evaluating space use in diel time is especially urgent given increasing anthropogenic 

pressures across landscapes globally (Ellis et al., 2010). If species can adjust their diel 

activity, then it and could be a mechanism by which they adapt to changing landscapes, 

climate, or ecological communities. For instance, meso- and large-carnivores have been 

found to increase their nocturnal activity in urbanized areas (Carter et al., 2012; Gehrt, 

2007), likely to avoid time periods when humans are most active (Gaynor et al., 2018). 

During hunting seasons, harvested species such as deer can become more nocturnal to 

avoid hunters (Kilgo et al., 1998). Animals may also change their diel activity in the 

presence of introduced species, as is the case with many mammals (ungulates, carnivores, 

and small mammals) who temporally avoid domestic dogs (Farris et al. 2015; Lenth et al. 

2008). By modifying behavior across the 24-hour light-dark cycle, species can access 

space that would otherwise be inaccessible. This flexibility, however, may have 
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physiological, morphological, or even ecological constraints, such as limited diel periods 

in which food is available for hunting or foraging (Kronfeld-Schor et al., 2017). 

Understanding a species’ spatial activity across diel-time use can therefore provide 

insight into these constraints, leading to a more complete understanding of where species 

live and how pressures impact their daily habitat. For example, a species may lose spatial 

resources altogether or lose spatial resources during a specific diel time period, such as 

hours when humans are most active (Ellington et al., 2020). Pumas (Felis concolor), for 

instance, exhibit diminished daily access to food resources in response to simulated 

human disturbance via playback (Smith et al., 2017). By considering spatial and temporal 

habitat jointly in a single modeling framework, we can explicitly evaluate hypotheses 

regarding how an animal’s relationship with the landscape changes as humans alter 

resources and the risk of obtaining those resources.  

With increasing availability of camera traps, which allow for passive and continuous 

sampling of wild animal populations (Rovero et al., 2013), we also have increasing 

access to fine scale spatial-temporal data required for joint analyses of space use and diel 

activity. To advance theories of ecology and their application, we require a single 

modeling framework which can incorporate continuous covariates on diel behavior, 

account for variation in detectability, and sampling methodology. Developing a flexible 

model such as this, will help bridge gaps in the capabilities of the few existing diel 

habitat models (Distiller et al., 2020 and Gallo et al., 2021). As such, we redeveloped 

static and dynamic occupancy models (Long et al., 2011) in a Bayesian framework to 

incorporate diel activity information and variation in detection and sampling 

methodology through the incorporation of random effects (multi-state diel occupancy 
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models; MSDOM).We exemplify these models by investigating how anthropogenic 

development and activity may simultaneously alter where and when species occur. We do 

so by presenting a case study on Madagascar’s largest endemic carnivore, the fosa 

(Cryptoprocta ferox), to demonstrate the static MSDOM, and a case study on the urban 

ecology of coyote (Canis latrans) to demonstrate the dynamic MSDOM. With this 

adapted model, and the growing availability of spatial and temporal data, it is possible to 

evaluate hypotheses on wildlife diel activity across space and through time, which 

represents a major advancement over current methods (Azzou et al., 2021; Distiller et al., 

2020; Gallo et al., 2021). 

2. MATERIALS AND METHODS 

2.2.1 Multi-state diel occupancy models 

2.2.1.1 Static Model:  a single season occupancy analysis 

The MSDOM is a form of the multi-state occupancy model with state uncertainty 

(MacKenzie et al., 2009; Nichols et al., 2007) and is defined below with four states 

equivalent to the original co-occurrence model (MacKenzie et al., 2004) with two-

species; the static model can also be understood as a special case of the species co-

occurrence model by Rota et al. (2016) and the dynamic model a special case of Fidino et 

al. (2019). However, the MSDOM considers biologically important diel time periods for 

state segregation; this segregation can be based on any set of time periods of interest. In 

our case, sites are defined in one of four (4 = ܯ) mutually exclusive states: 1) ‘no use’, 2) 

‘day use’, 3) ‘night use’, and 4) ‘night & day use’. While these are coarse categorizations 

for diel behavior, these states provide us the ability to quantify the strength of drivers to 

diel shifts across continuous space and therefore identify biologically informed thresholds 

for species diel habitat use. Surveys are conducted over spatial locations, or camera trap 
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sites (݅ = 1, … , ܰ), which are independently sampled on ݆ = 1, . . ,  occasions (e.g., days ܭ

or weeks). Our state definitions do not follow a hierarchical ordering as commonly 

applied in multi-state occupancy models (Nichols et al., 2007) and implemented in R 

packages (unmarked; Fiske and Chandler, 2011). For example, if site ݅ was observed in 

state 2, it precludes the site from ever being in state 3 as these states do not co-occur over 

a given survey period.  

2.2.1.1.1 Full Model (no covariates) 

Let ߰୫ be the probability that a site is in occupancy state ݉ where ૐ = [߰ଵ ߰ଶ ߰ଷ߰ସ] is 

the state probability vector, ߰ଵ = 1 −  ߰ଶ − ߰ଷ − ߰ସ, and 1 ⋅  ૐ = 1 (see parameter 

descriptions in Appendix S1). The marginal occupancy probability (regardless of state) is 

߰● =  ߰ଶ + ߰ଷ + ߰ସ. Then, let, ݌௝
௠,௟ be the probability of observing the occupancy state 

݈, given the true state is ݉ in ݆ survey. The detection probability matrix for survey ݆ 

(assuming no site or survey variation) is ܯ ×  with the observed (columns) and true ܯ

states (row) with rows summing to 1, 

ࡼ =

⎣
⎢
⎢
⎡

1 0    0       0
1 − ଶ,ଶ݌

1 − ଷ,ଷ݌

ଵ,ସ݌

ଶ,ଶ݌

0
ଶ,ସ݌

0
ଷ,ଷ݌

ଷ,ସ݌

0
0

⎦ସ,ସ݌
⎥
⎥
⎤
.  

Equation 1 

Together, the true occupancy state for site ݅ is defined by the latent variable, 

 ~௜௝ݕ ,௜~ Categorical(࣒) and the observed state in survey ݆ is defined asࢠ

Categorical (ࢠࡼ೔,). Taking a Bayesian modeling framework, we can assume diffuse prior 

distributions for model parameters as ࣒, ,ଶ,ଶ݌ ସ, ~ Dirichlet (1,1,1,1) andࡼ  ଷ,ଷ~ Beta݌

(1,1). Note that in this full model, there is no relationship among state-specific detection 
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probabilities (i.e., ݌ଶ,ଶ , ݌ଷ,ଷ, ࡼସ,) and occupancy probabilities (i.e., ߰ଶ, ߰ଷ, ߰ସ) across 

associated ܯ states. Specifically, state 4 (‘night & day use’) occupancy and detection is 

not defined by state 2 (‘day use’) and 3 (‘night use’). This suggests that there is a 

fundamental difference between sites or species activity that occupy state 4. Species 

present during the ‘night & day’ state may be cathemeral, indicating they have 

intermediate adaptations allowing them behavioral flexibility to manage disturbance 

(Bennie et al., 2014). We can also estimate a species temporal use on the landscape by 

conditioning on species presence to examine how species navigate anthropogenic features 

via time partitioning. We do this by investigating an occupied state of interest over the 

sum of all occupied states. For example, the likelihood a species will use the ‘night’ state 

given it is present, is టయ

ట● .  

2.2.1.1.2 Reduced Model (no covariates) 

The reduced model is a simpler parameterization that defines the occupancy and 

detection probabilities of state 4 (‘night & day use’) as the product of states 2 and 3. 

Therefore, we assume the diel time periods of ‘night & day’ are independent random 

events, allowing their probability products (detection and occupancy) to result in the 

probability of occurring or being detected during the ‘night & day’. Here, we can redefine 

our model in terms of the probability of using a site during the day, regardless of use at 

night (marginal probability; ߰ୈୟ୷.୑) and the probability of using a site at night, 

regardless of use during the day (߰୒୧୥୦୲.୑). Our state occupancy probabilities are then, 

߰ଵ = (1 − ߰ୈୟ୷.୑)(1 − ߰୒୧୥୦୲.୑) 

߰ଶ = ߰ୈୟ୷.୑൫1 − ߰୒୧୥୦୲.୑൯ 

߰ଷ = (1 − ߰ୈୟ୷.୑)߰୒୧୥୦୲.୑ 
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߰ସ = ߰ୈୟ୷.୑߰୒୧୥୦୲.୑. 

Equation 2 

Similarly, we can define ࡼ using the probability of detection during the day (݌ୈୟ୷.୑) and 

night (݌୒୧୥୦୲.୑) as,  

ࡼ =

⎣
⎢
⎢
⎡

1        0                                         0                                    0 
1 − ୈୟ୷.୑݌

1 − ୒୧୥୦୲.୑݌

(1 − ୈୟ୷.୑)(1݌ − (୒୧୥୦୲.୑݌

ୈୟ୷.୑݌

0
ୈୟ୷.୑(1݌ − (୒୧୥୦୲.୑݌

0
୒୧୥୦୲.୑݌

(1 − ୒୧୥୦୲.୑݌(ୈୟ୷.୑݌

0
0

୒୧୥୦୲.୑݌ୈୟ୷.୑݌
⎦
⎥
⎥
⎤

. 

Equation 3 

We can assume diffuse prior distributions for our reduced model parameters: 

߰ୈୟ୷.୑ , ߰୒୧୥୦୲.୑ , ,஽௔௬.ெ݌  .ே௜௚௛௧.ெ~ Beta (1,1)݌

2.2.1.1.3 Null Model 

It is important to compare more complex models with one that does not consider diel 

time partitioning. This null model would thus be a single season occupancy model 

(MacKenzie et al., 2002), cast in a multi-state framework for model comparison 

purposes. Our state occupancy probabilities are then, 

߰ଵ =  1 − ߰●   

߰ଶ =   ట
●

ଷ
  

߰ଷ =  ట
●

ଷ
    

߰ସ =  ట
●

ଷ
 ,  

Equation 4 

  with the following detection matrix, 
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ࡼ =

⎣
⎢
⎢
⎢
⎡

1 0    0       0
1 − ●݌

1 − ●݌

1 − ●݌

●݌

0
௣●

ଷ
 

0
●݌

௣●

ଷ
 

0
0

௣●

ଷ
 ⎦
⎥
⎥
⎥
⎤
. 

Equation 5 

 We can assume the following diffuse prior distributions for the null model parameters: 

߰●,  .Beta (1,1) ~ ●݌

2.2.1.1.4 Models with Covariates 

All versions of the MSDOM (full, reduced, null) allow for the incorporation of site level 

covariates as explanatory variables of ࣒ and ࡼ and survey level covariates for ࡼ. We use 

separate design matrices for modeling each state (࢞௜
஽௔௬, ࢞௜

ே௜௚௛௧, ࢞௜
ே஽) that for each site ݅, 

are 1 ×  ܳ௠ (the number of columns) and associated vectors of coefficients 

(હ஽௔௬, હே௜௚௛௧, હே஽) that are ܳ௠  ×  1. We link state-specific linear models with 

occupancy probabilities using the multinomial logit link. The full model with covariates 

is specified as, 

߰௜
ଵ = ம೔

భ

ம೔
భାம೔

మାம೔
యାம೔

ర 

߰௜
ଶ = ம೔

మ

ம೔
భାம೔

మାம೔
యାம೔

ర 

߰௜
ଷ = ம೔

య

ம೔
భାம೔

మାம೔
యାம೔

ర 

߰௜
ସ = ம೔

ర

ம೔
భାம೔

మାம೔
యାம೔

ర 

ϕ௜
ଵ = 1 

ϕ௜
ଶ = ࢏࢞݁

 ࢟ࢇࡰહ࢟ࢇࡰ

ϕ௜
ଷ = ࢏࢞݁

 ࢚ࢎࢍ࢏ࡺહ࢚ࢎࢍ࢏ࡺ
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ϕ௜
ସ = ࢏࢞݁

࢏ା࢞࢟ࢇࡰહ࢟ࢇࡰ
 .ࡰࡺહࡰࡺା࢚࢞ࢎࢍ࢏ࡺહ࢚ࢎࢍ࢏ࡺ

Equation 6 

Here, ϕ௜
ଶ and ϕ௜

ଷ only contain first-order parameters, which respectively represent the 

log-odds that a species occupies site i in either state 2 or 3 (i.e., they are associated to a 

single state). The parameter ϕ௜
ସ, however, also contains second-order parameters 

(࢞௜
ே஽હே஽), which represent the log-odds difference a species occupies site i in state ‘night 

& day’ relative to the aforementioned first-order parameters (see Dai et al., 2013). Thus, 

the second-order parameters for the ‘night & day’ state allows us to evaluate if this state 

is different than the day and night states combined. To specify the reduced model, we 

remove ࢞௜
ே஽હே஽ from the linear model on ϕ௜

ସ. The null model with covariates is recast to 

leverage the unoccupied state equally to the combination of the identical, but multiple 

occupied states as, 

ϕ௜
ଵ = 3 

ϕ௜
ଶ = ݁࢞೔ࢻ 

ϕ௜
ଷ = ݁࢞೔ࢻ 

ϕ௜
ସ = ݁࢞೔ࢻ. 

Equation 7 

We can assume diffuse prior distributions for all coefficients as α୫ ~ Logistic (0,1; 

Northrup and Gerber, 2018). Including covariates on the detection matrix similarly uses 

the multinomial logit link (see 

https://github.com/bgerber123/multi.state.temporal.activity.git). 

2.2.1.2 Dynamic Model: across season occupancy analysis 
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The dynamic MSDOM considers how site use at the diel scale changes over longer-time 

scales, such as seasons or years. The sampling protocol is identical to that of a static 

MSDOM, except that sites are sampled over t = 1, …, T primary sampling periods. 

Furthermore, we assume occupancy state, ࢠ௜,௧, depends on the state in the previous 

primary period, ࢠ௜,௧ିଵ, which allows transitions to be estimated in terms of state-specific 

local colonization (ߛ) and extinction (ε) for all sampling periods except the first. Instead, 

we estimate initial occupancy for the first sampling period as we did for the static 

MSDOM. For all dynamic MSDOM, let ࣎ be an ܯ × M transition matrix whose rows 

sum to 1 and contains the rates that describe the probability a site either stays in the same 

occupancy state or transitions to a new state from one primary sampling period to the 

next.  

2.2.1.2.1 Full model (no covariates) 

While the most general full model would independently estimate all ܯ × M transitions 

among states, such a model may be difficult to fit with typical sample sizes from real 

world data. Thus, we imposed a few biologically reasonable constraints to reduce the 

number of model parameters and allow for more sparse, but realistic datasets to be used. 

For the full model, let ࣎ be 

࣎ =

 

⎣
⎢
⎢
⎢
⎡(1 − γ஽)(1 − γே) γ஽(1 − γே) (1 − γ஽)γே γ஽γே

ε஽൫1 − γே|஽൯ (1 − ε஽)൫1 − γே|஽൯ ε஽γே|஽ (1 − ε஽)γே|஽

൫1 − γ஽|ே൯εே γ஽|ேεே ൫1 − γ஽|ே൯(1 −  εே) γ஽|ே(1 −  εே)
ε஽|ேεே|஽ (1 − ε஽|ே)εே|஽   ε஽|ே(1 −  εே|஽) (1 − ε஽|ே)(1 −  εே|஽)⎦

⎥
⎥
⎥
⎤

, 

Equation 8 
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where the rows respectively describe state transitions from the four occupancy states. For 

example, the probability a site changes from state 2 (‘'day use’) to 3 (‘night use’) is 

߬ଶ,ଷ = ε஽γே|஽, where ε஽ is the site extinction probability in the ‘day use’ state and γே|஽ 

is the probability of colonization of the ‘night use’ state given ‘day use’ in the previous 

primary period. We assume that transitions depend on the state in the previous primary 

period, and that transitions from occupied states (i.e., 2, 3, or 4) may not be equivalent to 

transitions from the unoccupied state (i.e., state 1).  

As with the full static MSDOM, the initial occupancy probability of the four states at 

t = 1 is ૐ௜ = [߰௜
ଵ ߰௜

ଶ ߰௜
ଷ߰௜

ସ]. The latent state of the model is then ࢠ௜,ଵ~ Categorical (ૐ௜) 

for t =1 and ࢠ௜,௧ ~ Categorical (࣎ࢠ೔,೟షభ,) for t > 1, where ࢠ௜,௧ିଵ indexes the appropriate row 

of ࣎. The observed state is specified like the full static MSDOM, except we indexed the 

observed data and latent state through time such that ݕ௜௝௧ ~ Categorical (ࢠࡼ೔,೟,), where ࡼ 

is Eq. 1 and ࢠ௜,௧ indexes the appropriate row of ࡼ.  Finally, we assume the same diffuse 

prior distributions as the full static MSDOM for ࣒ and ࡼ while all colonization (઻) and 

extinction (ઽ) parameters have their own respective Beta (1,1) distributions. 

2.2.1.2.2 Reduced model (no covariates) 

The reduced dynamic model is similar to the full dynamic model except initial occupancy 

becomes Eq. 2, ࣎ lacks conditional parameters, and ࡼ becomes Eq. 3. Therefore, ࣎ 

simplifies to 

࣎ =

⎣
⎢
⎢
⎢
⎡(1 − γ஽)(1 − γே) γ஽(1 − γே) (1 − γ஽)γே γ஽γே

ε஽(1 − γே) (1 − ε஽)(1 − γே) ε஽γே (1 − ε஽)γே

(1 − γ஽)εே γ஽εே (1 − γ஽)(1 −  εே) γ஽(1 −  εே)
ε஽εே (1 − ε஽)εே   ε஽(1 −  εே) (1 − ε஽)(1 −  εே)⎦

⎥
⎥
⎥
⎤
. 
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Equation 9 

With the exclusion of conditional parameters, this model assumes that transitions 

between day and night are independent random events.  

2.2.1.2.3 Null model (No covariates) 

Casting the dynamic MSDOM as a standard multi-season occupancy model requires 

splitting the associated colonization and extinction probabilities across each respective 

row of ࣎ to ensure each row still sums to 1 such that, 

࣎ =

⎣
⎢
⎢
⎡
1 − γ γ 3⁄ γ 3⁄ γ 3⁄

ε (1 −  ε) 3⁄ (1 −  ε) 3⁄ (1 −  ε) 3⁄
ε (1 −  ε) 3⁄ (1 −  ε) 3⁄ (1 −  ε) 3⁄
ε (1 −  ε) 3⁄ (1 −  ε) 3⁄ (1 −  ε) 3⁄ ⎦

⎥
⎥
⎤
. 

Equation 10 

As with the static null MSDOM, initial occupancy becomes Eq. 4 and ࡼ becomes Eq. 5.  

2.2.1.2.4 Models with covariates 

As with the static MSDOM, transition probabilities for each dynamic model can be made 

a function of covariates. To do so, we use separate design matrices for each model 

parameter which are 1 ×  ܳ௠ (e.g.,  ࢞࢏
࢏࢞ , ࡰ

࢏࢞  ,ࡺ
࢏࢞  and ,ࡺ|ࡰ

 and associated vectors of  (ࡰ|ࡺ

coefficients that are ܳ௠  ×  1 (e.g.,  ࡺ|ࡰࢎ ,ࡰ|ࡺࢍ ,ࡺ|ࡰࢍ ,ࡺࢊ ,ࡰࢊ  ,ࡺ࢈ ,ࡰ࢈,  and  ࡰ|ࡺࢎ). 

Temporal or spatiotemporal covariates may also be included in dynamic MSDOM, 

resulting in ܶ ×  ܳ௠ design matrices for colonization, extinction, or detection 

parameters. Following Fidino et al. (2019), the linear predictors for the parameters of the 

full model are, 
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௜ߚ
ఊವ = ࢏࢞ 

ࡰ܊ࡰ

௜ߚ
ఊಿ = ࢏࢞ 

ࡺ܊ࡺ

௜ߚ
ఌವ = ࢏࢞ 

ࡰ܌ࡰ

௜ߚ
ఌಿ = ࢏࢞ 

ࡺ܌ࡺ

௜ߚ
ఊವ|ಿ = ࢏࢞ 

ࡺ|ࡰ܏ࡺ|ࡰ

௜ߚ
ఊಿ|ವ = ࢏࢞ 

ࡰ|ࡺ܏ࡰ|ࡺ

௜ߚ
ఢವ|ಿ = ࢏࢞ 

ࡺ|ࡰܐࡺ|ࡰ

௜ߚ
ఌಿ|ವ = ࢏࢞ 

ࡰ|ࡺܐࡰ|ࡺ

 

Equation 11 

for the dynamic model, ߚ௜
ఊವ

௜ߚ ,
ఊಿ

௜ߚ ,
ఌವ, ߚ௜

ఌಿ are first-order parameters while ߚ௜
ఊವ|ಿ , 

௜ߚ
ఊಿ|ವ , ߚ௜

ఢವ|ಿ, and ߚ௜
ఌಿ|ವ are second-order parameters. In this case, the second-order 

parameters are the log-odds difference, given the presence of another state in either the 

current time step (t) for occupancy and detection or in the previous time step (t-1) for 

colonization and extinction. Let ࣓ be a matrix with the same dimensions as ࣎ that 

contains the linear predictors of the dynamic model. We set the diagonal of the matrix as 

the reference category so that transitions are estimated relative to a site staying in the 

same state from one time step to the next, 

࢏࣓ =

⎣
⎢
⎢
⎢
⎢
⎡ 1 ݁ఉ೔

ംವ 
݁ఉ೔

ംಿ 
eఉ೔

ംವ
ା ఉ೔

ംಿ 

݁ఉ೔
ഄವ 

1 ݁ఉ೔
ഄವ ା ఉ೔

ംಿ ା ఉ೔
ംಿ|ವ 

݁ఉ೔
ംಿ ା ఉ೔

ംಿ|ವ 

݁ఉ೔
ഄಿ 

݁  ఉ೔
ംವ ା ఉ೔

ംವ|ಿ
ା ఉ೔

ഄಿ 
1 ݁  ఉ೔

ംವ ା ఉ೔
ംವ|ಿ

݁  ఉ೔
ഄವ ା ఉ೔

ഄವ|ಿ
ା ఉ೔

ഄಿ ା ఉ೔
ഄಿ|ವ

݁   ఉ೔
ഄಿ ା ఉ೔

ഄಿ|ವ
݁  ఉ೔

ഄವ ା ఉ೔
ഄವ|ಿ

1 ⎦
⎥
⎥
⎥
⎥
⎤

. 

2. Equation 12 

Dividing each element of a row by its respective row sum (i.e, applying the multinomial 

logit-link) converts ࣓࢏ to ࣎࢏ (Fidino et al. 2019). The reduced model removes all second-

order parameters from ࣓࢏ and becomes, 
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࢏࣓ =

⎣
⎢
⎢
⎢
⎢
⎡ 1 ݁ఉ೔

ംವ 
݁ఉ೔

ംಿ 
eఉ೔

ംವ
ା ఉ೔

ംಿ 

݁ఉ೔
ഄವ 

1 ݁ఉ೔
ഄವ ା ఉ೔

ംಿ 
݁ఉ೔

ംಿ 

݁ఉ೔
ഄಿ 

݁  ఉ೔
ംವ ା ఉ೔

ഄಿ 
1 ݁  ఉ೔

ംವ 

݁  ఉ೔
ഄವ ା ఉ೔

ഄಿ 
݁   ఉ೔

ഄಿ 
݁  ఉ೔

ഄವ 
1 ⎦

⎥
⎥
⎥
⎥
⎤

. 

3. Equation 13 

The null model, which is a multi-season occupancy model with covariates, ࣓࢏ becomes, 

࢏࣓ =

⎣
⎢
⎢
⎢
⎡ 3 ݁ఉ೔

ം 
݁ఉ೔

ം 
݁ఉ೔

ം 

3 × ݁ఉ೔
ഄ 

1 1 1
3 × ݁ఉ೔

ഄ 
1 1 1

3 × ݁ఉ೔
ഄ 

1 1 1 ⎦
⎥
⎥
⎥
⎤
, 

4. Equation 14 

where ߚ௜
ఊ and ߚ௜

ఌ are respectively logit-linear predictors for colonization and extinction. 

The dynamic MSDOM with covariates uses the same process to incorporates detection-

level covariates, save for the fact that the detection matrix and data vary across the 

secondary sampling periods. 

Fosa Case Study 

Fosa are a medium size carnivore (5.5-9.9 kg; Goodman 2012) in the monophyletic 

Eupleridae family, which is endemic to Madagascar. Fosa face increasing anthropogenic 

pressure from deforestation (Morelli et al., 2020), unsustainable hunting (Golden, 2009), 

and exotic species (Farris et al., 2017). As a generalist species with a diverse diet, activity 

of fosa near human settlements and their consumption of livestock has caused conflict 

with humans (Borgerson, 2016; Kotschwar Logan et al., 2014). Previous studies show 

their diel activity is largely cathemeral (Farris et al., 2015a; Gerber et al., 2012a). Their 

ubiquitous occurrence across forests and use of the entire 24-hour period (Gerber et al., In 
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Press) make them an exemplar species to investigate the utility of MSDOM in the context 

of human disturbance. We analyzed data from Makira Natural Park (Farris et al., 2015b) 

and Ranomafana National Park regions (Gerber et al., 2012a; see Appendix S3; Table 1). 

 These two parks have unique histories which has shaped differing human activity in 

each region (changes in forest cover, agriculture, invasive species introduction, etc.) and 

subsequent impact on native wildlife species (Goodman et al. 2019). As such, we have 

formed unique hypotheses about anthropogenic factors which impact fosa in these 

regions. Given high human activity within forests of Makira (Farris et al., 2015b) 

compared to Ranomafana (Farris et al., 2017; Gerber et al., 2012b), we used human 

activity at camera locations to quantify human disturbance. Human activity was 

calculated as the number of human detection events (photos taken within 30-min 

intervals) per diel period (i.e., day and night) for each camera site divided by the number 

of sampling days the site was active. At Ranomafana, human activity within the protected 

boundaries were low in contrast to those in Makira. The riskiest areas for fosa at 

Ranomafana were found outside the park boundaries or along forest edges where villages 

are located and there is high human activity. Therefore, we used the distance to the 

nearest village and distance to the nearest matrix (non-forest) from each camera trap to 

quantify human disturbance (see Gerber et al. 2012a for details). 

We fit static MSDOMs to the Makira and Ranomafana data separately. For both 

regions, we hypothesized that occupancy would vary in diel time by the level of 

disturbance. We also hypothesized the ‘day use’ state to be used least by fosa due to 

diurnal human activity near areas of high disturbance. Specifically, we predicted that fosa 

occupancy during the day would decrease with increasing human disturbance and fosa 
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occupancy at night would be higher than day occupancy, regardless of human 

disturbance. We also expected increasing night occupancy with increasing human 

disturbance. Day was defined by hours after civil sunrise and before civil sunset, while 

night was defined by hours following civil sunset and before civil sunrise calculated 

through package suncalc (Thieurmel and Elmarhraoui, 2019) in R v 4.0.2. To determine 

detected diel states of fosa, we used 6-day occasions. All models were coded and fit in 

JAGS v. 4.0.2 (Plummer, 2003) with the runjags package (Denwood, 2016) in R v. 4.0.2. 

We assessed convergence using the Gelman–Rubin diagnostic (Gelman and Rubin, 1992) 

to ensure all values were < 1.1 and by visually examining traceplots of the posterior 

distributions. We compared models using the conditional predictive ordinate (CPO; 

Hooten and Hobbs, 2015) and evaluated evidence of an effect with the most supported 

model by investigating whether 95% credible intervals of parameter estimates included 

zero and deriving the probability of an effect being less than or greater than zero.   

 We fit 18 candidate models to two years (two seasons per year) of Ranomafana 

data (Appendix S3; Table 1).: full, reduced, and null model, each with state-occupancy 

modeled with and without individual covariates (distance to village and matrix were 

modeled separately) and a categorical variable for survey (see Appendix S 3; Table 2). 

Over the two years, 111 camera traps were deployed 420⁠–670 m apart across four 

primary, selectively-logged, and fragmented forests sites (Gerber et al., 2012b). Detection 

parameters were not modeled with covariates. The most supported model was the full 

model with the covariate distance to village influencing state occupancy. We found 

strong support for 1) variation in state occurrence (Fig 1) and detection (see Appendix 

S3; Fig 1) and 2) multistate occurrence varying with human disturbance (Fig 2A). We 
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found little support that day occurrence varied by distance to village based on the mode 

and 95% credible interval (αୈୟ୷,ୈ୧ୱ୲.୚୧୪୪ = -0.002; 95% CI = -1.31, 1.37), with only a 0.50 

probability that the distribution was above zero (Fig 1). This did not support our 

hypothesis. However, we found moderate to strong support that night-day occurrence 

increased with distance to village (α୒ୈ,ୈ୧ୱ୲.୚୧୪୪ = 1.45; 95% CI = -0.17, 2.95; 

P(α୒ୈ,ୈ୧ୱ୲.୚୧୪୪ > 0) = 0.97), supporting our hypothesis. These results suggest that if fosa 

use sites during day hours, it is in conjunction with night hours, and the probability of 

using sites during the day is greater further away from human disturbance. We also found 

moderate to strong support that night state occurrence declined with increasing distance 

to village (α୒୧୥୦୲,ୈ୧ୱ୲.୚୧୪୪ = -1.16; 95% CI = -2.38, -0.02; P(α୒୧୥୦୲,ୈ୧ୱ୲.୚୧୪୪ < 0) = 0.98). 

Results from conditional probabilities of use (given fosa are present) revealed similar 

probabilities (Fig 2B) to those of occurrence. This was due to the widespread distribution 

of fosa within the study area. We found the probability to detect fosa at night, given it 

was present during the day and night (݌ସ,ଷ), to be the highest detection probability (see 

Appendix S3; Table 1). Detection of fosa during the day-night state (݌ସ,ସ) was the lowest. 

This suggests that this low density and wide-ranging species does use sites during the day 

and night, but not regularly. 

 We fit 6 candidate models to 7 years (two seasons per year) of Makira data 

(Appendix S3; Table 1): full, reduced, and null model, each with and without the human 

activity covariate; detection parameters were not modeled with covariates (see Appendix 

S3; Table 4). From 2008 - 2015, 18–26 camera traps were deployed across seven sites 

with varying levels of forest degradation (Farris et al., 2015b). We found all models to fit 

the data (0.1>Bayesian GOF p-value<0.9). We found the most supported model to be the 
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full model without an effect of human activity. These results support that there is 

variation in multistate occurrence and detection, but not regarding our hypothesis that 

human disturbance influenced occurrence. We found fosa occupancy was highest during 

the night state (߰ଷ = 0.33; 95% CI = 0.11, 0.60), followed by day, (߰ଶ = 0.20; 95% CI = 

0.06, 0.44), and night & day state (߰ସ = 0.18; 95% CI = 0.05, 0.41; Fig 3). The large 

parametric uncertainty of the detection parameters made drawing conclusions difficult, 

though results indicate fosa are most detectable at night when present during the night & 

day state (see Appendix S3; Table 5).   

Coyote Case Study 

Coyote are a medium sized carnivore (8-14 kg; Bekoff and Gese, 2003) native to 

North America that have expanded their distribution across the United States, Canada, 

and South America in the last century (Hody and Kays, 2018). As generalists, coyote 

exploit an array of habitats from prairies to urban cities (Elliot et al., 2016). Coyote diel 

activity is quite plastic, specifically in the presence of anthropogenic disturbance (Gehrt 

et al., 2007; Way et al., 2004). Therefore, we quantified whether coyote modify their diel 

activity along an urbanized gradient. 

To do so, we fit dynamic MSDOMs to 13 sampling periods of camera trapping 

data collected between July 2016 and July 2019 in the greater Chicago Metropolitan area. 

Camera deployments followed protocols outlined by the Urban Wildlife Information 

Network (see Magle et al. 2019). Briefly, 105 cameras were placed along three 50 km 

transects radiating outward from downtown Chicago, Illinois, USA (see Appendix S3; 

Table 6). Data were summarized such that each 4-week deployment (e.g., July 2016, 

October 2016, etc.) was treated as a primary sampling period and each week was a 
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secondary sampling period. To determine the detected diel state for a given week 

(occasion length), we used the suncalc package in R following the same diel 

categorization process as the fosa study. While the static MSDOM (with 4 states) can 

potentially have 3 linear predictors for the latent state, the dynamic MSDOM potentially 

has 11, thereby exacerbating the number of different covariate combinations and 

parameters to be estimated. To simplify our model fitting strategy, we fit 3 models that 

differed in their fundamental structure (i.e., the full, reduced, and null dynamic 

MSDOM), and included an urban intensity metric on all first-order parameters. We made 

two additional changes to the full model because daytime coyote detections were sparse 

(n = 54) relative to night (n = 286) or night & day (n = 183). First, we excluded urban 

intensity on second-order colonization or extinction parameters because second-order 

slope terms failed to converge when included. Second, we used Eq. 3 as the detection 

matrix, which assumes that the probability of detecting ‘night & day use’ (state 4) as the 

product of the probabilities of detecting ‘day use’ (state 2) and ‘night use’ (state 3). 

Models were compared with CPO and we evaluated evidence of an effect with the best-fit 

model by investigating whether 95% credible intervals of parameter estimates included 

zero and deriving the probability of an effect being less than or greater than zero.  

To derive the urban intensity metric, we used principal component analysis for 

tree cover (%; CMAP, 2016), impervious cover (%; CMAP, 2016), and housing density 

(units km-2; Hammer et al. 2004 ) within a 1-km buffer of each sampling location. 

Negative values represented increased forest cover coupled with decreased impervious 

cover and housing density, while positive values represented increased levels of 

impervious cover and housing density coupled with low canopy cover. Models were fit in 
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JAGS v 4.3.0 in R v 4.0.3. We evaluated model convergence by inspecting traceplots to 

ensure proper mixing and using the Gelman-Rubin statistic.  

Of the possible 1365 deployments (105 sites across 13 sampling periods), we 

collected data for 1172 deployments. ‘No use’ was the most observed state (n = 650), 

followed by ‘night use’ (n = 286), ‘night & day use’ (n = 183), and ‘day use’ (n = 53). 

Overall, the full model (22 parameters, CPO = 3131.46) had the most support, followed 

by the reduced (16 parameters, CPO = 3209.17) and then the null model (8 parameters, 

CPO = 3334.52). With the most supported model, the average occupancy probability 

during the first season was 0.41 for ‘no use’ (95% CI = 0.26, 0.56), 0.18 for ‘day use’ 

(95% CI = 0.06, 0.33), 0.07  for ‘night use’ (95% CI = 0.01, 0.19), and 0.32 for ‘night & 

day use’ (95% CI = 0.19, 0.48). Thus, assuming a site was occupied by coyote during the 

first primary period, coyote were on average, most likely to use sites during the day and 

night. Across the urbanization gradient, ‘day use’ was more negatively associated to 

urban intensity (ܽ௎ோ஻
஽  = -1.05, 95% CI = -1.98, -0.07, P(ܽ௎ோ஻

஽ <0) = 0.99) than ‘night use’ 

(ܽ௎ோ஻
ே  = -0.65, 95% CI = -1.51, 0.18, P(ܽ௎ோ஻

ே < 0) = 0.94). There was some evidence that 

‘night & day’ use became more common with increasing urban intensity, but 95% 

credible intervals for this second-order parameter overlapped 0 (ܽ௎ோ஻
஽ே  = 1.14, 95% CI = -

0.08, 2.50, P(ܽ௎ோ஻
஽ே > 0) = 0.97). While the initial occupancy parameters demonstrate that 

‘day use’ decreases with increasing levels of urban intensity, it is only a snapshot of the 

underlying process. The dynamic MSDOM provides new ways to assess this relationship 

through additional manipulations of the latent-state transition probability matrix (࣎), 

which describe the processes that bring about coyote occupancy.  
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While it is equally important to explore the underlying colonization and extinction 

dynamics of the model, by solving the equation ࢾ௜ = ∑ ௜࣎௜ whereࢾ   ௜ = 1 it is possible toࢾ

derive the expected probability of each occupancy state at each site (Fidino et al. 2019). 

Doing so simplifies the ܫ × M × M transition matrix into ܫ × M occupancy probabilities, 

and therefore can highlight the overall pattern across an environmental gradient. We 

applied this equation to the entire posterior of ࣎௜,௧, and generated predicted occupancy 

states at hypothetical sites across Chicago’s urbanization gradient. Following this, the 

probability of use of the different coyote occupancy states, conditional on coyote 

presence, can be derived by calculating the conditional probability of ‘day use’, ‘night 

use’ and ‘night & day’ given coyote presence. For example, Pr(࢏ࢾ
  = (coyote presence |ࡺ

௜ࢾ
ே ௜ࢾ)

஽ + ௜ࢾ 
ே + ௜ࢾ 

஽ே).⁄  Plotting these relationships reveals that while ‘night & day use’ 

is the most likely category at low levels of urban intensity, it is replaced by ‘night’ use as 

urban intensity increases, assuming coyote are present (Fig. 4). The transitions among 

different states can be plotted out and interpreted through the parameters that describe 

them (Fig. 5). For example, sites without coyotes were most likely to stay in the ‘no use’ 

state across all levels of urban intensity, though this relationship became more 

pronounced at high levels of urban intensity (Fig. 5). The transitions from ‘no use’, which 

are described by γ஽ and γே, were driven by the strongly negative first-order colonization 

intercepts for ‘day use’ (ܾூே்
஽  = -2.95, 95% CI = -3.88, -2.14, P(ܾூே்

஽ < 0) = 1.00) and 

night use (ܾூே்
ே  = -1.47, 95% CI = -1.85, -1.10, P(ܾூே்

ே < 0) = 1.00), as well as a negative 

association between ‘night use’ and urban intensity (ܾ௎ோ஻
ே  = -0.36, 95% CI = -0.62, -0.09, 

P(ܾ௎ோ஻
ே < 0) = 0.99). There was weak support that colonization of ‘day use’ negatively 

covaried with urban intensity (ܾ௎ோ஻
஽  = -0.28, 95% CI = -0.74, 0.16, P(ܾ௎ோ஻

஽ < 0) = 0.89).  
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While ‘night use’ negatively covaried with urban intensity, the relatively less negative 

intercept of this level of the model (i.e., ܾூே்
ே  > ܾூே்

஽ ) made ‘night use’ the most likely 

diel category for coyotes to colonize along the gradient of urban intensity (Fig. 5).  

When a site was in the ‘night use’ state, transitions are described by ߝே  and ߛ஽|ே.  

At average levels of urban intensity, sites were most likely to transition to ‘night & day 

use’ (0.53, 95% CI = 0.30, 0.73), followed by ‘night use’ (0.26, 95% CI = 0.08, 0.50), 

‘day use’ (0.13, 95% CI = 0.02, 0.30), and then ‘no use’ (0.06, 95% CI = 0.01, 0.17). The 

large increase in ‘night & day use’ was driven by the positive second-order ‘night use’ 

colonization parameter (݃ூே்
ே|஽ = 2.82, 95% CI = 1.60, 4.52, P(݃ூே்

ே|஽ > 0) = 1.00), whereas 

the decreasing transition probability of ‘day use’ to ‘night & day use’ was governed by 

the negative first-order ‘night use’ colonization slope term (ܾ௎ோ஻
ே , listed above). 

Likewise, first-order ‘day use’ extinction rates were relatively modest (݀ூே்
஽  = -0.72, 95% 

CI = -2.02, 0.43, P(݀ூே்
஽ < 0) = 0.90) and covaried little with urban intensity (݀௎ோ஻

஽  = 

0.10, 95% CI -1.04, 0.85, P(݀௎ோ஻
஽ > 0) = 0.54). As a result, ݀ூே்

஽  and  ݀௎ோ஻
஽  generated 

relatively flat transitions from ‘day use’ to either ‘no use’, ‘night use’, or back to ‘day 

use’ (Fig. 5). 

Finally, at ‘night & day use’, transitions are described by ε஽|ே and εே|஽. Second-

order parameters associated to these probabilities were both strongly negative (ℎூே்
஽|ே = -

1.89, 95% CI = -3.67, -0.17, P(ℎூே்
஽|ே < 0) = 0.99; ℎூே்

ே|஽ = -1.79, 95% CI = -2.70, -0.98, 

P(ℎூே்
ே|஽ < 0) = 1.00). When these second-order parameters are combined with the 

relatively small influence urban intensity had on first-order extinction parameters (i.e., 

݀ூே்
஽  and ݀ூே்

ே ), sites in ‘night & day’ use were by far more likely to remain in this state 

(Fig. 5). 
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In regard to detectability, if a site was in state ‘day use’ the probability of 

detecting that state was 0.15 (95% CI = 0.12, 0.18) at average levels of urban intensity, 

and covaried little with urban intensity ( ௎݂ோ஻
஽  = 0.03, 95% CI = -0.20, 0.22, P( ௎݂ோ஻

஽ > 0) 

= 0.56). The ability to detect ‘night use’ was, on average, double that of ‘day use’ (0.30, 

95% CI = 0.28, 0.33), but was minimally and negatively associated to urban intensity 

( ௎݂ோ஻
ே  = -0.13, 95% CI = -0.24, -0.01, P( ௎݂ோ஻

ே < 0) = 0.99). When a site was in ‘night & 

day’ use, at average levels of urban intensity we were most likely to observe the site as 

‘no use’ (0.59, 95% CI = 0.56, 0.62), followed by ‘night use’ (0.26, 95% CI = 0.23, 0.28), 

‘day use’ (0.10, 95% CI = 0.09, 0.12), then ‘night & day use’ (0.04, 95% CI = 0.04, 

0.05). 

3. DISCUSSION 

The study of animal-habitat relationships has often focused on identifying spatial 

drivers of species occurrence, while largely ignoring when species use habitat within the 

diel period. We developed the MSDOM framework to allow species’ diel spatial habitat 

use to be studied within and across seasons or years. Importantly, our Bayesian 

occupancy framework allows for the incorporate of continuous covariates while 

accounting for variation in detectability and sampling methodology, a source of 

heterogeneity that is typically unmodeled and is required to produce unbiased parameter 

estimates. The utility of this framework is especially pertinent to studying species at risk 

to human activities where researchers may want to consider additional anthropogenic 

covariates such as noise, artificial lighting, etc. For those who may want to explore this 

model on archived data, the ability to incorporate random effects can help manage 

unideal sampling schemes such as unmeasured variation across sites or years of data 



25 
  

collection. We recommend future studies intending to use MSDOM, reflect their 

sampling methodologies to covariates and diel periods of interest, in additional to model 

form (static or dynamic). For example, if we hypothesize increasing vehicle traffic will 

reduce coyote’s crepuscular activity and increase night activity across a season, we must 

first parse camera trap data to consider crepuscular hours. Our sampling design would 

capture varying traffic intensity, and consider covariates which may impact occurrence 

and detection, such as distance to forest. We could also adopt additional sampling tools, 

such as audio recorders, to measure impacts of traffic noise.. Developing studies in this 

context is critical as  we can learn how species shift their activity away from diel periods 

of high risk (Gaynor et al., 2018; Gaston, 2019). Such behavioral shifts are likely not 

without important ecological costs and may go undetected under previous model forms, 

but can be detected with the MSDOM.  

Our case studies highlight that spatial habitat is not used equally across diel time. We 

found that fosa and coyote temporally structure their site-use in response to 

anthropogenic drivers. Previous studies of fosa in the eastern rainforests have suggested 

that they are ubiquitously distributed across forested landscapes and are predominantly 

cathemeral (Gerber et al. 2012b; Farris et al 2015a). By jointly investigating spatial-

temporal habitat use of fosa, we found that they do occur widely across forested sites, but 

vary when they use a site based on its proximity to anthropogenic activity. For example, 

fosa at Ranomafana were nocturnal near human villages, which occur along the edges of 

the protected forest. At the forest interior, fosa were cathemeral. These findings indicate 

that within specific habitats, fosa can be active during day and night hours, but human 

activity and development limit fosa to roughly half of their potential activity period. 
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However, the level and type of human disturbance is important in predicting fosa diel 

activity, as we did not find support that human activity affected diel occurrence at 

Makira; this is likely due to predictable diurnal human activity and locations of camera 

sites which were connected to core forest habitat at greater distances from human villages 

(Farris et al 2015b).  

Similar to our findings for fosa, coyote exhibited diel activity across anthropogenic 

gradients. In contrast with fosa, however, coyote are generally considered to be 

crepuscular in natural environment (McClennen et al. 2001). We found that coyote used 

sites during the day and night at low levels of urban intensity.. However, as urban 

intensity increased, diel use of sites transitioned to be nocturnal. In combination with this, 

we found that the marginal occupancy of coyote, irrespective of diel state, decreased with 

increasing urban intensity. Thus, while coyote occupy less habitat in the core of Chicago, 

the habitat they do occupy is generally used at night.  

A special feature of the dynamic MSDOM is that the transition matrix provides 

additional information on diel use which helps disentangle the expected occupancy 

patterns in how coyote used diel time across space. For example, while it was relatively 

rare for coyotes to use highly urban sites during the day and night, their probability to 

persist from one season to the next in this state was high. Conversely, coyote were most 

likely to use highly urban sites only at night, but were most likely to go locally extinct 

when this occurred (i.e., transition to state “no use”). Thus, even though coyote were 

more likely to use highly urban sites at night, the use of these sites is more ephemeral 

than the urban sites coyote use throughout the entire diel period. Because urban coyotes 

typically have home ranges roughly twice the size of their rural counterparts (Gese et al., 
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2012), we suspect that in the urban core coyote use pockets of primary habitat during the 

day and night and venture out to secondary or tertiary habitat patches exclusively at 

night, when human activity levels are low.  

As the definition of habitat evolved to better recognize the value of time, so too 

should our modeling approaches. Our MSDOM achieves this and can measure the effect 

of continuous covariates to quantify change in diel behavior across space and though 

time. Although understanding habitat use of species has been critical in making informed 

conservation and management decisions (Guisan et al., 2013), current land-planning tools 

are often limited to spatial considerations (Gaynor et al., 2018). Though progress has 

been made in protecting habitats used over longer timescales, such as seasons, we lacked 

informative tools to protect habitat during critical diel periods such as when sensitive 

species are feeding or performing mating rituals.Advanced modeling approaches that 

estimate diel-habitat use will be a valuable asset in supporting successful conservation 

and land-management strategies in a rapidly changing world.    
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Introduction 

More than half of the Earth’s land surface has been altered by anthropogenic 

developments (Ellis et al., 2010). Changing landscapes for agriculture, logging, 

transportation, development, and energy production, have negatively impacted many 

species through the removal, fragmentation, and reduction of species’ habitat (Living 

Planet Report, 2018). These types of habitat loss lead to population declines, cascading 

trophic shifts, and extinction (Bartlett et al., 2016). However, some species have 

benefitted from these transforming landscapes and have effectively adapted to human 

dominated habitats, such as urbanized environments. The highest densities of peregrine 

falcons (Falco peregrinus) are now found in New York City, USA and Moscow, Russia 

(Luniak, 2004); urban mammals, such as squirrel (Sciurus niger), deer (Odocoileus 

virginianus), and mice (Apodemus agrarius) exhibit higher survival than their rural 

counterparts (McCleery et al., 2007). Unfortunately, the presence of some wildlife 

species has stirred public contention with conflict arising where wildlife overlaps with 

humans (Hussain et al., 2007, Magle et al., 2012).  

Human dimensions research and the incorporation of public input into wildlife 

management decision making has proved a useful tool in the mitigation and management 

of human-wildlife interactions (Decker et al., 1997; Bath, 1998). As urbanization 

continues to grow globally (Magle et al., 2012), more species will have to adapt to human 

dominated landscapes. Thus, understanding the complex drivers of conflict will become 

increasingly important for managing both people and wildlife. Humans’ relationships 

with wildlife and the role these relationships have managing urban species are shaped by 

many factors, including people’s demographics, lifestyles, or interactions with wildlife 
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(Knopff et al., 2016; Elliot et al., 2016; Dickman, 2010). For example, Knopff et al., 

(2016) found that tolerance for cougars (Puma concolor) was most strongly shaped by 

people’s intrinsic value for cougars, if they self-identified as a hunter, their age, and 

perceived risk of cougars. Studies conducted on coyote (Canis latrans) have also 

identified important variables, such as gender, township, fear and perceived risk of 

coyotes, which influence public attitudes about coyotes and their management (Draheim 

et al., 2019; Sponarski et al., 2018; Elliot et al., 2016). Identifying these important 

predictors informs management practices, such as increasing education on wildlife safety 

and identifying target audiences, such as pet owners (Knopff et al., 2016).  

Studies which consider human-wildlife relationships, can also reveal how human 

behaviors shape and instigate conflict. Findings from large carnivore research, e.g., 

wolves (Canis lupus), bears (Ursus arctos), and cougars (Puma concolor), have identified 

livestock carcasses as significant predator attractants, and therefore an important 

predictor for livestock depredation, a major source of negative carnivore-human 

interactions (Morehouse et al., 2020). Other human behaviors, such as leaving food 

sources or unattended pets accessible, have been found to increase negative coyote-

human interactions in urban settings (Mitchell, 2017). Identifying behaviors like these 

helps target specific mitigation efforts, such as organizing and educating people on 

proper waste or food disposal and heightened care of pets outside (Elliot et al., 2016; 

Mitchell, 2017).  

Questionnaire or survey data have been invaluable to studies of human-wildlife 

relationships. These instruments frequently rely on scales to collect data from 

participants, specifically, Likert scales, which consist of questions with natural ordered 
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responses (e.g., strongly agree, agree, disagree, strongly disagree; Casey et al., 2005; 

Draheim et al., 2019; Sponarski et al., 2018). Common methods used to analyze scaled 

data range from descriptive statistics to hypotheses tests (Casey et al., 2005; Knopff et al., 

2016; Sponarski et al., 2019). However, few human dimensions studies in ecology have 

made use of formal modeling that explicitly considers ordered data from commonly used 

Likert scaling, such as ordinal regression. Ordinal regression is a useful statistical model 

when considering scales that rank but may not scale equally among values (Larasati et al., 

2011). Unlike descriptive and hypothesis testing statistics, ordinal regression can model 

hypothesized effects of continuous or categorical variables on ordered response variables. 

This is particularly useful for studies which aim to translate and compare hypotheses into 

statistical models to evaluate empirical support using data (Burnham et al., 2002). 

Currently, ecological studies which have modeled Likert data are limited to a single 

predictive Likert item (Bennett et al., 2018) or making assumptions about the relationship 

between Likert scale questions (e.g., multiple Likert items which address the same 

predictor variable) and the difference between the Likert ratings themselves (e.g. the 

psychological distance between ratings, e.g. strongly disagree – disagree to agree – 

strongly agree) through methods like averaging ratings (Knopff et al., 2016). By 

estimating effects under a single ordinal regression framework, variation amongst Likert 

questions and participants, can be easily account for without reducing and manipulating 

original response data into new groupings.  

Here, we highlight the utility of Bayesian modeling to conduct ordinal regression 

for human dimension data in ecology. This method accounts for both variation in rating 

distance and between Likert scale questions, while evaluating and comparing model 
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hypotheses (Bürkner et al., 2019). We do so with a case study on the coyote, a native 

North American carnivore. Over the last century, coyotes have expanded their range 

throughout the Americas, their success likely propelled by the extirpation of apex 

predators, increased agricultural landcover, and hybridization with eastern wolves and the 

domestic dog (Hody et al., 2017). These drivers, in conjunction with the generalist nature 

of coyotes, have allowed them to behaviorally adapt to human-dominated landscapes 

(Carter et al. 2012; Gehrt 2007), including agricultural, suburban, and urban areas (Hody 

et al., 2017; Jackman et al., 2015).  

Like many carnivore species, coyotes have faced a long and contentious history in 

America. Since European settlement, coyotes have been persecuted as pests that compete 

with humans for livestock and wild game (Reynolds et al., 1996). Yet, even with wide-

scale government-supported culling programs, coyotes continue to persist across the 

landscape and cause controversy (Hody et al., 2017, Draheim et al., 2019). This is 

particularly evident in urban areas where coyotes live in proximity to people and pose 

threats to humans through risk of zoonotic disease transmission, destruction of property, 

and the attacking or harassing of livestock, pets, or people (Elliot et al., 2016; Sponarski 

et al., 2018). However, coyotes also serve important ecological roles as top-down 

regulators of primary consumers (Benson et al., 2017; Henke et al., 1999). Their diet, 

predominantly consisting of small mammals and birds, may contribute to some humans’ 

needs as coyotes consume common nuisance species, such as rodents and Canada geese 

(Gehrt, 2007; Morey et al., 2007). This service may be especially valuable in urban 

landscapes which lack apex predators and host an abundance of small animal species. 

With both risks and benefits to coyotes living with people, balancing coyote management 
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with public concerns remains a challenge for wildlife managers and conservationists in 

urban spaces (Sponarski et al., 2018).   

 Our case study specifically focuses on the relationship between people and 

coyotes in Rhode Island, USA. Coyotes were first sited in Rhode Island in the 1960’s and 

quickly colonized the state due to minimal competition and abundant food resources 

(Riley, 2021). Currently, coyotes are widespread, but there is lacking data on population 

estimates statewide. Importantly, coyote presence is contentious; the majority of wildlife 

complaints reported to the Rhode Island Department of Environmental Management, 

regard coyotes (Personal Communication, October 2020). Given this contention and 

history of unsuccessful and, often unsupported, large-scale lethal removal programs 

nationally (Sponarski et al., 2018), managers and conservationists need other tools to 

successfully manage coyotes and their relationships with humans. To do this, we 

investigate how people’s demographics and relationship with nature influence their value 

of and interactions with coyotes; see Methods for hypotheses and predictions.  

Methods 

Study area  

Rhode Island is a developed northeastern coastal state located between the states of 

Connecticut and Massachusetts, USA. Natural landcover is predominantly deciduous and 

softwood forest intermixed with high and low intensity human development and 

agriculture. The state has the second highest human density in the United States (Rhode 

Island Wildlife Action Plan, 2015) with >10% of the land covered by impervious surface 

area (Zhou and Wang, 2007) and a population of roughly 1,060,000 (U.S. Census 

Bureau, 2019). Residents are largely educated with 88.8% having completed a high 



40 
  

school degree and 34.2% completing a bachelor’s degree or higher. The median 

household income is $67,167.00.  

Instrument and Data collection 

We collected data through a survey instrument online using Qualtrics Survey Software 

and advertised widely through news articles and promotional social media pages across 

Rhode Island. Only participants over the age of 18 were permitted to take the survey. The 

survey was categorized into six sections: 1) Rhode Island residency, 2) relationship with 

nature, 3) value, knowledge, and attitudes about coyotes, 4) human-coyote interactions, 

5) environmental beliefs, and 6) demographics (full survey here: 

https://github.com/karivera2194/Coyote_RI). At the start of section three, participants 

were given a figure depicting an image of a coyote and some basic information about 

their size and distribution. This was included to encourage participants to correctly recall 

what a coyote is and their experience with coyotes.  

Hypotheses, Predictions, and Variables 

Here, we define people’s value of the coyote as the strength of an individual’s belief in 

the positive (high value) and negative (low value) role coyotes play on the landscape—

which may or may not be representative of coyotes’ role in Rhode Island as a whole. To 

quantify this response variable, we used two five-point Likert scales, one which 

addressed participants perceived benefits (i.e. ‘coyotes have an important role in Rhode 

Island’s ecosystems’) and the other, perceived risks of coyotes (i.e. ‘coyotes pose a risk 

to pets’) on the landscape (Table 1; full survey on 

https://github.com/karivera2194/Coyote_RI). The five-point scale ranked as: strongly 

disagree, disagree, neither agree or disagree, agree, and strongly agree. The risk scale was 
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reverse-coded so both risk and benefit scales increased with participants increasing value 

in coyotes (Table 1). To quantify our second objective, interactions with coyotes, we 

consider two types of interactions separately, sightings and incidents. A sighting is a 

visual observation of a coyote where an incident is a conflict between a human and a 

coyote, where a coyote exhibits the following behaviors: growling, stalking, or attacking. 

We hypothesized that the major factors contributing to people’s value of coyote’s 

are a person’s age, gender, county of residence, relationship with nature, knowledge and 

fear of coyotes, animal ownership, and animal incidents with coyotes (see variable names 

in Table 1). Animal incidents are defined as instances in which a coyote exhibits the 

following behaviors towards pets or livestock: growling, stalking, or attacking, as we 

believe these interactions most impact people’s value of coyotes in the state. We 

predicted that increasing value of coyote’s would occur with younger people, those with 

increased knowledge of coyotes, and those lacking fear. Although pet owners have been 

found to support coyote presence (Elliot et al., 2016), we predicted that those who have 

experienced negative animal-coyote interactions would have decreased value of coyotes. 

We also predicted that people’s value of coyote would vary across counties and genders. 

These predictions were informed by similar studies conducted on human attitudes related 

to bears and cougars (Piedallu et al., 2015; Thornton et al., 2010; Wechselberger et al. 

2005). Previous research on coyotes indicates that value is positively related to 

relationship with nature and pet ownership (Elliot et al., 2016). We also considered that 

some factors may interact and affect one’s value of coyotes more when they are evaluated 

together. Specifically, we hypothesized that one’s increasing relationship with nature in 

conjunction with no fear and increased knowledge would significantly increase their 
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value of coyotes. We also hypothesized that coyote value would decrease dramatically 

amongst those who have experienced an animal (pet or livestock) incident and fear 

coyotes. In total, we considered four fundamental statistical models which differ by 

hypothesized interactions (relationship with nature and fear, or relationship with nature 

and knowledge) and whether these relationships were strictly additive. 

We hypothesized that the major factors contributing to people’s interactions 

(sightings and incidents) with coyotes are county, relationship with nature, animal 

ownership (pets and livestock), knowledge, and fear of coyotes. We predicted that 

interactions would vary amongst counties, which may be due to coyote or human 

abundance (Poeseel et al., 2017), habitat structure, or people’s awareness of coyote 

presence. We also predicted that increasing interactions would occur with people’s 

increasing relationship with nature, animal ownership, decreased knowledge of coyotes, 

and lack of fear of coyotes.  We predicted that people who feel closer to nature, own pets, 

and do not fear coyotes likely spend more time outdoors where they may interact with 

coyotes. Therefore, we predicted that those who are fearful and have a distant 

relationship with nature will experience significantly less coyote sightings. We also 

predicted that the importance of people’s knowledge of coyotes will vary depending on 

their relationship with nature. Those with reduced knowledge of coyotes were expected 

to have more incidents with coyotes than those who are more educated on the species. In 

total, we consider three fundamental statistical models for each sightings and incidents, 

which differ in their hypotheses about interacting or additive relationships. 

To evaluate our hypotheses, we used binary, multiple-choice, and scale questions 

to collect data on participants’ demographics, environmental values, animal ownership, 
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knowledge of coyotes, fear of coyotes, and incidence between owned animals and 

coyotes (see Table 1). We measured participants relationship or ‘interconnectedness’ 

with nature using Schultz’ (2001) ‘Inclusion of Nature of Self’ (INS) scale—adapted 

from Aron et al. (1992); this scale is positively related to one’s biospheric values (Schultz 

2001).  

Analysis 

We followed Bürkner et al. (2019) by adapting a multilevel cumulative modeling 

framework to evaluate value of coyotes by jointly analyzing Likert scales of coyote 

benefits and risks and use separate cumulative models to evaluate coyote-human 

sightings and incidents. Response variables were linked to predictor variables using a 

probit link function, assuming residuals follow a Normal distribution and that the 

variance between response ratings did not differ across categories and measures of 

predictor variables (Bürkner et al., 2019). In our value analyses, we accounted for 

variation between Likert items, as well as variation in participants perceived distance 

between Likert ratings in this model (e.g. Participant A may perceive a larger difference 

between Agree and Strongly Agree, than Participant B; see full survey on: 

https://github.com/karivera2194/Coyote_RI) using random intercepts, where all the 

thresholds in the cumulative ordinal model vary (Bürkner et al., 2019). We fitted models 

using the Brms package in R (version 2.16.1) and compared their support using leave-

one-out-cross-validation (LOOCV; Vehtari et al., 2017), which estimates pointwise out-

of-sample prediction accuracy; lower values indicate more empirical support for a model. 

For each model, we used diffuse Gaussian prior distributions and 10,000 Makov chain 

Monte Carlo iterations using three chains to evaluate convergence. Based on the 
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Gelman–Rubin diagnostic (Gelman and Rubin, 1992) and visually examining traceplots 

of the posterior distributions, we found models converged. 

We quantified support for estimated effects by reporting the proportion of 

posterior samples which were >0 as an indication of the probability that the effect is 

positive. Proportional values >0.9 indicated strong support for a positive effect, or 

conversely <0.1 indicated strong support for a negative effect. Probabilities >0.7 

indicated moderate support of a positive effect and <0.3 indicated moderate support for a 

negative effect. Further, we used the magnitude of estimated effects to compare the 

relative influence of hypothesized variables. 

Results 

The self-selected survey was conducted over two months, 6 October 2020 to 6 December 

2020, with a total of 980 participants. Screening techniques were applied to reduce 

inadequate and unusable responses (https://github.com/karivera2194/Coyote_RI), leaving 

971 valid participants. Participation occurred across all Rhode Island counties with over-

representation in Newport (30.18% of RI’s total population lives in Newport but only 

14.73% of surveys came from here), Washington (11.92% of RI to 7.83% of surveys), 

and Bristol slightly so (4.61% of RI to 6.49% of surveys).  The remaining counties were 

under-represented—Kent (15.5% of RI to 9.68% of surveys) and Providence (60.13% of 

RI to 27.81% of surveys). Participants were highly educated compared to state averages 

with 78.37% of participants having a bachelor’s degree or higher compared to 34.2% of 

Rhode Island’s population possessing bachelors degrees. This may be partially due to 

high impact advertisement on the University of Rhode Island’s webpage, increasing 

University student and staff participation. The median household income for participants 
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ranged from $75,000 –$99,999 and was higher than the state’s median of $67,167. The 

majority of participants who disclosed their gender were female (46.5% to 33.4% male) 

and <1% of the participants identified as gender non-binary.  

 We found the most supported model for value of coyotes to be one in which there 

was an interaction between the variables fear and animal.incident (see Appendix S1; 

Table 1). We found our hypotheses that peoples age and knowledge of coyotes are major 

factors contributing to value of coyotes, to be unsupported with estimated medians close 

to zero (Table 2; Figure 1). We did find support that increasing connectedness to nature 

directly related to increasing value of coyotes with strong support of positive effects. 

Specifically, we found people’s incrasing connectedness to nature (variable INS >1) to 

increase people’s value of coyotes compared to people who responded with a low 

connection with nature (INS of 1). Further, posterior medians generally increased with 

increasing connectedness to nature, but not enough for a clear statistical difference. As 

we hypothesized, we found people’s value of coyotes to vary amongst genders and 

counties. We also found strong support that the conditional effects of incidents between 

owned animals and coyotes and peoples fear of coyotes, to negatively impact participants 

value of coyotes. When these variables (age and knowledge) were considered in addition, 

their effect was even stronger (Table 2). However, we did not find support for their 

interaction with a median close to zero. Lastly, we found considerable variation via our 

two random effects used to estimate variation in Likert scores across questions (0.73; 

95% CI = 0.67, 0.79) and individuals (1.06; 95% CI = 0.62, 1.98).  

We found the most supported model for coyote sightings to be one which 

considered only additive effects (no interactions were supported; Appendix S1; Table 2; 
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Figure 2). Our hypotheses that one’s connectedness with nature and knowledge of 

coyotes to affect coyote sightings, were unsupported with medians close to zero (Table 

3). The coefficients with the strongest statistical support were people’s resident county, 

animal ownership, and fear of coyotes (Table 3, Figure 2). Our hypothesis that coyote 

sightings varied across counties was supported. There was strong support against our 

hypothesis that fear of coyotes would decrease people’s sightings of them, as fear 

actually had a positive effect on sightings. However, we did find strong support for our 

hypothesis that animal owners had increased coyote sightings as ownership had a positive 

effect on sightings (Table 3).  

We found the most supported model for incidents with coyotes to have an 

interaction between the variables fear and animal.owner (Appendix S1; Table 3). We 

found moderate support that knowledge of coyotes had a weak effect on incidents with a 

median close to zero (Table 4). Additionally, we did not find support that increasing 

connectedness with nature affected incidents with coyotes and no clear directional pattern 

existed. The coefficients with the strongest statistical support were people’s county of 

residence, animal ownership, fear of coyotes and an interaction between people’s fear and 

animal ownership (Table 4, Figure 3). Our hypothesis that human-coyote incidents varied 

across counties was supported. We also found strong support that fear of coyotes and 

animal ownership impact incidents with coyotes positively. Fear of coyotes had the 

strongest conditional effect on incidents, while the interaction between animal ownership 

and fear of coyotes was larger than the conditional effect of animal ownership, but 

smaller than fear of coyotes considered independently (Table 4). Thus, animal ownership 

does not greatly influence how this population of people fear coyotes. 
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Discussion 

Human dimension studies in ecology are increasingly important as species are forced to 

interact with people and survive within anthropogenic landscapes (Decker et al., 1997). 

Survey questionnaires are an effective and low cost means to understand how people are 

interacting and valuing wildlife species. This is especially important for contentious 

wildlife species whose presence may present risks on the landscape though they may still 

serve an important ecological function. However, using survey data is complex, as 

people’s psychological interpretations of questions and available responses can vary. 

We highlight hierarchical Bayesian ordinal regression modeling as a useful 

approach to incorporate and estimate sources of variation. Further, ordinal regression is 

appropriate for handling the unique structure of Likert items and scales, which do not 

follow common numerical data analyses assumptions, despite being commonly treated as 

such (Burkner et al., 2019). Lastly, the Bayesian ordinal regression modeling framework 

allows for explicit linking of data to relevant model hypotheses. By applying this model 

to a case study of coyote-human relationships in Rhode Island, we were able to determine 

which variables most impact people’s value of and interactions with coyotes and how 

(directionally) they impact these response variables. 

 As a self-selected, online survey, our sample of responses comes with inherent 

biases. Sampled demographics, such as wealth and education, were above state averages 

and may have biased our results relative to the total population of Rhode Island. County 

representation also varied, therefor we suggest future studies to integrate online and in-

person advertisements to be more inclusive across these demographics. However, our 

survey did obtain a wide distribution of participant’s age despite findings of decreased 
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internet use in older age classes (65-74; Ferri-García et al., 2020). Increased internet use 

across ages could be tied to the COVID-19 pandemic which was largely impacting Rhode 

Island residents at the time of this survey. Methods to account for self-selection bias were 

not included in this case study, however we recommend future studies to consider 

methods like propensity score adjustment (PSA), which uses auxiliary information 

collected from an unrelated study to reduce bias from confounding factors (Ferri-García 

et al., 2020).  

 We found strong support that both people’s fear and incidents between owned 

animals and coyotes negatively impacted people’s value of coyotes, and when considered 

together, have an even stronger impact on their value. We consider that fear of coyotes 

may impact participants interpretation of what is considered an incident, as studies have 

found people to be most fearful of coyote attacks on pets (Draheim et al., 2019) and fear 

has been shown to increased risk perceptions (Bruskotter et al., 2013). We found that 

differences in value of coyotes existed amongst genders, specifically, males valued 

coyote less so than females. This difference may be a driver in why men tend to support 

more lethal methods of coyote management (Draheim et al., 2019). We also found 

differences in value amongst Rhode Island counties where, interestingly, Newport was 

the only county which valued coyotes less than Bristol. Although this model explains 

how value of coyotes differs amongst categorical groups, it does not explain why. 

However, the Cooperative Coyote Research Project, which aims to develop ‘science-

based coexistence and management strategies’ for coyotes in Rhode Island 

(http://theconservationagency.org/narragansett-bay-coyote-study/), has already conducted 

extensive research of coyote ecology in this area. Newport and surrounding islands have 
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experienced heightened interactions with coyotes, predominantly driven by direct and 

indirect supplemental feeding (Mitchell, 2017). These heightened negative interactions 

are likely driving decreased human value of coyotes. It is also possible that additional 

media attention from these incidents and project efforts have increased coyote visibility 

in this region.    

 Coyote sightings were only moderately increased by people’s fear and animal 

ownership. It is possible that the demographics of people who fear coyotes, have a 

heightened awareness of coyote activity, again increasing coyote visibility. We believe 

results of animal ownership positively affecting coyote sightings could be due to owners 

spending more time outdoors walking their pet, as dogs were the most commonly owned 

pet. This could lead to increasing interactions with wildlife, like coyotes. Most notably, 

the counties which experienced the most frequent coyote sightings were Newport and 

Bristol, the same counties which least value coyotes. This provides further evidence that 

these counties have heightened awareness of coyotes which may be driven by increased 

interactions.  

 Similar to findings related to sightings, those who fear coyotes experienced 

increased frequencies of incidents between people and coyotes. We believe in addition to 

this groups heightened awareness of coyote presence, fear is driving varied 

interpretations of coyote incidents. For example, although a coyote passing through 

someone’s backyard may inflict fear in observers, this experience is not considered an 

‘incident’, as no aggressive behavior was observed (stalking, growling, attacking). Such 

perceptions may have influenced the positive effect animal ownership had on incident 
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frequency, though this could also be related to animal owners spending more time 

outdoors with pets. 

 Coyote-human interactions have generated significant concerns in the state of 

Rhode Island which has led to the creation of educational resources provided by the 

Rhode Island Department of Environmental Management (RIDEM) and the Cooperative 

Coyote Research Project. These materials include coyote conflict mitigation (such as 

hazing and pet safety practices in addition to identifying coyote attractants), management 

guides, and coyote reporting tools (Riley, 2021). These materials serve as thorough 

resources for Rhode Island residents and our methods and results provide guidance on 

what populations of people are in greatest need of these resources. Our results 

specifically highlight the importance of communicating with pet and livestock owners. 

We recommend managers and conservationists to collaborate with veterinary and animal 

clinics in addition to pet or feed stores to disseminate information on animal safety, 

mitigation tools, and hazing techniques. It is important to note that the presence of 

domestic dogs can reduce the effectiveness of hazing with voice, body, and/or 

approaching coyotes (Bonnell et al., 2017), therefore owners may consider arming 

themselves with additional tools like pepper spray (Miller et al., 2001) and follow best 

practice methods to move away from an unfazed coyote. We note that although pepper 

spray is legal to buy, carry, and ship in Rhode Island, managers and conservationist 

should consider leading workshops on the safe and effective use of such products in 

cooperation with local law enforcement. Given our findings that fear of coyotes largely 

impact people’s value of and interactions (real or perceived) with coyotes, we encourage 

coyote management tools which encourage appropriate risk assessment and best dissuade 
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fear. We recommend further publicizing of the ‘coyote interaction assessment’ chart by 

RIDEM (Riley et. al., 2021) and promote pet and livestock owners to consider additional 

hazing tools such as blow-horns or pepper spray when outside with their animals. As 

outlined in RIDEM’s management and response guide, coyote removal (lethal and 

relocation) is an ineffective tool for long-term management, and efforts are better spent 

fostering communities of ‘educated’ coyotes which have a healthy fear of humans (Riley, 

2021). The fostering of such communities is driven by people. Therefore, it is crucial we 

continue to implement quantitative techniques to better direct management and 

conservation efforts which advocate for coexistence and fostering of positive 

relationships, not just with coyote, but other urban wildlife. 
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TABLE 1B. 

Category Variable Type Definition 
 

Response 
variables for 
coyote value 

Benefits of 
coyote 

4 Likert scale questions 
Strongly disagree – 

strongly agree 

1 = low value of coyote,  
5 = high value 

 Risks of coyote 4 Likert scale questions 
Strongly disagree – 

strongly agree 

5 = low value of coyote,  
1 = high value 

Response 
variable for 

coyote sighting 

Coyote sighting Likert frequency item 
Never – daily 

6 = high sighting frequency,  
1 = low sighting frequency 

Response 
variables for 

coyote incident 

Coyote incident Likert frequency item 
Never – daily 

6 = high incidence frequency,  
1 = low incidence frequency 

 age Continuous Years of age 
 gender Non-ordered categorical Male, female, and non-binary 

 county Non-ordered categorical County where participants 
predominantly reside 

All predictive 
variables 

INS (Inclusion of 
Nature of Self) 

Continuous between  
1 -5  

Measure of biospheric values; 
1 = low biospheric values, 5 = high 

values 

 animal.ownership Binary 1 = owns an animal, 0 = does not  

 knowledge Continuous between 
1 - X 

Knowledge of coyotes; 
1 = correct response, 0 = incorrect 

response or ‘I don’t know’ 
response 

 animal.incidence Binary Incident where coyote growled, 
stalked, or attacked livestock or 

pets; 
1 = incident occurred, 0 = incident 

did not occur 
 fear Likert question 

Strongly disagree – 
strongly agree 

5 = high fear of coyote, 1 = low 
fear 
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TABLE 2B.  

Model Coefficient Medians SD Lower 95% 

CI 

Upper 95% 

CI 

Probability 

> 0 

age 0.00 0.00 -0.01 0.00 0.14 

gender_female 0.18 0.08 0.03 0.33 0.99 

gender_non.binary -0.30 0.35 -1.00 0.38 0.20 

knowledge 0.04 0.02 -0.01 0.09 0.95 

fear -0.85 0.10 -1.03 -0.66 0.00 

animal. incident -0.52 0.16 -0.84 -0.21 0.00 

animal.owner 0.12 0.09 -0.05 0.30 0.91 

fear:animal.incident 0.06 0.28 -0.49 0.60 0.58 

INS_2 1.35 0.38 0.57 2.09 1.00 

INS_3 1.34 0.38 0.58 2.08 1.00 

INS_4 1.50 0.37 0.75 2.21 1.00 

INS_5 1.67 0.37 0.93 2.38 1.00 

INS_6 1.72 0.37 0.98 2.44 1.00 

countyKent 0.16 0.19 -0.20 0.52 0.79 

countyNewport -0.21 0.17 -0.54 0.13 0.11 

countyProvidence 0.27 0.16 -0.05 0.58 0.95 

countyWashington 0.24 0.16 -0.09 0.55 0.93 
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TABLE 3B.  

Model coefficient Medians SD Lower 

95% CI 

Upper 

95% CI 

Probability 

> 0 

animal.owner 0.30 0.10 .10 0.50 1.00 

fear 0.15 0.10 -0.05 0.35 0.93 

knowledge 0.06 0.03 -0.00 0.11 0.98 

INS_6 -0.09 0.34 -0.76 0.59 0.40 

INS_5 0.03 0.34 -0.63 0.70 0.53 

INS_4 -0.05 0.34 -0.73 0.62 0.43 

INS_3 -0.11 0.36 -0.82 0.61 0.37 

INS_2 -0.10 0.37 -0.82 0.63 0.39 

countyWashington -0.32 0.18 -0.66 0.02 0.03 

countyProvidence -0.59 0.18 -0.94 -0.24 0.00 

countyNewport -0.03 0.19 -0.41 0.34 0.43 

countyKent -0.34 0.21 -0.74 0.06 0.04 
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TABLE 4B.  

Model coefficient Medians SD Lower 

95% CI 

Upper 

95% CI 

Probability > 

0 

countyKent -0.53 0.29 -1.10 0.05 0.04 

countyNewport -0.12 0.25 -0.61 0.37 0.30 

countyNot_shared -1.20 0.65 -2.59 -0.02 0.02 

countyProvidence -0.46 0.23 -0.92 0.00 0.03 

countyWashington -0.48 0.23 -0.92 -0.04 0.02 

INS_2 -0.36 0.45 -1.24 0.51 0.22 

INS_3 -0.54 0.46 -1.45 0.34 0.12 

INS_4 -0.47 0.42 -1.30 0.36 0.14 

INS_5 -0.19 0.41 -1.00 0.61 0.32 

INS_6 -0.41 0.42 -1.22 0.40 0.17 

knowledge 0.05 0.04 -0.04 0.13 0.85 

fear 1.41 0.33 0.79 2.07 1.00 

animal.owner 0.53 0.23 0.09 1.01 0.99 

fear:animal.owner -0.64 0.35 -1.32 0.04  0.03 
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FIGURE 1A.  
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FIGURUE 2A. 
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FIGURUE 3A.  
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FIGURE 4A.  
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FIGURE 5A.  
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FIGURE 1B.  
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FIGURE 2B.  
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FIGURE 3B.  
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APPENDICES 

APPENDIX S1 – Chapter 1 

 

 
Parameter type Verbal description 

࣒ Probability of occupancy vector for the M = 4 states, which sums 
to one. The full model assumes that state 4 (‘day & night’) is 
independent whereas the reduced model assumes state 4 is the 
product of states 2 (‘day’) and 3(‘night’, Eq. 2). The null model 
assumes states 2, 3, and 4 are all equal (Eq. 4). For all models, 
states 2, 3, and 4 are estimated from the data while state 1 is 
obtained through subtraction such that ߰ଵ = 1 −  ߰ଶ − ߰ଷ − ߰ସ. 

 Probability of detection matrix for the M = 4 states, which is ࡼ
ܯ ×  with the observed states along the column and true states ܯ
along the rows. Rows sum to one. The full model assumes that 
there is no relationship among state-specific detection 
probabilities, and so detection probabilities in state 4 (‘day & 
night’) are not defined by the detection probabilities of state 
2(‘day’) or 3 (‘night’, Eq. 1). Conversely, the reduced model 
assumes that the detection probabilities in state 4 are related to 
states 2 and 3, or their complementary probability, depending on 
the observed state (Eq. 3). The null model assumes the probability 
of detecting states 2, 3, or 4 are identical (eq. 5). 

࣎ The ܯ × M transition probability matrix of the dynamic MSDOM. 
The true state at sampling period t-1 is along the rows and the 
possible states to transition to are along the columns. Each row 
sums to 1. Transitions are composed of local colonization (ߛ) and 
extinction (ε) probabilities. To reduce model complexity, the full 
(Eq. 8), reduced (Eq. 9), and null (Eq. 10) models assume all 
transitions are defined by the product of local colonization and 
extinction probabilities, though they do so in different ways 
(described below). 

 The probability of local colonization between sampling period t-1 ࢽ
and t. The full model (Eq. 8) has four colonization probabilities: 
the probability an unoccupied site transitions to state 2 (‘day’, γ஽) 
or state 3(‘night’, γே), the conditional probability a site transitions 
to state 2 given state 3 at t-1 (γ஽|ே), and the conditional probability 
a site transitions to state 3 given state 2 at t-1 (γே|஽). The reduced 
model (Eq. 9), removes the conditional probabilities present in the 
full model and therefore assumes that transitions between day and 
night are composed of γ஽ and γே. The null model (Eq. 10) 
assumes day and night transitions are the same so there is a single 
colonization probability (ߛ). 
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ઽ The probability a local extinction between sampling period t-1 and 
t. The full model (Eq. 8), has four extinction probabilities: the 
probability state 2 (‘day’) transitions to any other state (ε஽), the 
probability state 3 (‘night’) transitions to any other state (εே), the 
conditional probability day is not included at time t given state 4 
(‘day & night’) at time t-1 (ε஽|ே), and the conditional probability 
night is not included at time t given state 4 at time t-1 (εே|஽). The 
reduced model (Eq. 9) removed the conditional probabilities 
present in the full model and therefore assumes that transitions 
between day and night are composed of ε஽ and εே. The null model 
(Eq. 10) assumes day and night transitions are the same so there is 
a single extinction probability (ε). 

 

Table 1. A high-level description of the types of model parameters for the multi-state diel 
occupancy model (MSDOM). For this description, we assume that there are M = 4 states 
which represent whether the species is 1) not present, 2) present during the day only, 3) 
present during the night only, and 4) present during the day & night. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



70 
  

  
Parameters Relevant Model Verbal Description 

ଶ,ଶ݌ =  ୈ୅ଢ଼ Full Probability of detecting a species during the day݌

only, given it was present only during the day. 

Part of matrix P. 

ଷ,ଷ݌ =  ,୒୧୥୦୲ Full Probability of detecting a species at night only݌

given it was present only at night. Part of matrix 

P. 

ସ,ଵ݌ =  ୒ୈଵ Full Probability of not detecting a species, given it݌

was present during the day and night. Part of 

matrix P. 

ସ,ଶ݌ =  ୒ୈଶ Full Probability of detecting a species during the day݌

only, given it was present during the day and 

night. Part of matrix P. 

ସ,ଷ݌ =  ୒ୈଷ Full Probability of detecting a species during the night݌

only, given it was present during the day and 

night. Part of matrix P. 

ସ,ସ݌ =  ୒ୈସ Full Probability of detecting a species during the day݌

and night, given it was present during the day and 

night. Part of matrix P. 

 ,ୈୟ୷.୑ Reduced Probability of detecting a species during the day݌

regardless of use or lacking use at night. Part of 

matrix P. 

 ,୒୧୥୦୲.୑ Reduced Probability of detection a species at night݌

regardless of use or lacking use during the day. 

Part of matrix P. 

߰ୈୟ୷.୑ Reduced Probability of using a site during the day, 

regardless of use or lacking use at night. Part of 

probability of occupancy vector. 
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߰୒୧୥୦୲.୑ Reduced Probability of using a site at night, regardless of 

use or lacking use during the day. Part of 

probability of occupancy vector. 

߰ଵ Full, Reduced, 

Null 

Probability a species is not present. Part of 

probability of occupancy vector. 

߰ଶ Full, Reduced, 

Null 

Probability a species is present during the day 

only. Part of probability of occupancy vector. 

߰ଷ Full, Reduced, 

Null 

Probability a species is present during the night 

only. Part of probability of occupancy vector. 

߰ସ Full, Reduced, 

Null 

Probability a species is present during the day & 

night. Part of probability of occupancy vector. 

߰●  Full, Reduced, 

Null 

The probability a site is occupied, regardless of 

state. Part of probability of occupancy vector. 

 .Null The probability of detection, regardless of state ●݌

Part of matrix P. 

 

Table 2.  Verbal descriptions and model relevancy of fundamental model parameters for 

the static (single season) multi-state diel occupancy model.   
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Parameters Relevant Model Verbal Description 

௧݌
ଶ,ଶ = ௧݌

ୈ୅ଢ଼ Full Probability of detecting a species in season t 

during the day only, given it was present only 

during the day. Part of matrix P. 

௧݌
ଷ,ଷ = ௧݌

୒୧୥୦୲ Full Probability of detecting a species in season t at 

night only, given it was present only at night. 

Part of matrix P. 

௧݌
ସ,ଵ = ௧݌

୒ୈଵ Full Probability of not detecting a species in season 

t, given it was present during the day and night. 

Part of matrix P. 

௧݌
ସ,ଶ = ௧݌

୒ୈଶ Full Probability of detecting a species in season t, 

during the day only, given it was present during 

the day and night. Part of matrix P. 

௧݌
ସ,ଷ = ௧݌

୒ୈଷ Full Probability of detecting a species in season t, 

during the night only, given it was present 

during the day and night. Part of matrix P. 

௧݌
ସ,ସ = ௧݌

୒ୈସ Full Probability of detecting a species in season t, 

during the day and night, given it was present 

during the day and night. Part of matrix P. 

௧݌
ୈୟ୷.୑ Reduced Probability of detecting a species in season t, 

during the day, regardless of use or lacking use 

at night. Part of matrix P. 

௧݌
୒୧୥୦୲.୑ Reduced Probability of detection a species in season t, at 

night, regardless of use or lacking use during 

the day. Part of matrix P. 

ଵ߰
ୈୟ୷.୑ Reduced Probability of using a site in season 1, during 

the day, regardless of use or lacking use at 

night. Part of probability of occupancy vector. 
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ଵ߰
୒୧୥୦୲.୑ Reduced Probability of using a site in season 1, at night, 

regardless of use or lacking use during the day. 

Part of probability of occupancy vector. 

߰ଵ
ଵ Full, Reduced, 

Null 

Probability a species is not present in season 1. 

Part of probability of occupancy vector. 

߰ଵ
ଶ Full, Reduced, 

Null 

Probability a species is present during the day 

only in season 1. Part of probability of 

occupancy vector. 

߰ଵ
ଷ Full, Reduced, 

Null 

Probability a species is present during the night 

only in season 1. Part of probability of 

occupancy vector. 

߰ଵ
ସ Full, Reduced, 

Null 

Probability a species is present during the day 

& night in season 1. Part of probability of 

occupancy vector. 

߰●  Full, Reduced, 

Null 

The probability a site is occupied, regardless of 

state. Part of probability of occupancy vector. 

 .Null The probability of detection, regardless of state ●݌

Part of matrix P. 

γ஽ Full, Reduced The probability a site is colonized and used in 

the day only. Part of the probability of local 

colonization between sampling period t-1 and t. 

γே Full, Reduced The probability a site is colonized and used in 

the night only. Part of the probability of local 

colonization between sampling period t-1 and t. 

γே|஽ Full The probability a site is colonized and used in 

the night only, given it was used previously in 

the day only. Part of the probability of local 

colonization between sampling period t-1 and t. 

γ஽|ே Full The probability a site is colonized and used in 

the day only, given it was used previously in the 
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night only. Part of the probability of local 

colonization between sampling period t-1 and t. 

ε஽ Full, Reduced The probability a site is no longer used in the 

day only. Part of the probability of local 

extinction between sampling period t-1 and t. 

εே Full, Reduced The probability a site is no longer used in the 

night only. Part of the probability of local 

extinction between sampling period t-1 and t. 

εே|஽ Full The probability a site is no longer used in the 

night only, given it was used previously in the 

day only. Part of the probability of local 

extinction between sampling period t-1 and t. 

ε஽|ே Full The probability a site is no longer used in the 

day only, given it was used previously in the 

night only. Part of the probability of local 

extinction between sampling period t-1 and t. 

 

Table 3.  Verbal descriptions and model relevancy of fundamental model parameters for 

the dynamic (multi-season) multi-state diel occupancy model.  Descriptions also include 

matrix, vector, and probability affiliations described in Table 1. 
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Derived 
Parameter 

Relevant Model Verbal Description 

߰ସ/(߰ଶ × ߰ଷ) Full Static and 

Dynamic 

 

This day-night interaction factor quantifies the 

tendency for a site to be used during the day 

and night more than (>1) or less (<1) than 

expected; this will be exactly 1 in the reduced 

model, as it’s part of the assumption of the 

model. This parameter is akin to a species 

interaction factor of co-occurrence models 

(MacKenzie et al., 2004). 

߰ଶ

߰● 
Full and Reduced 

Static and 

Dynamic 

The probability of temporal use at a site during 

the day only, given the site is used. 

߰ଷ

߰● 
Full and Reduced 

Static and 

Dynamic 

The probability of temporal use during the night 

only, given the site is used. 

߰ସ

߰● 
Full and Reduced 

Static and 

Dynamic 

The probability of temporal use during the day 

& night, given the site is used. 

 

Table 4.  Verbal descriptions and model relevancy of derived model parameters for the 

multi-state diel occupancy model.   
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APPENDIX S3 – Chapter 1  

1. Fosa Dataset 
 

Region Site ID Year Total 

Cameras 

Survey Dates Season 

Makira SITE 1 2008 20 Sept 2 – Nov 13 Cool, Dry 

SITE 1 2010 24 Sept 16 – Nov 16 Cool, Dry 

SITE 1 2011 24 Aug 20 – Oct 20 Cool, Dry 

SITE 1  2012 24 Aug 1 – Oct 16 Cool, Dry 

SITE 1 2013 24 Sept 7 – Nov 20 Cool, Dry 

SITE 1 2015 24 Sept 11 – Nov 9 Cool, Dry 

SITE 2 2011 24 Mar 20 – May 23 Warm, Wet 

SITE 2 2012 24 Jun 9 – July 23 Cold, Dry 

SITE 2 2013-

2014 

24 Nov 16 – Jan 7  Hot, Wet 

SITE 3 2009 20 Mar 4 – May 4 Warm, Wet 

SITE 4 2009 19 Aug 21 – Oct 27 Cool, Dry 

SITE 5 2009-

2010 

18 Nov 20 – Jan 27 Hot, Wet 

SITE 6 2010-

2011 

24 Dec 9 – Feb 18 Hot, Wet 

SITE 7 2011 24 Jun 9 – Aug 13 Cold, Dry 

Ranomafana VAL-SAH 2008 53 June – Oct Cold, Dry 

SAH-CVB 2007 42 June – Aug Cold, Dry 

 

Table 1. Details on seven survey regions used for analysis of fosa in the Makira Natural 

Park and Ranomafana National Park Regions. Survey dates refer to the first date cameras 

were set for the specific site and year followed by the last date cameras were removed.  
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Incorporating multiple camera surveys for the fosa case studies 

We modeled the variation among data collection years and survey areas differently for 

the Makira and Ranomafana datasets. For the Makira data, we accounted for this 

variation by treating each model parameter as a random effect across survey areas (e.g., 

for s survey areas, ߙ௦
஽௔௬ ∼ Normal(ߤఈವೌ೤ ,  ఈವೌ೤) ); as such, model parameter estimatesߪ

reported in the main text are the population-level mean effects (inference for across 

survey areas for each parameter). We did not treat each survey independently as this 

would allow ‘Site 1’ to have an oversized influence on parameter estimates as it was 

surveyed six times. Survey areas with multiple years of surveys (e.g., ‘Site 1’) were 

modeled together based on preliminary findings for a lack of difference among years. 

Specifically, we evaluated across year differences within a survey area by treating 

surveys as a categorical variable in a stacked occupancy design (see Monterroso et al., 

2020). Models without survey year variation were more supported by CPO. With only 

two surveys at Ranomafana, we only used a stacked occupancy design, treating survey as 

a categorical variable, and compare models with and without this variable.  
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Model Model description CPO    CPO  

M1.full Full model with distance to town 
covariate 838.50 0.00 

M4.red Reduced model with distance to 
matrix covariate 843.12 4.62 

M9.red.no.covs Reduced model with no covariates 843.64 5.14 
M8.full2.no.covs Full model with no covariates and 

categorical effect 843.74 5.24 

M2.full Full model with distance to matrix 
covariate 843.76 5.26 

M4.red2  Reduced model with distance to 
matrix covariate and categorical 
effect 

844.58 6.08 

M3.red Reduced model with distance to 
town covariate 844.65 6.15 

M2.full2  Full model with distance to matrix 
covariate and categorical effect 844.68 6.18 

M9.red2.no.covs Reduced model with no covariates 
and categorical effect 844.82 6.32 

M1.full2  Full model with distance to town 
covariate and categorical effect 845.50 7.00 

M3.red2  Reduced model with distance to 
town covariate and categorical 
effect 

845.99 7.49 

M8.full.no.covs Full model with no covariates 846.11 7.61 
M6.null Null model with distance to matrix 

covariate 916.25 77.75 

M7.null Null model with no covariates 916.27 77.77 
M5.null Null model with distance to town 

covariate 917.00 78.50 

M7.null2  Null model with no covariates and 
categorical effect 917.00 78.50 

M6.null2  Null model with distance to 
matrix covariate and categorical 
effect 

917.19 78.69 

M5.null2  Null model with distance to town 
covariate and categorical effect 
  

917.80 79.295612   
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Table 2.  Conditional predictive ordinate outputs for Ranomafana data. Lower values 

indicate a more supported model. 
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Figure 1. Posterior distributions of fosa state detection probability for the most supported 

model using the Ranomafana National Park data. The light blue shaded area represents 

50% probability density and the dark blue line indicates the posterior mode. Note, ݌ே஽ଵ 

is not plotted. 
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  Credible Interval 
Parameter Mode Lower 95%  Upper 95% 

 0.00 0.01 0.01 ܡ܉۲࢖
 0.00 0.02 0.02 ܜܐ܏ܑۼ࢖ 
 ۲૚ 0.91 0.91 0.89ۼ࢖
 ૛ 0.02 0.02 0.02ࡰࡺ࢖
 ૜ 0.07 0.07 0.05ࡰࡺ࢖
 ૝ 0.00 0.00 0.00ࡰࡺ࢖

 

Table 3.  Posterior quantities for detection probabilities of Ranomafana National Park 

from the best fit model. Credible intervals were calculated using the highest posterior 

density interval.  
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Model Model description CPO  CPO  
M1.full.no.covs Full model with no 

covariates  1155.65 0.00 

M2.full.covs Full model with covariates  1158.05 2.40 
M1.red.no.covs Reduced model with no 

covariates  1173.68 18.03 

M2.red.covs Reduced model with 
covariates  1175.35 19.70 

M1.null.no.covs Null model with covariates  1215.40 59.75 
M2.null.covs Null model with no 

covariates  1216.78 61.13 

 

Table 4.  Conditional predictive ordinate outputs for Makira data. Lower values indicate a 

more supported model. 
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Figure 2. Posterior distributions of fosa state detection probability for the most supported 

model using the Makira Natural Park data. The light blue shaded area represents 50% 

probability density and the dark blue line indicates the posterior mode. Note, ݌ே஽ଵ is not 

plotted. 
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  Credible Interval 
Parameter Mode Lower 95%  Upper 95%  

 0.09 0.01 0.04 ܡ܉۲࢖
 0.12 0.02 0.05 ܜܐ܏ܑۼ࢖ 
 ۲૚ 0.29 0.14 0.47ۼ࢖
 ૛ 0.02 0 0.05ࡰࡺ࢖
 ૜ 0.05 0.01 0.12ࡰࡺ࢖
 ૝ 0.01 0 0.02ࡰࡺ࢖

 

Table 5.  Posterior results for detection probabilities of the Makira region from the best fit 
model. Credible intervals were calculated using the highest posterior density interval. 
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2. Coyote Dataset 

Camera Bushnell Trophy Cam Standard Edition and HD 
models 

 
Model numbers (and their 
count) 

1199435 (8), 119436 (12), 1193537C (2), 119363C 
(19) 

 
Mode Camera 
Image Size: 5M Pixel 
Capture Number 1 
Photo Video Size NA 
Video Length NA 
Interval 30 seconds 
Sensor Level Normal 
Format Execute (format memory card every time before 

deploying camera trap or replacing memory card) 
TV Out NTSC 
Time Stamp On 
Set Clock 24hr, year-month-day 
Field Scan Off 
Video Sound NA 
Default Set Cancel 

 

Table 6.  Settings of motion-triggered camera traps and examples of lure treatments used 
in 
The camera trap settings used on the camera traps for Fidino et al., The Effect of Lure on 

Detecting Mammals with Camera Traps. Wildlife Society Bulletin. 

 
Data collection for Dynamic Modeling 
 
To capture seasonal variation in occupancy, cameras were placed for a minimum of 4 
consecutive weeks in January, April, July, and October. Cameras were placed in urban 
greenspace such as city parks, cemeteries, golf courses, and natural areas, and sampling 
locations were 1 km apart at a minimum. 
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APPENDIX S1 – Chapter 2 

 

Model  Model 
variation 

LOOC
V 

1 + 
age+county+gender+image.relation.nature+knowledge.score+ 
    fear*animal.incident+animal.owner 

interactio
n 

0.0 

1 + 
age+county+gender+image.relation.nature*knowledge.score+fe
ar+ 
    animal.owner+animal.incident 

interactio
n 

-1.0 

1 + age + county + gender + image.relation.nature + fear +  
    knowledge.score + animal.owner + animal.incident 

additive -1.4 

1 + 
age+gender+county+image.relation.nature*fear+knowledge.sco
re+ 
    animal.incident+animal.owner 

interactio
n 

-2.1 

 

Table 1. Leave-one-out-cross-validation outputs for coyote sightings. Lower values 
indicate a more supported model. 
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Model  Model 
variation 

LOOC
V 

1 + county+image.relation.nature+fear+knowledge.score+ 
    animal.owner 

additive 0.0 

1 + county+image.relation.nature*knowledge.score+fear+ 
    animal.owner 

interaction 1.7 

1 + county+image.relation.nature*fear+knowledge.score+ 
    animal.owner 

interaction 2.4 

 

Table 2. Leave-one-out-cross-validation outputs for coyote sightings. Lower values 
indicate a more supported model. 
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Model  Model 
variation 

LOOCV 

1 + 
county+image.relation.nature+knowledge.score+fear* 
    animal.owner 

interaction 0.0 

1 + 
county+image.relation.nature+fear+knowledge.score+ 
    animal.owner 

additive 1.9 

1 + 
county+image.relation.nature*knowledge.score+fear+ 
    animal.owner 

interaction 3.2 

 

Table 3. Leave-one-out-cross-validation outputs for coyote incidents. Lower values 
indicate a more supported model. 


