University of Rhode Island DigitalCommons@URI

**Open Access Master's Theses** 

1975

# CUSPATE SHOREFORMS OF WEST PASSAGE NARRAGANSETT BAY, RHODE ISLAND

Gary A. Zarillo University of Rhode Island

Follow this and additional works at: https://digitalcommons.uri.edu/theses Terms of Use All rights reserved under copyright.

## **Recommended Citation**

Zarillo, Gary A., "CUSPATE SHOREFORMS OF WEST PASSAGE NARRAGANSETT BAY, RHODE ISLAND" (1975). *Open Access Master's Theses*. Paper 2019. https://digitalcommons.uri.edu/theses/2019

This Thesis is brought to you by the University of Rhode Island. It has been accepted for inclusion in Open Access Master's Theses by an authorized administrator of DigitalCommons@URI. For more information, please contact digitalcommons-group@uri.edu. For permission to reuse copyrighted content, contact the author directly.

# CUSPATE SHOREFORMS OF WEST PASSAGE

# NARRAGANSETT BAY, RHODE ISLAND

BY

# GARY A. ZARILLO

# A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE

IN

GEOLOGY

# UNIVERSITY OF RHODE ISLAND

#### ABSTRACT

The cuspate shoreforms of the lower West Passage, Narragansett Bay, are similar in configuration. They are triangular in shape, enclose a central lagoon and extend seaward from the mainland into West Passage. Two of these cuspate shoreforms, Greene Foint and Casey Point, were selected for field investigation to determine their morphologic and sedimentologic response to the littoral environment.

Greene Point is partially composed of fine sediments ranging from silt to pebble sizes, which are easily set in motion by waves under normal meteorologic conditions. The beach morphology of this shoreform undergoes significant seasonal variations. In addition, this beach has apparently been retreating over lagoonal deposits which are now partially exposed on the foreshore. The cobble and boulder size material forming portions of the lower foreshore of Greene Point are not normally transported by waves and have lagged behind the retreating portion of the beach.

In contrast, the Casey Point beach shows little seasonal change. Shape sorting of the cobble and boulder size material forming the beach indicates, however, that the surficial sediments are at least occasionally reworked by

waves.

The extremely coarse material included in the cuspate shoreforms along West Passage was glacially derived and deposited at or near the location of the present shoreforms during the last glacial age. After post-glacial transgression and establishment of a marine environment along West Passage this material was probably reworked by waves into the present morphology of the shoreforms. The cuspate configuration of the shoreforms is due to shoreline orientation perpendicular to maximum effective fetch in West Passage.

## **ACKNOWLEDGEMENTS**

I would like to thank Dr. John J. Fisher for his assistance during research and preparation of this manuscript. I would also like to thank Drs. Monty A. Hampton and Robert L. McMaster for their helpful criticisms.

Dr. Vincent C. Rose and the Fleet Weather Faculty at the Quonset Point Naval Air Station kindly supplied wind and tidal data used in this study.

Joseph Lambiase and Edmond Fitch aided in computer operations on sediment size data and Jon Goodale and James Meyers assisted during field investigations.

# TABLE OF CONTENTS

|                                                                                                                                                                                                                             | Page                           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
| Abstract                                                                                                                                                                                                                    | i                              |
| Acknowledgements                                                                                                                                                                                                            | 111                            |
| List of Tables                                                                                                                                                                                                              | v                              |
| List of Figures                                                                                                                                                                                                             | Vi                             |
| Introduction                                                                                                                                                                                                                | 1                              |
|                                                                                                                                                                                                                             | ~                              |
| Studies in Narragansett Bay<br>Geologic Setting                                                                                                                                                                             | 5<br>5                         |
| Methods of Study                                                                                                                                                                                                            | 8                              |
| Topographic Survey<br>Littoral Sediment Movement<br>Sediment Samples: Greene Point<br>Sediment Samples: Casey Point<br>Size Analysis<br>Q-Mode Factor Analysis                                                              | 8<br>8<br>10<br>11<br>11<br>12 |
| Morphologic and Sedimentologic Analysis                                                                                                                                                                                     | 15                             |
| Morphology and Morphologic Changes<br>Littoral Sediment Movement<br>Sediment Distribution: Greene Point<br>Interpretation of Q-Mode Factors<br>Sediment Distribution: Casey Point<br>Sediment Shape Analysis of Casey Point | 15<br>19<br>24<br>29<br>35     |
| Shingle                                                                                                                                                                                                                     | 37                             |
| Morphology and Sedimentology                                                                                                                                                                                                | 39                             |
| Origin of Cuspate Shoreforms                                                                                                                                                                                                | 43                             |
| Shoreline Orientation                                                                                                                                                                                                       | 46                             |
| Shoreforms                                                                                                                                                                                                                  | 48                             |
| Transport<br>Origin of West Passage Cuspate Shoreforms                                                                                                                                                                      | 53<br>59                       |
| Summary and Conclusions                                                                                                                                                                                                     | 61                             |
| List of References                                                                                                                                                                                                          | 64                             |
| Appendix                                                                                                                                                                                                                    | 69                             |

# LIST OF TABLES

# Page

| Table A: | Greene Point Foreshore Tracer<br>Study Results     | 23  |
|----------|----------------------------------------------------|-----|
| Table 1: | Sediment Size Frequency and<br>Textural Parameters | 68  |
| Table 2: | Q-Mode Varimax Factor Matrix                       | 105 |
| Table 3: | Casey Point Foreshore Samples                      | 107 |
| Table 4: | Casey Point Sediment Shape<br>Samples              | 111 |
| Table 5: | Wind Velocity Data                                 | 134 |

# LIST OF FIGURES

|   | Figu | ire                                                                              | Page |
|---|------|----------------------------------------------------------------------------------|------|
|   | 1.   | Location of cuspate shoreforms in Narragansett<br>Bay                            | 2    |
|   | 2.   | Location of cuspate shoreforms in West Passage<br>and surficial geology          | б    |
|   | 3.   | Topography of Greene Point and location of beach profiles                        | 16   |
|   | 4.   | Topography of Casey Point and location of beach profiles                         | 17   |
|   | 5.   | Greene Point beach profiles                                                      |      |
|   | 6.   | Casey Point beach profiles                                                       | 20   |
|   | 7.   | Greene Point beach profile changes between<br>March and June, 1972               | 21   |
|   | 8.   | Location of sample traverses on Greene Point                                     | 25   |
|   | 9.   | Distribution of surficial sediments on Greene<br>Point                           | 26   |
| 1 | 0.   | Distribution of sediments and Q-Mode factors<br>in cores from Greene Point beach | 28   |
| 1 | 1.   | Distribution of sediments and Q-Mode factors<br>in Greene Point lagoon cores     | 30   |
| 1 | 2.   | Distribution of Q-Mode factors in Greene<br>Point surface sediments              | - 32 |
| 1 | .3.  | Location of sediment samples and cores from<br>Casey Point                       | 36   |
| 1 | 4.   | Frequency plots of Casey Point sediment shape samples                            | 38   |
| 1 | 5.   | Orientation of maximum fetch relative to the cuspate shoreforms in West Passage  | 51   |
| 1 | 6.   | Wind resultants in West Passage                                                  | 56   |

## INTRODUCTION

Four cuspate shoreforms occur along the west shoreline of West Passage of Narragansett Bay, Rhode Island (Fig. 1). Greene Point, the northernmost feature is located just north of the Jamestown Bridge. Plum Beach Point is located just under the western end of the Bridge. Casey Point is situated approximately three-fourths of a mile south of the Bridge. The cuspate feature known as South Ferry is located another mile south of Casey Point.

Included in the field investigation of this study are Greene Point, a cuspate shoreform of sand, gravel, cobbles and boulders, and Casey Point, composed largely of cobbles and boulders. These shoreforms were chosen over other cuspate shoreforms in the area for field study because they are the least altered by construction and artificial fill.

Field studies were designed to measure characteristics of the cuspate shoreforms such as morphology, sediment populations, seasonal changes in beach morphology and transport of surficial material. The objectives of these studies were to define the stability of the present cuspate shoreforms and provide clues to their origin and development.



Figure 1. Location of cuspate shoreforms in Narragansett Bay - a. Gaspee Point b. Conimmicut Point c. Sandy Point d. Coggeshall Point e. Greene Point f. Plum Beach Point g. Casey Point h. South Ferry i. McCurry Point j. Sapowet Point k. Brown Point

## Previous Studies of Cuspate Shoreforms

Pioneering studies of coastal processes and shoreline development were conducted by D. W. Johnson who cited the cuspate shoreforms of West Passage as typical in the early stages of shoreline development of embayed coasts (Johnson. 1925, p. 360). He attributed the origin of cuspate shoreforms to littoral drifting of beach sediments in opposite directions. Conditions ideal for this type of origin exist in long, narrow water bodies such as West Passage where directions of wave fatch are limited. All examples of cuspate shoreforms cited by Johnson occur in narrow water bodies located in weak-rock, lowland regions typically underlain by Carboniferous sediments. Johnson (1925, p. 441) terms triangular shoreforms enclosing lagoons or marshy areas. such as Greene Point and Casey Point, cuspate bars. Other authors use terms such as cuspate spits, cuspate barriers and cuspate forelands for similar features.

Fisher (1955) studied the numerous cuspate forms occurring in the lagoons of St. Lawrence Island in the Bering Sea, terming them cuspate spits. He concluded these forms were deposited from littoral drift and modified by opposing eddy currents, wave shadow effects, and storm breaching of lagoon barriers.

According to Zenkovich (1967, p. 500-522) cuspate shoreforms may be formed by deposition of material from

littoral supply under several conditions. Spits accumulating and growing in opposite directions, merge at their distal ends, forming a cuspate configuration. Cyclic deposition of sediment from an oversaturated littoral supply may result in evenly spaced cuspate shoreforms along long, narrow lagoons. Cuspate-like features originating behind islands, shoals, and shipwrecks which provide shelter from wave attack have also been cited by Zenkovich (1967, p. 520).

Cuspate shoreforms enclosing lagoons are termed double fringing spits by Zenkovich (1967) and forms with no enclosed lagoon are termed cuspate forelands.

King (1972, p. 519) states that cuspate shoreforms originate under two main conditions: (1) Deposition in the wave shelter of an offshore island and (2) Origin in areas where wave approach is restricted.

Cuspate shoreforms are referred to as cuspate barriers by King (1972, p. 519) if they include a lagoonal pond and cuspate forelands if the pond is absent.

#### Studies in Narragansett Bay

Investigation of shoreline processes in the study area have been limited despite local beaches having serious erosion. Cross <u>et al</u> (1971) studied erosion problems at Plum Point and Plum Beach Point, but did not observe the area long enough to note changes in the Plum Beach Point cuspate shoreform.

Rose <u>et al</u> (1971), investigated water mass movements in West Passage during a site evaluation for a nuclear power plant to be located on Rome Point just north of the study area.

Studies of the general coastal and marine geology of the Narragansett area have been carried out by McMaster (1960, 1962), describing sediment size distribution and heavy mineral associations in Narragansett Bay.

#### Geologic Setting

Major topographic features in the study area predate the Wisconsin (Schafer, 1961). West Passage is assumed to be an erosional valley cut prior to the last glaciation and submerged by post-glacial sea-level rise (Smith, 1955).

The surficial sediment cover (Figure 2) is almost all glacially derived (Schafer, 1961). Ground moraine and end moraine deposits include poorly sorted mixtures of till, gravel and sand. Ice contact deposits include gravel, sand, silt and thin layers of till. Outwash deposits include sorted layers of gravel and sand. Most of the glacial material was probably derived from the Pennsylvanian bedrock of the Rhode Island formation present in the area (Schafer, 1957).

Surficial sediments in the immediate area of Greene Point and Plum Beach Point are ice-contact deposits, while



Figure 2. Location of cuspate shoreforms in West Passage and surficial geology (after Schafer, 1961)

deposits near Casey Point and South Ferry are coarser ground moraine materials composed largely of glacial till (Fig. 2).

According to Schafer (1957), shoreline deposits along West Passage have been derived from erosion of glacial sediments by waves and currents. Schafer (1961) notes heavy shoreline erosion during storms such as the August 1954 hurricane, resulting in wave cut cliffs up to 15 feet high.

#### METHODS OF STUDY

#### Topographic Survey

Greene Point and Casey Point were mapped using a plane table and alidade between October 20 and November 12, 1971. Four topographic profiles on each cuspate shoreform were measured during the initial mapping period. These profiles were measured again between March 26th and 30th, 1972 to determine any changes over the winter months. During the spring profiling, in-situ reference stakes were placed along each profile and their intersection with the sediment surface marked. The stakes were monitored weekly between April 4th and June 9th. 1972 and changes in elevation recorded. Continued monitoring of the profiles through the late spring to measure any changes in the beaches was based on the winter-erosional and summer-recovery relationship (Bascom, 1964, p. 188). It was also hoped to compare winter-summer changes of two different types of beaches, Casey Point being a cobble beach and Greene Point being more sandy in nature.

#### Littoral Sediment Movement

Littoral sediment movement along Greene Point and Casey Point was monitored using tracer sediments coated with fluorescent paint. The fluorescent coating is highly visible in both ultraviolet light and daylight, and is available in a variety of colors allowing it to be used in closely spaced studies without confusing results.

Fluorescent tracer studies of cobble and boulder size material on Graene Point and Casey Point were conducted by coating a 3 foot by 3 foot square section of beach at four locations along the foreshore. Each location was monitored weekly for sediment movement between March 18 and June 20, 1972.

Tracer studies of sand size sediments on the upper foreshore of Greene Point required removal of approximately 4 liters of material from the beach, coating it with the fluorescent paint and replacement on the beach. This process was completed within 24 hours to minimize the possibility of significant textural changes at the tracer study locations. The sand tracer studies were conducted at four locations along Greene Point. Each study spanned two tidal cycles, with coated sediments emplaced during low tide and collected at low tide the following day. The collection procedure involved vaseline coated index cards pressed over points on a sampling grid surrounding the original point of emplacement (Ingle, 1966). The cards were then examined under ultraviolet light and the number of recovered fluorescent grains counted.

During each study period the wind velocity was recorded (from the Quonset Point Naval Air Station) and the longshore current velocity approximated by observing a float in the littoral zone.

## Sediment Samples: Greene Point

Sediment samples from the Greene Point beach ridge were collected over six traverses of six to nine samples each. Sample spacing along each traverse was such that at least two samples from each zone of the beach were collected (foreshore, backshore and zone of wind transported material if any).

Surficial sediment samples were collected with a sample scoop and shovel. The scoop was used for sand, gravel and finer sediments, while the shovel was used for cobble and boulder sized sediments. The samples were large enough to include at least a few of the largest particles.

Surficial samples were also collected along the breachway channel cutting through Greene Point and from the lagoon behind the beach.

Cores of the Greene Point beach ridge and lagoon were used to obtain samples of subsurface sediments. Three cores of the beach ridge and three cores of the lagoon were collected.

#### Sediment Samples: Casey Point

The cobble and boulder-sized sediments of Casey Point were measured in-situ at eight positions along the foreshore.

The intermediate diameters of fifty particles were measured in a nine square foot section (3 ft. x 3 ft.) at each sample site. This size section allowed at least a few of the largest particles to be included in the sample (Krumbein and Pettijohn, 1938, p. 31). Four sediment samples were also measured along three traverses across the Casey Point beach to determine any shape sorting trends. The short, intermediate and long axis of each particle was measured. Sampling at Casey Point was designed to measure the range of sizes among the larger particles. No attempt was made to include all sediment sizes by sampling interstitial sand, silt and clay. The finer material composed approximately 5% to 10% of the surficial sediments.

Two sediment cores were obtained from the Casey Point lagoon but the material underlying the beach could not be sampled because of difficult coring and trenching through the coarse surficial material.

#### Size Analysis

All sediment samples excepting the coarse material measured in-situ, underwent mechanical size analysis. Be-

fore size analysis, however, samples were treated with a 30% solution of hydrogen peroxide to remove organic material. Samples containing fractions of silt and clay greater than 5% were wet sieved to separate the fine and coarse material. The silt and clay fractions were measured by pipette analysis and grain sizes from 0.062 mm (4.0 phi) to 32 mm (-5.0 phi) in diameter were mechanically sieved at quarter phi intervals. Particles larger than 32 mm in diameter were measured at quarter phi intervals using a sliding rule apparatus similar to that described by Krumbein Fettijohn (1938, p. 145).

Textural parameters were calculated using a computer program developed by (Robert) Zimmerman at the University of Rhode Island Graduate School of Oceanography. Minor corrections in the program were made by Edmond Fitch of the Geology Department before it was used in this study.

## Q-Mode Factor Analysis

Factor analysis was employed as a statistical aid in defining sediment populations on Greene Foint. This statistical tool was chosen because of the low energy bay environment in which the study was conducted. Friedman (1967) suggests that techniques employing grain size parameters for differentiating between sediment populations from different depositional environments, tend to be ineffective in low energy situations where sediment supply

often exceeds energy available for distribution. Solohub and Klovan (1970) in a study comparing various techniques for identifying depositional environments conclude that factor analysis is sensitive enough to detect subtle differences in grain size distributions in low energy environments.

Factor analysis on Greene Point samples was completed using a computer program supplied by Dr. John Imbrie of Brown University and adapted for use by the computer faculties at the University of Rhode Island by Joseph Lambiase and Edmond Fitch of the University of Rhode Island Geology Department.

The computer program is a Q-Mode factor analysis program which discerns relationships between variables of the sample. Each quarter phi size interval in the size analysis of sediment samples is considered a variable in the computer program and the relationship between variables is expressed by correlation coefficients (Harbaugh and Merriam, 1968, p. 182). These inter-relationships are expressed geometrically by mathematically plotted pairs of vectors which are projected onto factor axes of unit length (-1.0 to +1.0). The sum of the squares of the loadings on the factor axes is a measure of the completeness of the representation of the variables by the factor axes and is known as the communality. The goal of factor analysis is to account for the most variability in grain size with the

fewest factors. In order to maximize this accountability, the computer program uses a varimax rotation which rotates the factor axes until the sums of the squares of the factor loadings are maximized. This is a positioning of the factor axes so that they are near the center of gravity of clusters of vectors representing variables.

The raw weights in each size class of all surface and subsurface samples from Greene Point comprised the input to the Q-Mode factor analysis program.

## MORPHOLOGIC AND SEDIMENTOLOGIC ANALYSIS

## Morphology and Morphologic Changes

The Greene Point cuspate shoreform is 2400 feet long in a north-south direction and extends 800 feet bayward from the steeply slope mainland of West Passage. The most prominent features of Greene Point are a wide beach ridge (250 feet at low water) and the enclosed shallow lagoon. Tidal exchange between the Bay and lagoon takes place through a shallow breachway cutting through the beach. A marshy area at the southern end of the lagoon encloses a smaller pond which abuts against the mainland (Fig. 3).

Casey Point is smaller in its north-south dimension (1400 feet) than Greene Point, but extends more prominently into the Bay (900 feet) from the mainland (Fig. 4). Similar to Greene Point, the Casey Point beach enclosed a lagoon which is connected to the Bay by a shallow breachway. The Casey Point lagoon does not, however, include any marshy areas.

Results of reprofiling of Greene Point in March of 1972 after the winter period show significant differences from the original profiles of November, 1971 (Fig. 5). Profiles 1 and 2, appearing concave where the beach slopes





Topography of Casey Point (November, 1971) and location of beach profiles Figure 4.



Figure 5. Greene Point beach profiles, November 1971 and March 1972 (datum low water)

18.

up to the crest of the beach ridge in November, 1971, had a less concave, much straighter profile by March, 1972. Greene Point profile 3 appeared concave along the beach zone section nearest the crest of the beach ridge and convex along the foreshore section in November. In the March profile the situation became reversed with the upper section becoming convex and the foreshore becoming concave. Profile 4 underwent changes similar to profiles 1 and 2, changing from slightly concave in November to straight or slightly convex in March.

Profiles 1, 2 and 4 across the Casey Point beach underwent no detectable changes between November 1971 and March 1972 (Fig. 6). Profile 3 located across the most seaward section of the beach showed the accumulation of a berm-like feature on the upper foreshore.

Monitoring of reference stakes along the Greene Point and Casey Point profiles between March and June, 1972, indicated no change on Casey Point and moderate changes along the upper sandy foreshore of Greene Point (Fig. 7). Changes in Greene Point profiles 1, 3 and 4 indicate shoreward movement of sediment between March and June.

#### Littoral Sediment Movement

Sediment movement on the upper sandy portion of the Greene Point foreshore correlated with average wind direction recorded during each 24 hour tracer study period



Figure 6. Casey Point beach profiles, November 1971 and March 1972 (datum low water)



Figure 7. Greene Point beach profile changes between March and June, 1972 (datum low water)

(Table A). When winds were from the southern quadrants during a tracer study, the fluorescently-coated tracer sands moved north along the foreshore. The reverse case was true for winds from the northern quadrants.

In general, the net distance of longshore movement was small and tracer sands were never recovered more than 66 feet alongshore in either direction from the starting point. This is probably due to the limited time of exposure the upper foreshore has to wave action during each tidal cycle.

The distance of transport varied depending on the average wind direction over each 24 hour study period. The greatest longshore movement occurred during winds from the northwest quadrant (northwest and north northwest) and from the southwest quadrant (southwest and south southwest). Net longshore transport was 25 feet or less during winds from the west and northeast.

Average wind speeds were low during the studies, varying between 8 and 14 miles per hour, and no correlation could be observed between wind speed and longshore transport. Longshore current measurements should not be considered indicative of average littoral conditions, since they were not taken throughout each study period and averaged as the wind velocity had been. However, the longshore current velocity recorded at the end of each tracer study period was highest, as sediment transport had been, during wind

## GREENE POINT FORESHORE TRACER STUDIES

. .

| Date | Station | Wind<br>Direction | Wind .<br>Speed<br>(M.P.H.) | Tracer *<br>Direction | Tracer<br>Distance<br>(24 Hrs.) | Littoral<br>Current*<br>(ft./sec.) |                       |
|------|---------|-------------------|-----------------------------|-----------------------|---------------------------------|------------------------------------|-----------------------|
| 3/23 | S-A.    | ssw .             | 14                          | NW ( U )              | 15 ft.                          | .33(D)                             | S-D S-C               |
| 3/29 | S-B     | NW .              | 12                          | SSE(D)                | 40 ft.                          | .25(D)                             | S-B                   |
| 3/29 | S-A     | NW                | 12                          | SSW(D)                | 60 ft.                          | •35(D)                             | 171                   |
| 4/6  | S-C     | SW                | 10                          | NW(U)                 | 66 ft.                          | . 50 ( U)                          |                       |
| 4/9  | S-B     | NNW               | 12                          | SSW(D)                | 45 ft.                          | .40(D)                             |                       |
| 4/29 | S-B     | .WSW              | 14                          | W .                   | 10 ft.                          | .15(D)                             | ~/                    |
| 4/29 | S-C     | WSW               | 14                          | WSW (D)               | 15 ft.                          | .15(D)                             |                       |
| 5/24 | S-D     | SSW               | 8                           | NW(U)                 | 45 ft.                          | .15(U)                             | SEDIMENT DYE STATIONS |
| 5/26 | S-A     | NE                | 10                          | SSW(D)                | 25 ft.                          | .50(D)                             |                       |

.

. .

TABLE A

۰.

23

. .

. .

activity from the northwest and southwest.

Observations between March 18 and June 20, 1972 at sediment dye stations on the shingle material along the lower foreshore of Greene Point revealed only two periods of movement. Observations on May 10 and 16 at a dye station just north of the breachway, indicated shoreward movement of three particles between 5 cm and 10 cm in diameter. Maximum movement was five feet in the landward direction from the starting point at the dye station.

Bi-monthly observations between March 18 and June 20, 1972 at five dye stations along the lower foreshore of Casey Point indicated no movement of large cobble and boulder sized sediments. One instance of movement of smaller cobbles (4 cm to 6 cm in diameter) was recorded on May 18th. Three small cobbles had moved 5 feet landward of the dye station.

## Sediment Distribution: Greene Point

Textural analysis of Greene Point surficial samples indicates six areas of similar sediment size and sorting characteristics (Fig. 9). Poorly sorted pebble to cobble size sediments dominate in a zone parallel to the seaward edge of Greene Point. This zone is widest (225 ft.) along the segment of Greene Point south of the tidal breachway and narrows on the north side of the breachway. It forms the flat lower foreshore of Greene Point and slopes bay-



Traverse through breachway indicated by capital letters



Figure 9. Distribution of surficial sediments on Greene Point (shoreline indicated at low water) ward at one degree or less. Landward of the lower foreshore is a zone of poorly sorted sediment ranging from granules to very coarse sand. This zone runs the entire length of Greene Point and connects with adjoining sand beaches. The upper foreshore and the shoreward edge of the backshore are included in this zone. The remainder of the backshore area includes a zone of medium to coarse sand, moderately to poorly sorted and a zone of fine to medium, poorly sorted sand. Two sediment zones occur in the area of the breachway. One, in the channel itself, is an area of granule to pebble size, poorly sorted sediments. In the area including the delta-like extension into the lagoon, a zone of coarse, poorly sorted sand occurs.

In addition to surficial beach sediments ranging up to boulder size a number of blocks ranging from four feet to eight feet in diameter occur along the lower foreshore and in the littoral zone (Fig. 3). The total number of observable blocks is in excess of twenty. Some may be undetectable because they are not exposed at low tide. Most of the blocks are fractured and many have been broken into smaller fragments by frost action. These large blocks were probably glacially emplaced, but evidence such as striations and grooves are absent and may have been removed by wave action.

The beach cores (cores 1, 2 and 3, Fig. 10) indicate the Greene Point beach is underlain by coarse, moderately



Figure 10. Distribution of sediments and Q-Mode factors in cores from Greene Point beach.
sorted sand. Cores 2 and 3 were taken in low backshore areas of Greene Point and terminated in a coarse, dark, organic appearing silt layer similar to sediments found in the near lagoon.

Analysis of core samples from the lagoon indicate it is underlain by layers of coarse silt interbedded with layers of medium to coarse, moderately sorted sand (Fig. 11). Some of the coarse lagoonal layers included particles, ranging up to pebble size.

# Interpretation of Q-Mode Factors

Q-Modefactor analysis was used by Solohub and Klovan (1970) to differentiate between sediment populations in the relatively low energy Great Lakes area. It was found that the factor analysis helped to define the various sediment populations related to different environments of deposition (beach, dune and river) much more clearly than frequently used bivariate plots of textural parameters (Friedman 1967).

While factor analysis is a valuable tool for detecting subtle differences in sediment populations from grain size distributions, it is only a mathematical tool. The relation between Q-Mode factor and sedimentologic process is ultimately a subjective interpretation. The interpretation of Q-Mode factors resulting from analysis of Greene Point samples is based on the positioning of the samples on the beach (foreshore, backshore and lagoon) and a knowledge



Figure 11. Distribution of sediments and Q-Mode factors in cores from Greene Point lagoon.

of processes that operate in these zones (wave, wind, and tidal).

Q-Mode factor analysis of 81 Greene Point beach and lagoon samples resulted in five mathematical factors accounting for 86.5% of the variability among samples. Q-Mode factor 1, accounting for 33% of the total variability, is significant in varimax matrix scores (Table 2, Appendix) of samples taken along the upper foreshore of Greene Point (Fig. 12). The medium to coarse sand in this zone was readily transported alongshore during tracer studies (see analysis of littoral sediment movement) by swash and backwash. Factor 1 therefore probably indicates the influence of wave run-up and backwash on the size distribution of beach sediments.

Q-Mode factor 2 accounts for 24% of variability among Greene Point samples and is significant in the varimax matrix scores of samples from the section of foreshore between mid-tide elevation and the low water line. The mean grain size of material in this zone is in the pebble range (19 mm to 76 mm). The transporting mechanism for this coarse material must be of a higher energy level than swash and backwash motion which is competent enough to move finer material higher up on the foreshore. Q-Mode factor 2, therefore, is probably related to the breaking wave process which supplies enough energy through turbulence to account for coarser size distributions. This lower section of foreshore is



Figure 12. Distribution of Q-Mode factors in Greene Point surficial sediments

wide, flat (less than 2° seaward slope) and completely submerged at high tide. Waves normally shoal and break in this section for a few hours before and after high tide. Miller and Zeigler (1964) reported that sediments within the breaker zone commonly have coarser size distributions than sediments landward or seaward of this zone.

Q-Mode factor 2 is also significant in all samples (samples A through H) taken from the breachway of Greene Foint. This indicates that the material in the breachway has been subject to similar energy conditions as the lower foreshore of Greene Point, but not necessarily attributed to the same transport process which influences the lower foreshore. Wave motion was not observed in the narrow section of the breachway where it cuts the highest portion of the breachway where it cuts the highest portion of the breachway widens on the foreshore. Both oscillatory wave motion and unidirectional tidal flow are probably responsible for sediment size distribution in the breachway.

Q-Mode factor 3 is significant in 12 of 29 samples with a mean grain size greater than -2.00 phi taken on the middle to lower foreshore. All these samples included particles up to boulders (greater than 76 mm) in size. The extreme size of these deposits suggests they may be lag deposits. Littoral movement tracer studies of this

coarse material on the foreshore of Greene Point indicated slight shifting of only the smaller cobble sizes. These studies, however, were conducted under moderate energy conditions during the Spring of 1972.

Q-Mode factor 4 accounts for 8.3% of total variability among samples. Samples in which this factor is significant contains 25% or more silt. Sample 3b from the backshore of Greene Point, sample C from the breachway and sample K on the foreshore adjacent to the breachway, all have a significant factor 4 in their varimax matrix scores (Table 2). Factor 4 is also significant in samples 2a and 3a, which are samples of the lagoon bottom (Fig. 8).

The source of the fine material may be offshore from the bay bottom. Finer sediments in the lagoon samples may be transported through the breachway or over the Greene Point beach. The significance of factor 4 in sample 3b from the backshore beyond the normal range of wave activity, suggests wind transport may account for the distribution of some finer sediments.

Greene Point beach core samples C2-3 and C3-3 (Fig. 10) and lagoon core samples C4-1 and C6-3 (Fig. 11) have a significant factor 4. All three samples are dark with a large organic content and have a mean grain size in the coarse silt range. The occurrence of factor 4 in beach cores as well as in foreshore and breachway samples suggests that the beach has retreated over former lagoonal

deposits.

Q-Mode factor 5, accounting for 11% of total variability, is significant in a third of the samples from the lower foreshore of Greene Point (Fig. 12) and in five subsurface samples from the lagoon. This factor occurs significantly in samples of platykurtic size distribution. Such a distribution may result from addition of fine material to the tail of a coarser distribution (Mason and Folk, 1958). Following this interpretation, the significance of factor 5 may indicate infilling of finer sediments around the coarser material on the lower foreshore. All samples from this zone range in grain size from boulders to fine silt.

### Sediment Distribution: Casey Point

Surficial beach sediments of Casey Point are coarser than those of Greene Point and include sizes from pebbles to boulders. Finer interstitial material ranges from fine sand to coarse silt and makes up less than 10% of the total surficial material.

The mean size of samples of the coarse surficial beach material increases from 6.26 cm on the north end of Casey Point to 12.06 cm on the south end (Fig. 13, Appendix, Table 3). Samples taken in transects across Casey Point beach, from landward to seaward, also increase in mean grain size.



In contrast, cores from the lagoon were composed of fine and medium sand. All samples of the cores (Appendix, Table 1, p. 99), except sample C7-1, have a mean grain size in the medium to fine sand range, are moderately sorted, and have either a positive or nearly normal skewness. Sample C7-1 from the top of core 1 is coarse silt and more poorly sorted than the other samples. Layers of coarse material such as found in the Greene Point lagoon are not found in the Casey Point lagoon at least to a depth of 3 feet below the sediment surface.

# Sediment Shape Analysis of Casey Point Shingle

Shape analysis indicates the distribution of sphere, blade, rod and disc shaped particles in a landward to seaward sequence across Casey Point (Fig. 14). In general, there is a seaward increase in the percentage of spherical particles, with the percentage of blade and rod-shaped particles variable among the samples. Plots of particular size in phi units against percentage of shapes, show the greatest percentage of disc-shaped particles occur in the modal size class.

Disc-shaped particles are the most frequently occurring of the four snape classifications, composing up to 50% of the most landward samples. The second most frequent shape is the blade, composing 35% of some samples and usually frequenting the lower size classes. Spherical shapes



Figure 14. Frequency plots of Casey Point shape samples s = sphere, b = blade, r = rod, d = disc. Samples a through d in each transect are in landward to seaward sequence. (see figure 13 for transect location)

are third in abundance, forming up to 30% of some seaward samples. Spheres are scattered through all size classes, but are most frequently in modal or near modal size classes. Rod-shaped particles occur most infrequently of any shape and are confined to the smaller size classes.

Bluck (1967) found that samples from beach shingle reworked to maturity by waves, had the greatest percentage of discs in the modal size class and a seaward increase in the percentage of spherical particles. Distribution of particle shapes on Casey Point is very similar to Bluck's results and indicates the Casey Point shingle has, at least surfically, been reworked.

#### Comparison of Greene Point and Casey Point -

#### Morphology and Sedimentology

Greene Point and Casey Point are similar in their general morphology. Both are cuspate shoreforms composed of a beach ridge enclosing a shallow lagoon. Elevation of each beach ridge at the crest is between 5 and 7 feet above low water. Tidal exchange between the lagoons and the bay is through shallow breachways cutting the beach ridge at the apex of the cuspate form. Tidal exchange occurs only at high tide since the elevation of the breachway channels at their highest point is 2 feet above low water.

Major morphologic differences between Greene Point and Casey Point are size and shape. Although Greene Point

is approximately 1000 feet longer than Casey Point, it does not extend as far seaward as Casey Point, and is less cuspate in form than Casey Point.

In detailed morphology, the two shoreforms differ greatly in profile. Greene Point has a sandy upper foreshore which dips seaward at  $6^{\circ}$  to  $8^{\circ}$  and a very wide lower foreshore (100 feet at low water) which dips gently seaward at  $2^{\circ}$ . Casey Point, however, slopes continuously seaward at  $8^{\circ}$  to  $12^{\circ}$  from the crest of the beach ridge and has no wide, flat lower foreshore.

Another major difference between Greene Point and Casey Point is in sediment size distribution. Casey Point's surficial material is primarily cobbles and boulders with some interstitial finer material. Greene Point has a zone of surficial cobbles and boulders along the lower foreshore, but also has an upper foreshore composed of medium to coarse sand. This sandy zone of Greene Point changes seasonally, eroding in the winter months and accumulating material in the spring and summer months. Eroded beach sand is apparently stored offshore during the winter months as indicated by linear ridges of sand which were observed to migrate landward across the lower foreshore in the spring. Tracer studies along the foreshore of Greene Point indicate the sands are continuously reworked and transported alongshore by waves. Q-Mode factor analysis of sand samples further supports reworking. The

sends are sorted in the breaker zone and the finer sizes are distributed over the upper foreshore by wave swash and backwash. The poorly sorted nature of the sands indicates, however, the energy available for transport and reworking is low in the bay in comparison to oceanic shorelines.

Casey Point does not undergo seasonal erosion or deposition. Shape sorting of cobbles and boulders and the accumulation of a small berm indicate Casey Point is reworked slightly by waves. Movement of material up to 10 cm in diameter during the winter months is apparent from the fore mentioned berm, but the reworking processes is not continuous. Movement of material larger than 6 cm in diameter was not recorded during tracer studies. The berm that accumulated during the winter of 1971-72 remained unchanged for at least 6 months after it was first observed in March, 1972.

Sediments in the lagoons behind Greene Point and Casey Point are also markedly different. Sizes range from silt through coarse sand in the Greene Point lagoon with included particles ranging up to pebble size. Sediments in the Casey Point lagoon range from medium sand to coarse silt with no included large particles. Greene Point lagoonal sediments may have originated as former foreshore deposits is suggested by Q-Mode factors 1 & 2, which are significant in both lagoon and foreshore samples. Overwashing of sand from the present beach may have also con-

tributed some lagoonal material. However, evidence of the retreat of the Greene Point beach over lagoonal sediments is indicated by the exposure of dark gray sand on the foreshore and in the breachway. These samples contained decomposing organic matter similar to dark layers of sand found in the lagoon.

There is no evidence that Casey Point has retreated landward over lagoonal deposits. Lack of coarse material in the lagoon indicates that overwashing has not taken place. There is no exposure of lagoonal sediments on the Casey Point foreshore. It is not known, however, whether the present Casey Point beach is resting on former lagoonal sediments since the coarse surficial material could not be penetrated.

### ORIGIN OF CUSPATE SHOREFORMS

As pointed out earlier (p. 3) Johnson (1925, p. 360) first recognized the significance of limited wave attack in the development of cuspate shoreforms. Johnson suggested that wave attack limited to two opposing directions results in littoral drifting of sediment in opposing directions toward inequalities in the shore, shoals or protected areas in the lee of islands, or points projecting from an opposing shore. Numerous examples are given of wave built cuspate shoreforms in elongate narrow water bodies. Among these are St. Andrews Channel, West Arm of Sydney Harbor and St. Anns Harbor, all adjacent to St. Anns Bay near Bras d'Or Lakes, Cape Breton, Canada. These water bodies resemble West Fassage, Narragansett Bay. All are found in weak rock lowlands and numerous cuspate shoreforms have developed along the shorelines of each.

Zenkovich (1967) discussed several possible origins of cuspate shoreforms. Some cuspate features may originate as a double feature formed by two spits accumulating from opposing directions. Cuspate shoreforms originating in this manner form in narrow bays where littoral material may be derived from the directions of both the baymouth and bayhead. Cuspate shoreforms also develop in long narrow, sandy lagoons and tend to be evenly spaced cyclic shoreforms (Zenkovich, 1967). Waves move along the axis of the narrow water body in both directions, depending on fetch length (distance from the opposite end), and their energy becomes constant or decreases at some point due to refraction. At this point the littoral drift system becomes saturated with material and sediment tends to accumulate. After the load of littoral material is decreased by deposition, the cycle will repeat. The cuspate configuration of the accumulation form depends on the strength of littoral flow from each opposing direction. More symmetrical forms tend to accumulate near the center of the lagoon where opposing currents are equal.

Cuspate features also develop by erosion of more complex shoreforms and islands according to Zenkovich. An interesting example of this is cited from Nichols (1948) in which a cuspate feature developed from the destruction of Snake Island, a drumlin island in Boston Harbor. The development of a winged flying bar from material eroded from the drumlin gave rise to a cuspate configuration. The apex or front of the form is protected from direct wave attack by a boulder pavement, the remnants of the eroded drumlin. Nichols (1948) noted several peat deposits on the seaward side of the flying bars. He concluded the

bars must have migrated over these deposits which formed in the sheltered area behind the bars. This cuspate feature is similar in some respects to Greene Point which also has retreated over sheltered lagoonal deposits and is bordered on its seaward side by glacial blocks and boulders. Greene Point, however, is tied to the mainland and the Boston Harbor feature is not. Since Nichols' study in 1948, the Boston Harbor feature has apparently migrated far enough away from the protection of the island remnants to be vigorously attacked by waves and tidal currents. Snake Island now exists as a curving almost circular spit according to the latest edition of U. S. Coast and Geodetic Survey Chart 236.

King (1972, p. 521) states that cuspate shoreforms originate under two general conditions: (1) in the shelter of offshore islands and (2) in areas of restricted wave approach due to intricate shoreline configuration.

Moila Point in the Solomon Islands is cited by King (1972), as a cuspate feature which formed in the lee of an offshore island. The apex of the cuspate form points directly toward the island. Each side of the feature is formed by a system of parallel ridges. These ridges were apparently formed by deposition of material from littoral drift in opposing directions. The two systems of ridges met forming the apex of the cuspate form.

The well-known cuspate foreland at Dungeness on the southern coast of England near the Straits of Dover is an example of a form resulting from wave approach restricted by coastal configuration. Wave approach is restricted to the southeast by the proximity of France and the apex of the form points southeast. The southwest shoreline of the Dungeness form faces the open expanse of the English Channel and the northeast shoreline faces the Straits of Dover. These shorelines are apparently oriented perpendicular to the direction of maximum possible wave fetch.

Although King (1972, p. 521) suggests two conditions for the development of cuspate shoreforms, the difference in her two examples (Moila Point and Dungeness) is only one of scale. The sheltering effect of an offshore island is just one of many ways wave approach can be restricted. The sheltering effect of a small offshore island is much more limited than a proximal land area across the expanse of a major water body and the corresponding shoreforms are different in size.

### Shoreline Orientation

The basic reason for the development of cuspate shoreforms in all the analyses presented here is the restriction of wave approach. In quantitative and qualitative estimates of alongshore wave energy and volume of littoral drift, the

angle between the shoreline and the wave crest or wave rays of approaching waves is always taken into account (Johnson and Eagleson, 1966). The more acute the angle between the wave ray and the shoreline (the larger the angle between the wavecrest and the shoreline), the greater the component of alongshore wave energy. If waves approach a beach from one direction only, and assuming the approach direction is at an angle to the shoreline, even after refraction in the shoaling littoral zone, the beach would eventually reorient to a trend more perpendicular to the wave rays (parallel to wave crests). In this configuration, littoral transport is at a minimum and the beach is stable. This is an ideal case, however, since waves generally approach a shoreline from many directions.

Lewis (1938) stresses the importance of dominant waves, which he considers to be storm waves, in determining the orientation of beaches composed of coarse material. According to Lewis, shorelines tend to orient normal to the direction of maximum wave fetch from which dominant waves approach.

Schou (1945) considers the effects of direction of maximum wave fetch and wind resultant. If maximum fetch and wind resultant direction coincide, or the fetch is equal in all directions, the shoreline will tend to become oriented normal to the wind resultant. If maximum

fetch and wind resultant do not coincide, the shoreline will become oriented along a line between the two directions.

The work of Lewis and Schou applies to beaches composed of coarse material ranging up to cobble and boulder size in areas of limited fetch. Waves affecting these beaches, are storm waves generated by local winds and have smaller wavelengths, greater relative steepness and are less refracted than waves approaching open ocean beaches. Davis (1960) considers the orientation of sand beaches. He considers the refraction of longer waves generated under non-storm conditions as a significant factor in determining beach orientation. Sandy beaches will be most stable if they are oriented normal to the direction of refracted waves. Littoral zone bathymetry will therefore be important in determining beach orientation.

# Orientation of the West Passage Cuspate Shoreforms

From the previous discussion it can be easily understood what effects an elongate body of water such as West Passage can have on shoreforms developing along its shorelines. Limited wave fetch probably has a significant effect on both dominant wave direction and prevalent wave direction (waves occurring with the greatest frequency within the Passage). Possible relationships between the orientation of Greene Point, Casey Point, the other two cuspate shoreforms (Plum Beach Point and South Ferry), and the configuration of West Passage were tested by calculating maximum fetch. Maximum fetch was determined relative to the north and south sides of all four cuspate shoreforms.

Wave fetch is restricted by the configuration of West Passage and therefore it is necessary to calculate the <u>effective</u> fetch which accounts for the limiting effect of surrounding shorelines. Calculation consists of measuring the lengths of fifteen radials extended from a wave station (Greene Point and Casey Point in this case) until they intersect the shoreline (U.S. Army Corps of Engineers 1966, p. 24). The radials are constructed at 6 degree intervals out to 45 degrees on either side of the direction for which effective fetch is to be calculated. Each radial measurement is multiplied by the cosine of the angle between the central fetch direction and that radial. The resulting values are summed and divided by the sum of the cosines of all angles. This operation can be expressed by:

ΣX1 Cos θ

where  $X_1$  is the length of each radial  $\{\cos \theta$ and  $\theta$  is the angle between each radial and the wind direction. This multiple radial method is based on the following assumptions: (a) wind moving over the water surface transfers energy to the water in the wind direction and

over 45 degrees on either side of the wind direction, (b) the wind transfers a unit amount of energy to the water surface along the radial in the direction of the wind and transfers energy in the direction of any other radial in an amount proportional to the cosine of the angle between the radial and wind direction, and (c) waves are completely absorbed at the shoreline.

Effective fetch was calculated for both Greene Point and Casey Foint in eight compass directions, 45 degrees apart. The two largest fetch directions were selected from the northern and southern quadrants and additional fetch distances were calculated within a few degrees of these two directions, to be certain that the maximum possible fetch was correctly located.

Relative to the northern side of Casey Point the maximum effective fetch is 3.17 nautical miles, trending  $N22^{\circ}E$ . On the south side of Casey Point maximum effective fetch is 1.80 nautical miles, trending S23°E (Fig. 15). Plotting these fetch directions relative to Casey Point on a map, it can be seen that the fetch direction from the north is nearly perpendicular to the north side of Casey Point. The southern maximum fetch direction is not quite normal to the southern side, varying from the normal by approximately 10° to 20°.

Maximum fetch relative to the north side of Greene Point is 4.89 nautical miles trending N10°E. On the



Figure 15. Orientation of maximum fetch relative to the cuspate shoreforms in West Passage

southern side of Greene Point maximum fetch is 1.57 nautical miles trending  $350^{\circ}$ E (Fig. 15). The relation of these fetch directions to the Greene Point shoreline is difficult to assess since this shoreline is much more curvilinear in outline than Casey Point. However, taking the perpendicular at various points along the Greene Point shoreline, as established from the plane table and alidade survey, and measuring the angle between the normal and the fetch direction, a range of values can be obtained. The northern fetch direction varies between  $17^{\circ}$  and  $35^{\circ}$  from the normal to the shoreline at various points along the northeast facing beach of Greene Point. The southeast fetch direction varies between  $12^{\circ}$  and  $20^{\circ}$  from the normal.

Maximum effective fetch directions calculated relative to Plum Beach Point and South Ferry are approximately normal to the general trend of their shorelines (Fig. 15). The configuration of Plum Beach Point and South Ferry was taken from U.S. Coast and Geodetic Survey Chart No. 236. Therefore a range of angles between wave fetch and shoreline could not be established as with Greene Point and Casey Point for which a detailed plane table survey was made.

In general, the orientation of all four cuspate shoreforms along the west bank of West Passage are clearly related to the maximum available wave fetch. These shoreforms are apparently oriented in approximate equilibrium

with the most dominant waves generated in West Passage. Deviation from this norm of shoreline orientation relative to maximum fetch is probably due to wave refraction effects. Since these deviations are relatively small, the shallow submarine slope offshore from the shoreforms has probably been somewhat reworked and reoriented relative to dominant wave direction.

The shoreline of Greene Point is curvilinear and markedly different from the other West Passage cuspate shoreforms which are sharply angular in map view. The dispersion of wave energy due to refraction, reflection and diffraction of waves around the numerous glacial blocks bordering Greene Point is probably the major cause of its curvilinear configuration.

#### Prevalent Waves and Initiation of Sediment Transport

Prevalent waves or waves occurring with the greatest frequency, are related to average wind direction in West Passage. In order to estimate the prevalent wave direction and possible effect on shoreline orientation, wind resultants for West Passage were calculated.

The calculation method used is based on a formula for wave energy,  $E = W^{4}HF$  (Bruun, 1955), where E equals total wave energy from a given direction, W is the wind force according to the Beaufort scale, H is the wind fre-

quency from a given direction and F is the fetch length. Calculation consists of determining a vector for eight or more compass directions whose length is proportional to E in the above formula. These vectors are added graphically and the resultant is the straight line joining the first and last vectors (Schou, 1945).

Wind data for resultant calculation was obtained from the Quonset Point Naval Air Station for the period between August, 1970 and June, 1972. The data were recorded hourly and consist of both speed and direction. Monthly summaries of the data are given in table 5 in the Appendix (p.134).

The effect of the configuration of West Passage on wind velocity is that the highest wind speeds and frequencies occur subparallel to the long axis of West Passage.

In calculating the wind resultant for West Passage, average wind velocity in eight compass directions was used along with the fetch in those directions. Because effective fetch was used, the resultant was calculated at two positions along West Fassage, Greene Point and South Ferry. This was done to include the effect of fetch variation at different locations.

The wave energy formula used in this case was modified somewhat from Bruun's original formula because of the low average wind speed in West Passage. If the Beaufort

scale was used, all the wind speeds would fall into the force 3 category or lower. In previous wind resultant calculations (Guilcher, 1958) all winds below Beaufort force 4 have been eliminated as ineffective. In West Passage, however, the frequency of winds greater than Beaufort force 4 (18 M.P.H.) is very low and all winds of lower force must be included in the analysis. Therefore the actual wind speed was used in the resultant calculation to insure that differences in wind speed were adequately represented.

The wind resultants are shown in Figure 16 at Greene Point and South Ferry along with the vectors calculated for each wind direction. The Greene Point resultant trends N 27°E and the South Ferry resultant N 25°E. Both resultants are close to the maximum fetch calculated for the northeast facing shorelines of the two shoreforms.

The wind resultant suggests a southerly longshore drift direction for sediments transported under energy conditions, indicated by average wind velocity. This is supported by the constant piling up of sand on the north side of the small rock groins built along the beach between Greene Point and Plum Beach Point.

Maximum average wind speed for any month between August 1970 and June 1972 was no greater than 16 M.P.H. Using this figure as the maximum average condition and applying it to wave hindcasting curve (U.S. Army Corps



Figure 16. Wind resultant in West Passage, Greene Point and South Ferry

of Engineers, 1966, p. 59). the hindcasted wave over the maximum available fetch (5 nautical miles) would have a significant height of 1 foot, a period of 5 seconds and a length of 80 feet. Sediment tracer studies on Greene Point indicate that sediments up to coarse pebble size (76 mm) are readily transported when wind speed averages no more than 14 M.P.H. (Table A). It is therefore concluded that waves normally generated within West Passage are competent in transporting sand in the littoral zone along with some coarser material ranging up to pebble size.

This conclusion was compared with published empirical and theoretical methods of predicting initiation of sediment motion. Sternberg (1972) conducted field tests on initiation of sediment motion and found that the curves relating mean velocity, shear velocity and Shields entrainment function to grain size agree closely with field data. These curves can be used to predict, in general, what grains sizes will be initiated into motion by instantaneous water velocities under shoaling waves. This assumes that instantaneous orbital velocities are analogous to the same velocities in unidirectional flow. Komar and Miller (1973), however, point out that accelerating orbital motion will exert a greater stress than a constant flow of the same velocity at a given instant. The analysis presented here will therefore result in a minimum diameter of particles eroded under a given set of wave conditions.

Taking the hindcasted significant 1 foot wave, generated over maximum available fetch in West Passage, shallow water transformations can be approximated using the transformation relationships presented by Eagleson and Dean (1966). The transformed wave in five feet of water would be 2 feet in height, have a wavelength of 20 feet and a celerity of 15 feet per second. Using these parameters in the equation for maximum horizontal particle velocity in a solitary wave (Dean and Eagleson, 1966):

 $U_{\max} = \frac{CN}{1 + \cos(\frac{MZ+h}{h})}, \text{ where } C = \text{wave celerity,}$ N and M are functions of wave height and water depth and
z = distance above the bottom, a particle velocity of 3
feet per second is obtained. A very small z is taken to
obtain velocity near the sediment surface. According to
published competency curves (Inman, 1963), this velocity
is sufficient to initiate motion in sediments up to sizes
of 10 mm in diameter (pebbles).

Prevalent waves in West Passage, which are generated according to the wave resultant in a fetch direction from the northeast, will generally have a significant wave height of up to 1 foot under normal conditions. While such waves are adequate to transport material up to pebble size in the littoral zone and on the foreshore, tracer studies indicate transport of cobble and boulder size material is

very limited. Certainly there is no longshore transport of cobbles and boulders by waves of 1 foot or less. Therefore, the effect of relatively low energy waves generated in the study area on the orientation of the West Passage cuspate shoreforms, which have significant fractions of very coarse material, is considered minimal.

This coarser material is, however, at times locally reworked by waves as indicated by the cobble berm built on Casey Point and the landward shifting of a few cobbles on the foreshore of Casey Point and Greene Point. Transport of this material may take place under higher than average energy conditions when wind speeds and tidal elevations are higher than normal. This is supported by the fact that the berm built on Casey Point during the 1971-1972 winter was located above the usual high water mark.

### Origin of West Passage Cuspate Shoreforms

Apparently there is no littoral budget of the cobbles and boulders forming the lower foreshore of Greene Point and all of the Casey Point beach. Shape sorting of the Casey Point shingle, however, is strong evidence that the beach has been totally reworked by waves. Schafer (1961) suggests the West Passage shoreforms have developed from pre-existing shoreline and bathymetric irregularities. These irregularities probably existed as salients of ground moraine material projected towards the center of the West

Passage Channel. After sea-level rose to its present position, the coarse glacial deposits could then be reworked and reoriented by dominant waves generated over the largest fetch areas in West Passage. The finer material, consisting of sand, silt, and gravel, now present in the beach deposits of Greene Point and Plum Beach Point has probably infilled around pre-existing coarser deposits. These shoreforms are adjacent to ice contact deposits (Figure 2), which are characteristically stratified, include a wide range of grain sizes and are deformed. These properties indicate the role of stagnating glacial ice and meltwater in the depositional process (Flint, 1971, p. 184). Collapse of these deposits after final melting of the ice probably exposed significant amounts of fine material to erosion and resulted in a supply of silt sand and gravel to the adjacent shoreline. Casey Point, however, is bordered on its landward side by ground moraine and is isolated from immediate sources of finer material available in ice-contact deposits. The source materials for Casey Point, therefore, are the cobbles and boulders predominant in glacial till of the adjacent ground moraine deposits.

### SUMMARY AND CONCLUSIONS

Greene Foint and Casey Point can be classified in general terms as cuspate shoreforms. Both shoreforms consist of a northeast and southeast facing shoreline enclosing a shallow lagoon. The beaches, which enclose these lagoons, are 5 to 7 feet above low water and are cut by breachways through which tidal exchange takes place with West Passage.

Topographic and sedimentologic surveys indicate Greene Point and Casey Point differ greatly in detail. Greene Point is more elongated than Casey Point but does not extend as far seaward, nor is it as cuspate in form. The Casey Point beach consists of shape sorted cobbles and boulders dipping sharply seaward and landward from the beach ridge crest at angles of 8° to 12°. Greene Point has a surficial cover of sandy and pebbly, poorly sorted, sediments over its upper foreshore and backshore areas. Along the flat, lower foreshore, Greene Point has a zone of cobbles and boulders mixed with poorly sorted sediment ranging in size from silt to pebbles.

The Greene Point lagoon contains layers of medium to coarse sand, interbedded with coarse silt layers, with a high organic content. Particles up to pebble size have been found in this lagoon. Casey Point lagoon sediments are finer and range from medium sand to coarse silt in size.

Seasonal changes on Greene Point include erosion of sandy material during the winter months from the upper foreshore and infilling of this zone during the spring and summer months. Littoral transport of these sandy sediments readily takes place under normal, lower wave energy climatic conditions. Exposure of Lagoonal deposits on the foreshore indicates Greene Point has retreated Landward.

Cobble and boulder material forming the Casey Point beach and the lower foreshore of Greene Point is not transported in an alongshore direction, but some of the smaller cobbles are shifted landward under normal high wave energy climatic conditions. Significant shape sorting of the Casey Point shingle and the building of a berm-like mound near the apex of Casey Point indicates that the surficial material is at least occasionally reworked by waves. There is no indication, however, that Casey Point is retreating landward over lagoonal deposits.

The configuration of Greene Point, Casey Point and the other two prominent cuspate shoreforms in West Passage (Plum Beach Point and South Ferry) is related to maximum available fetch. The shorelines of these cuspate features are oriented nearly perpendicular to maximum effective fetch in the northern and southern quadrants.

Waves generated under normal wind conditions in West Passage are generally small, having a significant wave height of 1 foot or less. Instantaneous water particle velocities under these waves as they move into shallow water, however, are capable of initiating motion in sediments up to 10 cm. in diameter. Larger particles may be set in motion in the turbulent breaker zone.

Prevalent waves, as indicated by the wind resultant, probably approach from the northeast. This is supported by a dominant southerly littoral drift.

It is concluded that the cuspate shoreforms of West Passage originated as localized coarse glacial deposits which were later reoriented by waves generated over maximum available fetch. Waves capable of reworking large boulders and cobbles are likely to be dominant storm generated waves.

The sedimentology of the cuspate shoreforms is directly related to local source areas. The coarser sediments of Greene Point have been infilled by finer material available in ice-contact deposits immediately adjacent to the landward and north side (updrift) of this shoreform. Casey Point, further to the south however, is isolated from any large source of fine material in the immediate area and is composed of coarse size lag deposits from ground moraine material.

### REFERENCE LIST

- Bascom, W., 1964, Waves on Beaches: Garden City, New York, Anchor Books, 267 p.
- Bluck, B.J., 1967, Sedimentation of beach gravels; examples from South Wales; Jour. Sed. Pet., v. 37, p. 128-156.
- Bruun, Per, 1955, Forms of equilibrium coasts in coast stability; Copenhagen, Danish Technical Press.
- Cross, R.H. <u>et al</u>, 1971, An Investigation of the Erosion Problem at Plum Beach, Rhode Island: M.I.T. unpublished report, 17 p.
- Davies, J.L., 1960, Beach alignment in South Australia: Australian Geogr., v. 8, p. 42-44.
- Dean, R.G. and P.S. Eagleson, 1966, Finite amplitude waves: <u>in</u> Ippen, A.T. ed., Estuary and Coastline Hydrodynamics, New York, McGraw-Hill Book Company Inc., p. 93-132
- Eagleson, P.S. and R.G. Dean, 1966, Small amplitude wave theory: <u>In</u> Ippen, A.T. ed., Estuary and Coastline Hydrodynamics, New York, McGraw-Hill Book Compant Inc., p. 1-92.
- Emery, K.O., 1968, Relict sediments on the continental shelves of the world: Amer. Assoc. Pet. Geol. Bull., v. 52, p. 445.
- Fenneman, N.M., 1938, Physiography of Eastern United States: New York, Mcgraw-Hill.
- Fisher, R.L., 1955, Cuspate spits of St. Lawrence Is., Alaska: Jour. Geol., v. 63, p. 133-142.
- Flint, R.F., 1971, Glacial and Quaternary Geology: New York, John Wiley and Sons Inc., 892 p.
- Friedman, G.M., 1967, Dynamic processes and statistical parameters compared for size frequency distribution of beach and river sands: Jour. Sed. Pet., v. 37, p. 327-354.
- Guilcher, A., 1958, Coastal and Submarine Morphology: Methuen, London, 274 p.
- Harbaugh, J. W. and D. F. Merriam, 1968, Computer Applications in Stratigraphic Analysis: New York, John Wiley and Sons Inc.. 282 p.
- Ingle, J., 1966, The movement of beach sand: New York, Elsevier Publishing Co., p. 15-28.
- Inman, D. L., 1963, Physical properties and mechanics of sedimentation: <u>In</u> Submarine Geology, New York, Harper and Row, p. 101-151.
- Johnson, D. W., 1919, Shore Processes and Shoreline Development: New York, John Wiley and Sons, 548 p.
- Johnson, D. W., 1925, The New England-Acadian Shoreline: New York, John Wiley and Sons, 608 p.
- King, C. A. M., 1959, Beaches and Coasts: London, E. Arnold, 403 p.
- King, C. A. M., 1972, Beaches and Coasts, second edition: New York, St. Martins Press, 570 p.
- Komar, P. D. and M. C. Miller, 1973, The threshold of sediment movement under oscillatory water waves: Jour. Sed. Pet., v. 43, p. 1101-1110.
- Krumbein, W. C. and F. J. Pettijohn, 1938, Manual of Sedimentary Petrography: New York, Appleton-Century-Crofts, 549 p.
- Lewis, W. V., 1938, The evolution of shoreline curves: Proc. Geol. Assoc., v. 49, p. 107-127.
- Mason, C. C. and R. L. Folk, 1958, Differentiation of beach, dune, and aeclian flat environments by size analysis, Mustang Island, Texas: Jour. Sed. Pet., v. 28, p. 211-226.
- McMaster, R. L., 1960, Sediments of the Narragansett Bay system and Rhode Island Sound: Jour. Sed. Pet., v. 39, p. 249-274.
- McMaster, R. L., 1962, Petrography and genesis of recent sediments in Narragansett Bay and Rhode Island Sound, Rhode Island: Jour. Sed. Pet., v. 32, p. 484-501.
- Miller, R. L., and Zeigler, J. M., 1964, A study of sediment distribution in the zone of shoaling waves over complicated bottom topography: <u>In Papers in Marine Geology-</u> Shepard Commemorative Volume, New York, MacMillan Company, p. 133-153.

- Nichols, D. R., 1958, Bedrock Geology of the Narragansett Pier Quadrangle, Rhode Island: U.S. Geol. Survey Geol. Quad. map G. Q-91.
- Nichols, R. L., 1948, Flying Bars, American Journal of Science, v. 246, p. 96-100.
  - Quinn, A. W., 1952, Bedrock geology of the East Greenwich quadrangle, Rhode Island: U.S. Geol. Survey Geol. Quad. map G. Q-17.
  - Quinn, A. W., 1971, Bedrock Geology of Rhode Island: U.S. Geol. Survey Bull, 1295, 68 p.
  - Rose, V. C. et al, 1971, Rome Point Circulation Study, University of Rhode Island.
  - Schafer, J. P., 1961, Survicial Geology of the Narragansett Pier Quadrangle, Rhode Island: U.S. Geol. Survey Geol. Quad map G. Q-140.
  - Schafer, J. P., 1961, Surficial Geology of the Wickford
    Quadrangle, Rhode Island: U.S. Geol. Survey Geol.
    map. G. Q-136.
  - Schou, A., 1945, Det marine foreland: Floia Geog. Danica, v. 4, p. 1-236.
  - Smith, J. H., 1955, Surficial Geology of the East Greenwich Quadrangle, Rhode Island: U.S. Geol. Survey Geol. Quad map G. Q-62.
  - Solohub, J. E., and Klovan, J. E., 1970, Evaluation of grain size parameters in lacustrine environments: Jour. Sed. Petrology, v. 40, p. 81-101.
  - Sternberg, R. W., 1972, Predicting initial motion of sediment particles in the shallow marine environment. <u>In</u> Swift, D.J.P., Duane, D. B., and Pilkey, O. H. eds., Shelf Sediment Transport, Process and Pattern: Stroudsburg, Pa., Dowden, Hutchinson & Ross Inc.
  - U.S. Army Corps of Engineers, 1966, Shore Protection, Planning and Design: CERC Tech. Rept n. 4, 401 p.
  - Williams, R. B., 1964, Bedrock Geology of the Wickford Quadrangle, Rhode Island: U.S. Geol. Survey Bull, 1158-c, 15 p.
  - Yasso, W. F., 1966, Formulation and use of fluorescent tracer coastings in sediment transport studies: Sedimentology, v. 6, p. 287-301.

Zenkovich, V. F., 1967, Processes of Coastal Development: Steers, J. A. ed., London, Oliver and Boyd, 738 p.

Zingg, T. H., 1935, Beitrag zur Schotteranalyse: Schweiz. Min. u. Pet. Mitt., Bd. 15, p. 39-140. APPENDIX

| Size (phi)                                                                                                                          | 1A                                                                                                                               | 1B                                                                                                                              | 10                                                                                                                                   | 1D                                                                                                                             |
|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| -6.50<br>-6.25<br>-6.00<br>-5.75<br>-5.50<br>-5.25<br>-5.00<br>-4.75<br>-4.50<br>-4.25<br>-4.25<br>-4.00<br>-3.75<br>-3.50<br>-3.25 | 14.83<br>0.0<br>0.0<br>2.47<br>5.05<br>0.0<br>2.85<br>3.94<br>3.94<br>2.11<br>2.11<br>1.48                                       | $\begin{array}{c} 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 6.32\\ 4.63\\ 0.52\\ 0.52\\ 1.97\\ 1.97\\ 1.97\\ 1.91\\ 1.91\\ 2.75\end{array}$ | $\begin{array}{c} 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 4.42\\ 5.06\\ 0.92\\ 0.92\\ 1.06\\ 1.06\\ 1.92 \end{array}$              | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                             |
| -3.00 $-2.75$ $-2.50$ $-2.25$ $-2.00$ $-1.75$ $-1.50$ $-1.25$ $-1.00$ $-0.75$ $-0.50$ $-0.25$ $0.0$ $0.25$ $0.50$ $0.75$ $1.00$     | <br>1.42<br>1.30<br>0.91<br>0.94<br>1.08<br>0.71<br>1.17<br>1.04<br>1.33<br>1.74<br>1.34<br>2.95<br>4.96<br>5.93<br>6.93<br>6.94 | 2.75<br>2.96<br>2.18<br>2.28<br>3.17<br>1.85<br>2.76<br>2.39<br>2.85<br>4.50<br>4.83<br>4.61<br>5.37<br>5.82<br>6.24<br>4.42    | 1.92<br>1.63<br>1.61<br>1.67<br>2.23<br>1.34<br>1.49<br>1.22<br>1.22<br>1.54<br>1.39<br>1.50<br>1.76<br>1.79<br>1.79<br>1.98<br>2.21 | 0.95<br>0.77<br>1.02<br>0.59<br>1.00<br>0.75<br>1.00<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.089<br>1.22<br>1.14<br>1.354 |
| 1.25<br>1.50<br>1.75<br>2.00<br>2.25<br>2.50<br>2.75<br>3.00<br>3.25<br>3.50<br>3.75                                                | 4.58<br>2.86<br>1.71<br>0.86<br>0.25<br>0.12<br>0.06<br>0.04<br>0.04<br>0.04<br>0.02                                             | 2.57<br>2.54<br>2.86<br>3.93<br>3.28<br>1.44<br>0.63<br>0.49<br>0.19<br>0.31<br>0.11<br>0.16                                    | 2.54<br>3.56<br>6.30<br>10.48<br>9.97<br>8.09<br>6.71<br>4.25<br>3.15<br>1.71<br>1.20<br>0.48                                        | 5.92<br>5.91<br>11.95<br>14.40<br>10.84<br>8.97<br>6.66<br>5.64<br>2.75<br>2.19<br>0.82                                        |

Sediment size frequency and textural parameters

|                                                      |                                                         | Sample %                                           |                                                 |                                                      |
|------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------|-------------------------------------------------|------------------------------------------------------|
| Size (phi)                                           | 1A                                                      | 18                                                 | 1 C                                             | 1D                                                   |
| 4.00<br>4.25<br>4.50<br>4.75<br>5.00<br>5.25<br>5.50 | 0.01<br>0.04<br>0.04<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0 | 0 • 0<br>0 • 0<br>0 • 0<br>0 • 0<br>0 • 0<br>0 • 0 | 0.15<br>0.14<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0 | 0.33<br>0.42<br>0.42<br>0.21<br>0.21<br>0.63<br>0.63 |
| Mean (phi)                                           | -2.187                                                  | -1.261                                             | 0.164                                           | 1.490                                                |
| Standard<br>Deviation                                | 2.886                                                   | 2,243                                              | 2.503                                           | 1.636                                                |
| Skewness                                             | -0.264                                                  | -0.362                                             | -0.796                                          | -1.259                                               |
| Kurtosis                                             | 1.543                                                   | 2.097                                              | 2.247                                           | 4.946                                                |

Table 1

Sample %

# Sample %

| Size (phi)                                                   | 1E                                                                 | 1 F                                                        | 2A                                                   | 2C     |
|--------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------|--------|
| 5.25<br>5.50<br>5.75<br>6.00<br>6.25<br>6.50<br>6.75<br>7.00 | 0.19<br>0.19<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.0<br>0.0 | 0.40<br>0.40<br>0.40<br>0.40<br>0.16<br>0.16<br>0.0<br>0.0 | 0.0<br>0.0<br>6.10<br>6.10<br>6.10<br>12.20<br>12.20 |        |
| Mean (phi)                                                   | -1.448                                                             | -1.906                                                     | 4.975                                                | -0.522 |
| Standard<br>Deviation                                        | 3.285                                                              | 2.987                                                      | 1.749                                                | 1.666  |
| Skewness                                                     | -0.150                                                             | 0.406                                                      | -1.226                                               | -0.724 |
| Kurtosis                                                     | 1.687                                                              | 2.086                                                      | 4.386                                                | 3.157  |

2D

0.0

8.27

3.16 2.25

4.55

3.16

1.60

4.44

4.44

4.28

4.28

4.08

4.08

3.25

3.25

2.16

2.24

2.29

1.42

1.79

1.75

1.78

2.35

2.58

2.64

2.22

1.99

2.44

2.42

2.20

1.00

0.97

1.03

0.66

0.35

0.10

0.07

0.08

0.06

0.05

0.05

0.10

1 42

1 49

1 78

| S  | ŧ | $\mathbf{z}$ | e        | 1 | (  | n  | h | i | ١ |  |
|----|---|--------------|----------|---|----|----|---|---|---|--|
| ы. | - | ~            | <b>U</b> | 1 | ι. | γ, |   | - |   |  |

-6.50

-6.25

-6.00

5.75

5.50

5.25

5.00

-4.75

-4.50

-4.00

3.75

3.50

3.25

3.00 -2.75

-2.50

-2.25

-2.00

-1.75

-1.50

-1.25

-1.00

-0.75

-0.50

-0.25

0.0

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

3.

25

| Sample | ħ |  |
|--------|---|--|
| 2E     |   |  |
| 0.0    |   |  |
| 0.0    |   |  |

2.94

8.13

1.34

4.40

0.98 3.14

3.14 3.39

3.39

3.06

3.06 2.80 2.80 2.76

2.41

2.86

1.82

3.03 2.81 3.38 4.14

4.23

74

59

92

43

69

56

34

0.97

0.65

0.24

0.09

0.09

0.07

0.07

0.0

0. 33

3

3 2

1.

1

1 20

1

1 96

2 17

1 97

1

1

97

1

2F

25.30

14.20

7.30

2.52

2.49

2.83

2.83

1.55

2.02

2.02

1.68

1.68

1.47

0.90

1.26

0.98

0.97

1.25

1.04

1.06

1.18

1.07

1.04

1.

1 10

1 20

1

1

1

07

35

•35 •16

0.76

0.82

0.58 0.35

0.12

0.04

0.03

0.03

0.03

0.03

1. 47

1. 37

1. 29

1.

55

0.0

5

.Ź5

| 2G                                                                                                                                                       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.0<br>3.0<br>4.7<br>1.5<br>5.2<br>2.2<br>2.2<br>2.2<br>2.0<br>2.0<br>9998<br>9755<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2 |
| 2.94<br>3.05<br>3.69<br>2.57<br>2.50<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57                                                     |

2.75 3.00 25 3.50 3.75 4.00 4.25 4.50 4.75

|                                                                      | Ta<br>Sa                                                     | ble 1<br>mple 3                                                 |                                                                 |                                                              |
|----------------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------|
| Size (phi)                                                           | 2D                                                           | 2E                                                              | 2F                                                              | 2G                                                           |
| 5.00<br>5.25<br>5.50<br>5.75<br>6.00<br>6.25<br>6.50<br>6.75<br>7.00 | 0.10<br>0.14<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05 | 0.0<br>0.14<br>0.14<br>0.07<br>0.07<br>0.0<br>0.0<br>0.0<br>0.0 | 0.03<br>0.08<br>0.03<br>0.03<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0 | 0.20<br>0.20<br>0.20<br>0.20<br>0.20<br>0.20<br>0.20<br>0.20 |
| Mean (phi)                                                           | -2.740                                                       | -2.199                                                          | -4.304                                                          | -1.703                                                       |
| Standard<br>Deviation                                                | 2.723                                                        | 2.599                                                           | 2.823                                                           | 3.034                                                        |
| Skewness                                                             | 0.593                                                        | 0.243                                                           | 1.136                                                           | 0.196                                                        |
| Kurtosis                                                             | 2.386                                                        | 2.152                                                           | 3.088                                                           | 2.093                                                        |

|      |        | 30       |                                                                        |
|------|--------|----------|------------------------------------------------------------------------|
|      |        | 30       | <ul> <li>сооошничничничи шии и и и и и и и и и и и и и и и и</li></ul> |
|      |        |          |                                                                        |
| le 1 | mple % | 33       | 00000000000000000000000000000000000000                                 |
| Tab  | Sa     |          |                                                                        |
|      |        | 3A       | 00000000000000000000000000000000000000                                 |
|      |        |          |                                                                        |
|      |        |          |                                                                        |
|      |        | 1)       |                                                                        |
|      |        | Size (ph | 66647777444444444446666666666666666666                                 |

|                                                      |                                                      | 76                                              |                                                    |                                           |  |
|------------------------------------------------------|------------------------------------------------------|-------------------------------------------------|----------------------------------------------------|-------------------------------------------|--|
|                                                      | Tabl                                                 | Le 1                                            |                                                    |                                           |  |
|                                                      | Sam                                                  | ple %                                           |                                                    |                                           |  |
| Size (phi)                                           | 3A                                                   | 3B                                              | 3C                                                 | 3D                                        |  |
| 5.00<br>5.25<br>5.50<br>5.75<br>6.00<br>6.25<br>6.50 | 9,39<br>2.35<br>2.35<br>7.04<br>7.04<br>2.35<br>2.35 | 0.0<br>0.0<br>0.0<br>6.83<br>6.83<br>0.0<br>0.0 | 0.08<br>0.17<br>0.17<br>0.41<br>0.41<br>0.0<br>0.0 | 0.13<br>0.0<br>0.17<br>0.17<br>0.0<br>0.0 |  |
| Mean (phi)                                           | 3.696                                                | 2.367                                           | -1.283                                             | -4.148                                    |  |
| Standard<br>Deviation                                | 1.870                                                | 1.782                                           | 2.881                                              | 2.865                                     |  |
| Skewness                                             | -0.699                                               | 0.554                                           | 0.164                                              | 1.240                                     |  |
| Kurtosis                                             | 2.407                                                | 2.465                                           | 2.361                                              | 3.474                                     |  |

| Sample | d p |
|--------|-----|
|--------|-----|

1

:

| • | Size (phi)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3E                                                                                                                                                                                                                                                                                                                                                                  | 3F                                                                                                           | 3G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | $\begin{array}{c} -6.50 \\ -6.25 \\ -6.00 \\ -5.75 \\ -5.25 \\ -5.25 \\ -4.50 \\ -4.25 \\ -4.50 \\ -4.50 \\ -4.50 \\ -4.50 \\ -4.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\ -1.50 \\$ | $\begin{array}{c} 0.0\\ 17.70\\ 18.21\\ 0.0\\ 3.20\\ 0.85\\ 0.0\\ 2.18\\ 2.18\\ 3.02\\ 3.02\\ 1.63\\ 1.63\\ 1.79\\ 1.63\\ 1.79\\ 1.59\\ 1.45\\ 1.24\\ 1.57\\ 1.05\\ 1.39\\ 1.18\\ 1.23\\ 1.16\\ 1.29\\ 1.29\\ 1.58\\ 1.75\\ 2.06\\ 2.07\\ 2.65\\ 2.71\\ 2.31\\ 2.18\\ 2.40\\ 1.62\\ 1.63\\ 1.15\\ 0.79\\ 0.43\\ 0.44\\ 0.27\\ 0.15\\ 0.10\\ 0.10\\ 0.39\end{array}$ | 0.0<br>0.0<br>3.94<br>0.0<br>5.651.38<br>1.899.447.722.721.502.402.4722.722.22.22.22.22.222.222.222.22.22.22 | 0.0<br>0.0<br>3.96<br>7.51<br>4.57<br>0.63<br>1.638<br>1.382<br>2.452<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.222<br>2.2222<br>2.2222<br>2.2222<br>2.2222<br>2.2222<br>2.2222<br>2.2222<br>2.2222<br>2.2222<br>2.2222<br>2.2222<br>2.2222<br>2.2222<br>2.2222<br>2.2222<br>2.2222<br>2.2222<br>2.2222<br>2.2222<br>2.2222<br>2.2222<br>2.2222<br>2.22222<br>2.2222<br>2.22222<br>2.22222<br>2.222222<br>2.2222<br>2.2222<br>2.2222<br>2 | $\begin{array}{c} 0.0\\ 6.10\\ 9.68\\ 7.04\\ 4.3\\ 3.11\\ 1.11\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 1$ |

|                                                      |                                                     | 77                                               |                                             |                                           |  |
|------------------------------------------------------|-----------------------------------------------------|--------------------------------------------------|---------------------------------------------|-------------------------------------------|--|
|                                                      | T                                                   | able 1<br>Sample %                               |                                             |                                           |  |
| Size (phi)                                           | 3E                                                  | 3F                                               | 3G                                          | 3H                                        |  |
| 5.00<br>5.25<br>5.50<br>5.75<br>6.00<br>6.25<br>6.50 | 0.39<br>0.20<br>0.20<br>0.39<br>0.39<br>0.39<br>0.0 | 0.27<br>0.40<br>0.40<br>0.0<br>0.0<br>0.0<br>0.0 | 0.39<br>0.29<br>0.10<br>0.10<br>0.10<br>0.0 | 0.26<br>0.0<br>0.13<br>0.13<br>0.0<br>0.0 |  |
| Mean (phi)                                           | -2.946                                              | -1.564                                           | -1.505                                      | -2.137                                    |  |
| Standard<br>Deviation                                | 3.363                                               | 2.852                                            | 2.969                                       | 3.467                                     |  |
| Skewness                                             | 0.581                                               | 0.102                                            | 0.042                                       | 0.351                                     |  |
| Kurtosis                                             | 2.032                                               | 1.984                                            | 2.017                                       | 1.518                                     |  |

ź

% alques

0.0 9T°0 87.0 52.0 6z•0 0.0 80.0 66.0 21.0 0.0 Th 0 97.0 25.0 **ή**[°0 0.0 72\*1 21.1 12.1 3.59 61.0 TT.O 5.53 61.0 77.0 <u>کو، کے</u> کو، کے 05 \* 0 86°Ē 82.0 62°2 50°2 87°9 72°9 1.82 žõ•Ć 29.5 60°5 05°9 65°5 57°5 89.6 02.9 22.6 13.21 51.6 26.21 97 9 92 E 52.41 69°TT 7.17 02•5 25•5 01.8 76° T 86.0 62.4 26.6 Ţ É2\* τ9.0 T6.4 69.0 11.1 68°7 55°7 61°2 **79°0** τ0•τ sE. ٠. £8•0 69.0 τ د 9•0 9•0 72.0 77°E 26.0 85.0 Żż•ε **†8°**0 ŠE•0 02.S 99°0 65°0 29•0 £2.0 67 2 67.0 2.18 3.72 2.54 51.0 97.0 55.0 99°0 51.0 89.0 50.0 **2**μ•0 64.0 08.S 51.0 ōؤ•0 22.0 99°0 06°0 78.S *η***5** • 0 90.0 15.0 61.0 78•S 88 7 72 C 72 C 51.0 65.0 01.1 22.0 Et1 • 0 20°τ 20° I Et • 0 SS.0 10°1 06°T 86.0 0.0 0.0 10°1 06°I 86.0 0.0 0.0 28**°**2 10.1 62°T 28•S 0.0 τ0°τ ĩ6° ĩ 3°05 0°0 36.I 26.9 16°2 8E.1 0.0 Żε• 0.0 0.0 S 01.0 28°2 65°7T 0.0 0.0 0.0 0.0 0.0 0.0 92° Å 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 81.8 0.0 0.0 **11.26** 0.0 0.0 0.0 đγB ₩ή 31 Iε (IUG) ƏZIS

52.4 00°4 52°E 05 \* 20 3.25 00°E 52°2 S 52.55 00\* 2 ŠŽ•ž 05°T 22.1 00°I 52.0 05.0 52.0 0.0 52.0-05.0-52.0-00°I-52.1-05.1-56.1--2.00 -2.55 2-52.5-52°É-05°E-52°E-00 17-52.4-05.4-56.4-00.2-52.2-05.5-52.5-00.9-52·9--9·20

# Sample %

| Size (phi)                                                                                 | 31                                                                   | 3J                                                                           | 4 <u>A</u>                                                           | 4B     |
|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------|--------|
| 4 • 50<br>4 • 7 5<br>5 • 00<br>5 • 2 5<br>5 • 50<br>5 • 7 5<br>6 • 00<br>6 • 2 5<br>6 • 50 | 0.15<br>1.17<br>1.17<br>0.44<br>0.44<br>0.15<br>0.15<br>0.44<br>0.44 | 0.48<br>0.24<br>0.24<br>0.24<br>0.24<br>0.24<br>0.49<br>0.49<br>0.49<br>0.49 | 0.16<br>0.49<br>0.49<br>0.16<br>0.16<br>0.16<br>0.16<br>0.16<br>0.16 |        |
| Mean                                                                                       | -0.779                                                               | -0.742                                                                       | -0.170                                                               | 0.547  |
| Standard<br>Deviation                                                                      | 3.940                                                                | 3•534                                                                        | 1.955                                                                | 2.077  |
| Skewness                                                                                   | -0.418                                                               | -0.123                                                                       | 0.076                                                                | -1.912 |
| Kurtosis                                                                                   | 1.583                                                                | 1.639                                                                        | 2.741                                                                | 5.234  |

Table 1

# Sample %

| Size (phi)                                                           | 4C     | 4D     | 4E     | 4F                                                          |
|----------------------------------------------------------------------|--------|--------|--------|-------------------------------------------------------------|
| 4.50<br>4.75<br>5.00<br>5.25<br>5.50<br>5.75<br>6.00<br>6.25<br>6.50 |        |        |        | 0.09<br>0.09<br>0.18<br>0.18<br>0.18<br>0.18<br>0.18<br>0.0 |
| Mean (phi)                                                           | -0.926 | -0.587 | -2.217 | -3.175                                                      |
| Standard<br>Deviation                                                | 1.940  | 1.572  | 2.021  | 3.283                                                       |
| Skewness                                                             | -0.461 | 0.130  | 0.008  | 0.670                                                       |
| Kurtosis                                                             | 2.099  | 2.297  | 1.948  | 2.111                                                       |

1.0

|                                                                                                                                                                                                                                                                                                     | Sample %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4G                                                                                                                                                                                                                                                                                                  | 4H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5A                                                                                                                                                                                                                                                                                                                                                                       | 5B                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0.0<br>5.51<br>7.43<br>7.69<br>1.86<br>4.18<br>3.53<br>2.25<br>2.25<br>3.45<br>2.97<br>2.97<br>2.97<br>2.43<br>2.00<br>1.68<br>1.32<br>1.71<br>1.07<br>1.30<br>0.97<br>0.88<br>1.06<br>0.95<br>0.79<br>0.65<br>0.64<br>0.71<br>1.25<br>1.95<br>3.43<br>5.51<br>3.66<br>1.97<br>0.66<br>0.33<br>0.10 | 15.62 $10.34$ $0.0$ $6.76$ $8.08$ $3.54$ $1.86$ $3.33$ $3.34$ $1.21$ $1.64$ $1.64$ $1.89$ $1.64$ $1.89$ $1.64$ $1.26$ $1.15$ $1.42$ $0.84$ $1.14$ $0.87$ $0.75$ $0.75$ $0.75$ $0.75$ $0.72$ $0.67$ $0.81$ $0.75$ $0.72$ $0.67$ $0.83$ $1.42$ $2.10$ $3.15$ $4.42$ $3.51$ $3.40$ $1.97$ $1.07$ $0.32$ $0.18$ $0.06$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c} 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0$                                                                                                                                                                                                                                                                                                         | $\begin{array}{c} 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0$                                                                                                                                                                                                                                                                                                                                                                             |
| 0.07                                                                                                                                                                                                                                                                                                | 0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0                                                                                                                                                                                                                                                                                                                                                                      | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                     | 4G<br>0.0<br>5.51<br>7.43<br>7.69<br>1.86<br>4.18<br>3.53<br>2.25<br>2.25<br>3.45<br>2.97<br>2.97<br>2.97<br>2.97<br>2.97<br>2.97<br>2.97<br>2.97<br>2.97<br>2.97<br>2.97<br>2.97<br>2.97<br>2.97<br>2.97<br>2.97<br>2.97<br>2.97<br>2.97<br>2.97<br>2.97<br>2.97<br>2.97<br>2.97<br>2.97<br>2.97<br>2.97<br>2.97<br>2.97<br>2.97<br>2.97<br>2.97<br>2.97<br>2.97<br>2.97<br>2.97<br>2.97<br>2.97<br>2.97<br>2.97<br>2.97<br>2.97<br>2.97<br>2.97<br>2.97<br>2.97<br>2.97<br>2.97<br>2.97<br>2.97<br>2.97<br>2.97<br>2.97<br>2.97<br>2.97<br>2.97<br>2.97<br>2.97<br>2.97<br>2.97<br>2.97<br>2.97<br>2.97<br>2.97<br>2.97<br>2.97<br>2.97<br>2.97<br>2.97<br>2.97<br>2.97<br>2.97<br>2.97<br>2.97<br>2.97<br>2.97<br>2.97<br>2.97<br>2.97<br>2.97<br>2.97<br>2.97<br>2.97<br>2.97<br>2.97<br>2.97<br>2.97<br>2.97<br>2.97<br>2.97<br>2.97<br>2.97<br>2.97<br>2.97<br>2.97<br>2.97<br>2.97<br>2.97<br>2.97<br>2.97<br>2.97<br>2.97<br>2.97<br>2.97<br>2.97<br>2.97<br>2.97<br>2.97<br>2.97<br>2.97<br>2.97<br>2.97<br>2.97<br>2.97<br>2.97<br>2.97<br>2.97<br>2.97<br>2.97<br>2.97<br>2.97<br>2.97<br>2.97<br>2.97<br>2.97<br>2.97<br>2.97<br>2.97<br>2.97<br>2.97<br>2.97<br>2.97<br>2.97<br>2.97<br>2.97<br>2.97<br>2.97<br>2.97<br>2.97<br>2.97<br>2.97<br>2.97<br>2.97<br>2.97<br>2.97<br>2.97<br>2.97<br>2.97<br>2.97<br>2.97<br>2.97<br>2.97<br>2.97<br>0.65<br>0.64<br>0.97<br>0.66<br>1.97<br>0.66<br>0.907<br>0.06<br>0.071<br>1.97<br>0.66<br>0.97<br>0.06<br>0.07 | Sample %4G $4H$ 0.015.625.5110.347.430.07.696.761.868.084.183.543.531.862.253.332.253.343.451.212.971.642.971.642.971.642.971.642.971.642.971.642.971.641.321.151.711.421.070.841.301.140.970.870.880.751.060.750.900.780.860.770.950.810.790.750.640.670.710.831.251.421.952.103.433.155.204.424.813.515.513.403.661.971.971.070.660.320.330.180.100.060.060.040.070.09 | Sample %4G4H5A0.015.620.05.5110.340.07.430.00.07.696.760.01.868.080.04.183.540.03.531.860.02.253.330.02.253.340.03.451.210.02.971.640.02.971.640.02.431.890.02.001.640.01.321.150.01.711.420.01.301.140.00.970.870.00.660.750.090.900.780.100.860.770.190.950.810.430.790.750.910.650.722.080.640.674.640.710.8310.241.251.4216.361.952.1020.633.433.515.865.513.402.903.661.970.741.971.070.140.660.320.150.330.180.00.660.040.00.660.040.0 |

# Sample 🔏

| Size (phi)                                                   | 4G                                                                   | 4日                                                                      | 5A     | 5B     |
|--------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------------|--------|--------|
| 4.50<br>4.75<br>5.00<br>5.25<br>5.50<br>5.75<br>6.00<br>6.25 | 0.07<br>0.15<br>0.15<br>0.07<br>0.07<br>0.15<br>0.15<br>0.15<br>0.15 | 0.09<br>0.18<br>0.18<br>0.18<br>0.18<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0 |        |        |
| Mean (phi)                                                   | -2.215                                                               | -3.210                                                                  | 1.411  | 1.354  |
| Standard<br>Deviation                                        | 3.377                                                                | 3.401                                                                   | 0.499  | 0.530  |
| Skewness                                                     | 0.367                                                                | 0.666                                                                   | -0.330 | -0.559 |
| Kurtosis                                                     | 1.657                                                                | 1.915                                                                   | 3.920  | 3.397  |

| Ta | Ъ | 1 | e | 1 |
|----|---|---|---|---|
|    | _ | _ |   |   |

Sample %

| Size (phi)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5F                                                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|
| Size (phi)<br>-6.50<br>-6.25<br>-6.00<br>-5.75<br>-5.50<br>-5.25<br>-5.00<br>-4.75<br>-4.50<br>-4.25<br>-4.00<br>-3.75<br>-3.00<br>-2.75<br>-2.50<br>-2.25<br>-2.00<br>-1.25<br>-1.00<br>-0.75<br>-0.50<br>-0.25<br>0.0<br>0.25<br>0.50<br>0.75<br>1.00<br>1.25<br>1.00<br>1.25<br>1.00<br>1.25<br>1.00<br>1.25<br>1.00<br>1.25<br>1.00<br>1.25<br>1.00<br>1.25<br>1.00<br>1.25<br>1.00<br>1.25<br>1.00<br>1.25<br>1.00<br>1.25<br>1.00<br>1.25<br>1.00<br>1.25<br>1.00<br>1.25<br>1.00<br>1.25<br>1.00<br>1.25<br>1.00<br>1.25<br>1.00<br>1.25<br>1.00<br>1.25<br>1.00<br>1.25<br>1.00<br>1.25<br>1.00<br>1.25<br>1.00<br>1.25<br>1.00<br>1.25<br>1.00<br>1.25<br>1.00<br>1.25<br>1.00<br>1.25<br>1.00<br>1.25<br>1.00<br>1.25<br>1.00<br>1.25<br>1.00<br>1.25<br>1.00<br>1.25<br>1.00<br>1.25<br>1.00<br>1.25<br>1.00<br>1.75<br>2.00<br>2.25<br>2.50<br>2.75<br>3.00 | 5C<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0 | 5D<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>1.00<br>1.69<br>1.69<br>2.70<br>2.70<br>3.24<br>4.58<br>5.06<br>4.599<br>7.26<br>10.83<br>7.11<br>4.886<br>2.792<br>3.460<br>1.69<br>2.50<br>3.46<br>3.44<br>1.544<br>1.544<br>1.544<br>1.544<br>1.544<br>1.69<br>3.440<br>2.10<br>3.440<br>0.340<br>0.340<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>1.00<br>1.69<br>2.70<br>3.244<br>4.586<br>2.792<br>3.460<br>3.440<br>2.184<br>1.544<br>1.544<br>1.69<br>3.440<br>0.340<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040 | 5E<br>15.08<br>28.68<br>10.58<br>6.87<br>5.97<br>0.0<br>0.0<br>1.62<br>1.62<br>1.62<br>0.79<br>0.79<br>1.08<br>1.05<br>1.05<br>1.05<br>1.05<br>1.05<br>1.05<br>1.05<br>1.05<br>1.05<br>1.05<br>1.05<br>1.05<br>1.05<br>1.05<br>1.05<br>1.05<br>1.05<br>1.05<br>1.05<br>1.05<br>1.05<br>1.05<br>1.05<br>1.05<br>1.05<br>1.05<br>1.05<br>1.05<br>1.05<br>1.05<br>1.05<br>1.05<br>1.05<br>1.05<br>1.05<br>1.05<br>1.05<br>1.05<br>1.05<br>1.05<br>1.05<br>1.05<br>1.05<br>1.05<br>1.05<br>1.05<br>1.05<br>1.05<br>1.05<br>1.05<br>1.05<br>1.05<br>1.05<br>1.05<br>1.05<br>1.05<br>1.05<br>1.05<br>1.05<br>1.05<br>1.05<br>1.05<br>1.05<br>0.880<br>0.87<br>0.82<br>0.881<br>1.05<br>1.05<br>1.05<br>0.82<br>0.82<br>0.57<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0. | 5F<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0. |
| 3.50<br>3.75<br>4.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.01<br>0.01<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.04<br>0.01<br>0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.09                                                      |

# Table 1

# Sample %

| Size (phi)            | 5C     | 5D                      | 5E                  | 5 <del>7</del>    |
|-----------------------|--------|-------------------------|---------------------|-------------------|
| 4.75<br>5.00<br>5.25  | 0.0    | 0 • 0<br>0 • 0<br>0 • 0 | 0.04<br>0.04<br>0.0 | 0.0<br>0.0<br>0.0 |
| Mean (phi)            | -1.372 | -1.666                  | -4.543              | 0.792             |
| Standard<br>Deviation | 2,729  | 1.740                   | 2.860               | 1.758             |
| Skewness              | -0.261 | 0.018                   | 1.371               | -2.253            |
| Kurtosis              | 1.340  | 2.602                   | 3.489               | 7.008             |

1.1

# Sample 💈

| Size (phi)                                                                                                                                                                                                                                                                                                                                                                                                     | 6в                                                               | 60                                                                                                                                                                                                                                                                                                                                | 6D                                                                                                                                                                                                                                                                                             | 6E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| -5.25<br>-5.00<br>-4.75<br>-4.50<br>-4.25<br>-4.00<br>-3.75<br>-3.50<br>-3.25<br>-3.00<br>-2.75<br>-2.50<br>-2.25<br>-2.00<br>-1.75<br>-1.25<br>-1.00<br>-0.75<br>-0.75<br>-0.50<br>0.25<br>0.0<br>0.25<br>0.0<br>0.25<br>0.50<br>0.75<br>1.00<br>1.25<br>1.00<br>1.25<br>1.00<br>1.25<br>1.00<br>1.25<br>1.00<br>2.25<br>2.00<br>2.25<br>2.00<br>2.25<br>2.50<br>2.75<br>3.00<br>3.25<br>3.50<br>3.75<br>4.00 | $\begin{array}{c} 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0$ | $\begin{array}{c} 0.0\\ 0.0\\ 2.12\\ 2.12\\ 5.43\\ 5.43\\ 5.43\\ 5.43\\ 5.9\\ 2.09\\ 2.09\\ 2.09\\ 2.09\\ 1.20\\ 1.05\\ 0.48\\ 0.79\\ 0.53\\ 0.71\\ 0.71\\ 0.87\\ 1.47\\ 1.87\\ 2.02\\ 2.61\\ 3.47\\ 4.87\\ 6.44\\ 8.95\\ 11.62\\ 9.57\\ 7.03\\ 4.25\\ 1.86\\ 0.82\\ 0.28\\ 0.28\\ 0.06\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.$ | 6.21<br>2.74<br>0.93<br>0.93<br>2.62<br>2.62<br>3.39<br>3.14<br>3.14<br>2.77<br>2.08<br>1.81<br>1.955<br>1.66<br>1.39<br>1.44<br>1.98<br>2.07<br>2.25<br>3.46<br>4.50<br>6.29<br>8.18<br>9.237<br>7.96<br>5.07<br>2.899<br>1.52<br>0.68<br>0.33<br>0.14<br>0.07<br>0.03<br>0.02<br>0.05<br>0.0 | 0.0<br>0.0<br>5.36<br>1.27<br>9.922<br>9.55<br>1.27<br>9.99<br>1.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9.22<br>9 |
| Standard                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                  |                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Deviation                                                                                                                                                                                                                                                                                                                                                                                                      | 0.472                                                            | 2.299                                                                                                                                                                                                                                                                                                                             | 2.321                                                                                                                                                                                                                                                                                          | 2.036                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

|          |        |        |        |        | £ |
|----------|--------|--------|--------|--------|---|
|          | 8      | 7      |        |        |   |
|          | Tabl   | e 1    |        |        |   |
|          | Samp   | le %   |        |        |   |
|          |        |        |        |        |   |
| Skewness | -0.334 | -0.678 | -0.460 | -0.209 |   |
| Kurtosis | 3.306  | 1.837  | 1.775  | 1.770  |   |

### Sample 🖇

(phi) SI

| ) | 1 | Z | e                                         |   | l                                        | p                                        | 2 |
|---|---|---|-------------------------------------------|---|------------------------------------------|------------------------------------------|---|
|   |   |   | 66665555444433333222221111100000001111122 |   | 5207520752075207520752075207520257025702 | 0505050505050505050505050505050505050505 |   |
|   | • |   | 2223                                      | • | 2<br>5<br>7<br>0                         | 50<br>50                                 |   |
|   |   |   | 133344                                    | • | 25702                                    | 50505                                    |   |
|   |   |   | 4                                         |   | 5                                        | õ                                        |   |

| 6F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C                                                                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|
| 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0 | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.79<br>1.11<br>1.47<br>1.47<br>3.90<br>3.82<br>4.60<br>6.61<br>5.21<br>8.39<br>7.81<br>7.76<br>10.98<br>8.70<br>7.37<br>6.95<br>4.91<br>3.19<br>1.41<br>1.08<br>0.54<br>0.27<br>0.15<br>0.12<br>0.07<br>0.03<br>0.02<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.02<br>0.0<br>0.0<br>0.0<br>0.02<br>0.0<br>0.0<br>0.02<br>0.0<br>0.02<br>0.0<br>0.02<br>0.02<br>0.0<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02 | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>7.98<br>7.98<br>7.98<br>7.98<br>7.98<br>7.98<br>7.98<br>7.98<br>7.98<br>7.98<br>7.98<br>7.98<br>7.98<br>7.98<br>7.98<br>7.98<br>7.98<br>7.98<br>7.98<br>7.98<br>7.98<br>7.98<br>7.98<br>7.98<br>7.98<br>7.98<br>7.98<br>7.98<br>7.98<br>7.98<br>7.98<br>7.98<br>7.98<br>7.98<br>7.98<br>7.98<br>7.98<br>7.98<br>7.98<br>7.98<br>7.98<br>7.98<br>7.92<br>3.13<br>3.13<br>3.13<br>3.14<br>1.02<br>0.66<br>0.54<br>0.54<br>0.02<br>0.02<br>0.02<br>0.0<br>0.0<br>0.0 | $\begin{array}{c} 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0$ |

# Sample %

| Size (phi)                                                   | 6F                                                          | A                                                    | B      | С                                                                   |
|--------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------|--------|---------------------------------------------------------------------|
| 4.75<br>5.00<br>5.25<br>5.50<br>5.75<br>6.00<br>6.25<br>6.50 | 0 • 0<br>0 • 0<br>0 • 0<br>0 • 0<br>0 • 0<br>0 • 0<br>0 • 0 | 0.0<br>C.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0 |        | 0.0<br>2.78<br>2.78<br>2.78<br>2.78<br>2.78<br>2.32<br>2.32<br>2.32 |
| Mean (phi)                                                   | -0.931                                                      | -1.231                                               | -2.308 | 1.786                                                               |
| Standard<br>Deviation                                        | 2.038                                                       | 1.104                                                | 1.958  | 2.324                                                               |
| Skewness                                                     | -0.400                                                      | -0.209                                               | 0.523  | 0.722                                                               |
| Kurtosis                                                     | 1.792                                                       | 2.497                                                | 2.367  | 2.220                                                               |

· . .

-

-

# Sample 发 🔪

Size (phi)

| Size (phi)                                                                                                                                                                                                                                                                                                                    | D                                                                                                                                                                                                                                                   | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $ \begin{array}{r} -4.75 \\ -4.50 \\ -4.25 \\ -4.00 \\ -3.75 \\ -3.25 \\ -3.00 \\ -2.75 \\ -2.50 \\ -2.25 \\ -2.00 \\ -1.75 \\ -1.25 \\ -1.00 \\ -0.75 \\ -0.50 \\ -0.25 \\ 0.0 \\ 0.25 \\ 0.50 \\ 0.75 \\ 1.00 \\ 1.25 \\ 1.50 \\ 1.75 \\ 2.00 \\ 2.25 \\ 2.50 \\ 2.75 \\ 3.00 \\ 3.25 \\ 3.50 \\ 3.75 \\ 4.00 \end{array} $ | 7.36<br>3.48<br>2.46<br>2.46<br>1.85<br>1.22<br>1.22<br>1.63<br>0.97<br>1.03<br>1.60<br>1.40<br>2.58<br>2.45<br>3.38<br>7.24<br>10.40<br>9.77<br>8.51<br>5.40<br>3.25<br>1.75<br>0.87<br>0.27<br>0.21<br>0.14<br>0.08<br>0.09<br>0.00<br>0.0<br>0.0 | 0.0<br>1.86<br>4.15<br>5.61<br>5.61<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90<br>5.90 | 0.0<br>0.0<br>0.0<br>0.0<br>0.61<br>2.21<br>1.806<br>1.475<br>1.4806<br>1.475<br>1.4806<br>1.475<br>1.4806<br>1.475<br>1.4806<br>1.475<br>1.4806<br>1.475<br>1.4806<br>1.475<br>1.4806<br>1.475<br>1.4806<br>1.475<br>1.4806<br>1.475<br>1.4806<br>1.475<br>1.4806<br>1.475<br>1.4806<br>1.475<br>1.4806<br>1.475<br>1.4806<br>1.475<br>1.4806<br>1.475<br>1.4806<br>1.475<br>1.4806<br>1.475<br>1.4806<br>1.475<br>1.4806<br>1.475<br>1.4806<br>1.475<br>1.4806<br>1.475<br>1.4806<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4807<br>1.4907<br>1.4907<br>1.4907<br>1.4907<br>1.4907<br>1.49 | 0.0<br>0.0<br>0.0<br>1.551<br>1.031<br>1.422<br>1.237<br>1.222<br>3.4355<br>6.531<br>1.037<br>1.2237<br>1.222<br>3.631<br>1.55<br>1.632<br>1.55<br>1.632<br>1.55<br>1.632<br>1.55<br>1.632<br>1.55<br>1.632<br>1.55<br>1.632<br>1.55<br>1.632<br>1.55<br>1.632<br>1.55<br>1.632<br>1.55<br>1.632<br>1.55<br>1.632<br>1.55<br>1.632<br>1.55<br>1.632<br>1.55<br>1.632<br>1.55<br>1.632<br>1.55<br>1.632<br>1.55<br>1.632<br>1.55<br>1.632<br>1.55<br>1.632<br>1.55<br>1.632<br>1.55<br>1.632<br>1.55<br>1.632<br>1.55<br>1.632<br>1.55<br>1.632<br>1.55<br>1.632<br>1.55<br>1.632<br>1.55<br>1.632<br>1.55<br>1.632<br>1.55<br>1.632<br>1.55<br>1.632<br>1.55<br>1.632<br>1.55<br>1.632<br>1.55<br>1.632<br>1.55<br>1.632<br>1.55<br>1.632<br>1.55<br>1.632<br>1.55<br>1.632<br>1.55<br>1.632<br>1.55<br>1.632<br>1.55<br>1.632<br>1.55<br>1.632<br>1.55<br>1.632<br>1.55<br>1.632<br>1.55<br>1.632<br>1.55<br>1.632<br>1.55<br>1.632<br>1.55<br>1.632<br>1.55<br>1.632<br>1.55<br>1.632<br>1.55<br>1.632<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.5 |
| Mean (phi)                                                                                                                                                                                                                                                                                                                    | -1.186                                                                                                                                                                                                                                              | -2.721                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.042                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Standard<br>Deviation                                                                                                                                                                                                                                                                                                         | 1.887                                                                                                                                                                                                                                               | 1.890                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.510                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.597                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Skewness                                                                                                                                                                                                                                                                                                                      | -0.772                                                                                                                                                                                                                                              | 0.332                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -0.552                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -0.941                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Kurtosis                                                                                                                                                                                                                                                                                                                      | 2.396                                                                                                                                                                                                                                               | 1.901                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.587                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.198                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

# Sample %

| Size (phi)                                                                       | H      | I                                                               | J                                                                   | K                                                                    |
|----------------------------------------------------------------------------------|--------|-----------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------|
| 4 • 50<br>4 • 7 5<br>5 • 00<br>5 • 2 5<br>5 • 50<br>5 • 7 5<br>6 • 00<br>6 • 2 5 |        | 0.0<br>0.0<br>0.22<br>0.22<br>0.0<br>0.0<br>0.0<br>0.45<br>0.45 | 0.86<br>2.59<br>2.59<br>3.46<br>3.46<br>0.86<br>0.86<br>0.86<br>0.0 | 2.51<br>1.26<br>1.26<br>0.42<br>0.42<br>0.84<br>0.84<br>0.84<br>0.84 |
| Mean (phi)                                                                       | -0.322 | 1.410                                                           | 2.098                                                               | 1.950                                                                |
| Standard<br>Deviation                                                            | 1.775  | 0.838                                                           | 1.462                                                               | 1.614                                                                |
| Skewness                                                                         | -0.535 | 2.012                                                           | 1.004                                                               | 0.935                                                                |
| Kurtosis                                                                         | 2.500  | 3.322                                                           | 3.348                                                               | 3.897                                                                |

| Gampie / |
|----------|
|----------|

| Size (phi)                                                                                                                                                                                                                                                                                                        | C1-1                                                                                                                                                                                                                                                                                     | C1-2                                                                                                                                                                                                                                                                                                                 | C1-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C2-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| -3.75 $-3.50$ $-3.25$ $-3.00$ $-2.75$ $-2.50$ $-2.25$ $-2.00$ $-1.75$ $-1.50$ $-1.25$ $-1.00$ $-0.75$ $-0.50$ $-0.25$ $0.0$ $0.25$ $0.50$ $0.75$ $1.00$ $1.25$ $1.00$ $1.25$ $1.00$ $1.25$ $1.00$ $1.25$ $1.00$ $2.25$ $2.50$ $2.75$ $3.00$ $3.25$ $3.50$ $3.75$ $4.00$ $4.25$ $4.50$ $4.75$ $5.00$ $5.25$ $5.50$ | $\begin{array}{c} 0.0\\ 2.89\\ 0.82\\ 0.82\\ 1.55\\ 1.33\\ 2.23\\ 4.81\\ 3.41\\ 4.43\\ 4.55\\ 5.76\\ 5.35\\ 6.46\\ 6.26\\ 7.52\\ 7.29\\ 6.46\\ 5.69\\ 5.15\\ 4.59\\ 3.67\\ 3.12\\ 2.48\\ 1.56\\ 1.11\\ 0.41\\ 0.16\\ 0.05\\ 0.05\\ 0.01\\ 0.02\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.$ | 0.0<br>0.0<br>0.28<br>0.63<br>0.08<br>0.23<br>0.78<br>0.83<br>1.94<br>2.30<br>4.13<br>5.58<br>7.03<br>8.71<br>11.38<br>10.88<br>8.72<br>7.41<br>6.83<br>5.89<br>4.62<br>3.68<br>2.60<br>1.58<br>1.08<br>2.60<br>1.58<br>1.08<br>2.60<br>1.58<br>1.08<br>0.40<br>0.25<br>0.09<br>0.16<br>0.06<br>0.07<br>0.18<br>0.18 | 3.67<br>1.60<br>1.60<br>1.60<br>1.60<br>1.60<br>1.60<br>1.60<br>1.60<br>1.60<br>1.60<br>1.60<br>1.60<br>1.60<br>1.60<br>1.60<br>1.60<br>1.60<br>1.60<br>1.60<br>1.60<br>1.60<br>1.60<br>1.60<br>1.60<br>1.60<br>1.60<br>1.60<br>1.60<br>1.60<br>1.60<br>1.60<br>1.60<br>1.60<br>1.60<br>1.60<br>1.60<br>1.60<br>1.60<br>1.60<br>1.60<br>1.60<br>1.60<br>1.60<br>1.60<br>1.60<br>1.60<br>1.60<br>1.60<br>1.60<br>1.60<br>1.60<br>1.60<br>1.60<br>1.60<br>1.60<br>1.60<br>1.60<br>1.60<br>1.60<br>1.60<br>1.60<br>1.60<br>1.60<br>1.60<br>1.60<br>1.60<br>1.60<br>1.60<br>1.60<br>1.60<br>1.60<br>1.60<br>1.60<br>1.60<br>1.60<br>1.60<br>1.60<br>1.60<br>1.60<br>1.60<br>1.60<br>1.60<br>1.60<br>0.29<br>0.00<br>0.00<br>0.00<br>0.00<br>0.29 | 0.0<br>1.94<br>2.16<br>2.59<br>0.47<br>0.63<br>1.22<br>1.7<br>1.58<br>2.28<br>2.93<br>5.00<br>6.85<br>7.73<br>10.19<br>10.82<br>10.41<br>9.67<br>9.15<br>7.10<br>3.02<br>1.40<br>0.45<br>0.07<br>0.05<br>0.0<br>0.0<br>0.0<br>0.05<br>0.0<br>0.0<br>0.05<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0 |
| Mean (phi)                                                                                                                                                                                                                                                                                                        | -0.384                                                                                                                                                                                                                                                                                   | 0.256                                                                                                                                                                                                                                                                                                                | -0.362                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.566                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Standard<br>Deviation                                                                                                                                                                                                                                                                                             | 1.414                                                                                                                                                                                                                                                                                    | 1.217                                                                                                                                                                                                                                                                                                                | 1.599                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Skewness                                                                                                                                                                                                                                                                                                          | -0.233                                                                                                                                                                                                                                                                                   | 1.105                                                                                                                                                                                                                                                                                                                | 0.126                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -1.119                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Kurtosis                                                                                                                                                                                                                                                                                                          | 2.594                                                                                                                                                                                                                                                                                    | 7.314                                                                                                                                                                                                                                                                                                                | 3.657                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4.027                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

#### Sample %

Size (phi)

-3.50 -3.25 -3.00 -2.75 -2.50 -2.25 -2.00 -1.75 -1.50 -1.25 -1.00 -0.75 -0.50 -0.25 0.0 0.25 0.50 0.75 1.00 1.25 1.50 1.50 2.25 2.50 2.75 3.25 3.50 3.50 3.75 4.00 4.25 4.50 4.75 5.00 5.25 5.50 5.75 6.00 6.25 6.50

| C2-2                                                                                                                                                                                                                                                            | c2-3                                                             | C3-1                                                             | C3-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\begin{array}{c} 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 1.94\\ 2.16\\ 2.59\\ 0.631\\ 1.22\\ 1.17\\ 1.58\\ 2.93\\ 0.81\\ 1.22\\ 1.17\\ 1.58\\ 2.93\\ 0.67\\ 7.73\\ 10.12\\ 10.41\\ 9.67\\ 9.15\\ 7.10\\ 2.20\\ 0.05\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0$ | $\begin{array}{c} 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0$ | $\begin{array}{c} 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0$ | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0 |
| 0.0                                                                                                                                                                                                                                                             | 8.97                                                             | 0.0                                                              | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

|                       | Tabl   | Le 1   |        |       |  |  |
|-----------------------|--------|--------|--------|-------|--|--|
| Sample %              |        |        |        |       |  |  |
| Size (phi)            | C2-2   | C2-3   | C3-1   | C3-2  |  |  |
| Mean (phi)            | 0.566  | 3.058  | 1.032  | 1.735 |  |  |
| Standard<br>Deviation | 1.222  | 2.145  | 0.909  | 1.920 |  |  |
| Skewness              | -1.119 | -0.232 | -0.424 | 0.873 |  |  |
| Kurtosis              | 4.027  | 1.660  | 6.564  | 2.688 |  |  |

,

-

# Sample %

Size (phi)

•

;

| Size (phi)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C3-3                                                             | C4-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C4-2                                                                                      | C4-3                                                                                                                                                                                            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| -3.50<br>-3.25<br>-3.25<br>-2.75<br>-2.50<br>-2.25<br>-2.200<br>-1.75<br>-1.25<br>-1.25<br>-1.25<br>-1.25<br>-0.25<br>0.0<br>0.25<br>0.25<br>0.25<br>0.75<br>1.00<br>1.25<br>1.75<br>2.250<br>2.250<br>2.250<br>2.250<br>3.25<br>3.25<br>3.505<br>5.750<br>5.250<br>5.750<br>5.250<br>5.750<br>5.250<br>5.750<br>5.250<br>5.750<br>5.250<br>5.750<br>5.250<br>5.750<br>5.250<br>5.750<br>5.250<br>5.750<br>5.250<br>5.750<br>5.250<br>5.750<br>5.250<br>5.750<br>5.250<br>5.750<br>5.250<br>5.505<br>5.750<br>5.250<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5.505<br>5. | $\begin{array}{c} 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0$ | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0 | 0.0<br>0.0<br>1.14<br>0.552<br>91.3862434444567897357400000000000000000000000000000000000 | $\begin{array}{c} 0.0\\ 0.0\\ 0.0\\ 0.52\\ 0.68578\\ 1.2311\\ 1.2244\\ 4.5578\\ 9.172\\ 5.224\\ 1.9254\\ 1.925\\ 1.925\\ 1.925\\ 1.925\\ 1.925\\ 2.222\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0$ |

|                       | Tabl  | Le 1   |       |        |
|-----------------------|-------|--------|-------|--------|
| Sample %              |       |        |       |        |
|                       | C33   | C4-1   | CL-2  | C4-3   |
| Mean (phi)            | 2.448 | 3.858  | 1.296 | 1.157  |
| Standard<br>Deviation | 2.355 | 1.687  | 1.582 | 1.313  |
| Skewness              | 0.110 | -0.305 | 0.193 | -0.258 |
| Kurtosis              | 1.511 | 2.382  | 3.979 | 4.030  |

÷

. .

•

# Sample %

|            | Size (phi) | C4-4             | C4-5                   | C4-6         | C5–1         |
|------------|------------|------------------|------------------------|--------------|--------------|
|            | -3.00      | · O <b>. O</b>   | 0.0                    | 0.0          | 480          |
|            | -2.75      | 0.0              | 0.0                    | 0.0          | 2.84         |
|            | -2.50      | 0.0              | 0.70                   | 0.0          | 0.79         |
|            | -2.25      | 0.0              | 0.0                    | 0.77         | 0.45         |
|            | -2.00      | 0.0              | 0.45                   | 0.46         | 1.81         |
| •          | -1.75      | 0.54             | 0.64                   | 0,86         | 2.07         |
|            | -1.50      | 0.32             | 0.97                   | 2.07         | 1.94         |
|            | -1.00      | 0.41             | 0 • 94<br>1 <i>r</i> 4 | 2 02         | 1.19         |
| • .        |            | 1 66             | 2 00                   | エ・ソフ<br>ル 12 | 1.79         |
|            | -0 - 50    | 2 07             | 2.74                   | - 5 10       | 1 62         |
|            | -0-25      | 2.26             | 3,30                   | 5.58         | 1 57         |
|            |            | 3,92             | 4.87                   | 7.60         | 2.31         |
|            | 0.25       | 4.65             | 5.54                   | 7.46         | 2.68         |
| •          | 0.50       | 4.91             | 5.81                   | 7.12         | 3.13         |
|            | 0.75       | 4.89             | 6.56                   | 7.36         | 3.50         |
|            | 1.00       | 6.42             | 7.67                   | 7.20         | 4.66         |
|            | 1.25       | 7.19             | 8.49                   | 7.77         | 5.57         |
|            | 1.50       | 8.05             | 8.72                   | 7.44         | 6.80         |
|            | 1.75       | 8.91             | 9.79                   | 8.01         | 9.30         |
| •          | 2.00       | 9.22             | 9.48                   | 4.96         | 10.72        |
| . <b>'</b> | 2 50       | 7.30             | 0.77                   | 5-57         | 8.41         |
|            | 2 75       | フ・JC<br>- 加のF    | 2 07                   | 2.04<br>1.04 | 7.90         |
|            | 3.00       | 3.75             | 1.38                   | 0.47         | 2 10         |
|            | 3.25       | 1.51             | 0.79                   | 0.15         | ~•10<br>0•74 |
|            | 3.50       | 1.87             | 0.59                   | 0.14         | 0.62         |
|            | 3.75       | 0.95             | 0.25                   | 0.06         | 0.29         |
|            | 4.00       | 0.45             | 0.20                   | 0.07         | 0.12         |
|            | 4.25       | 1.61             | 0.68                   | 0.24         | 0.39         |
|            | 4.50       | 1.61             | 0.68                   | 0.24         | 0.39         |
|            | 4.75       | 2.15             | 0.91                   | 0.0          | 0.77         |
|            | 5.00       | 2.15             | 0.91                   | 0.0          | 0.77         |
|            | 5.25       | 0.0              | 0.0                    | 0.0          | 0.39         |
|            | <b>ン・ン</b> | 0.0<br>0         | 0.0                    |              | 0.39         |
| •          | ··· J•/J   | 0 • 54<br>0 = 54 | 0.0                    | - U.47       | 0.77         |
|            | 6.25       | 0.0              |                        | · 0 0        | 0.77         |
|            | 6.50       | 0.0              | 0.0                    |              |              |
|            |            | 0.0              | <b>U • U</b> .         |              | <b>U</b> • U |

98

:

# Sample %

|                       |   | C4-4  | C4-5  | C4-6    | C5-1   |
|-----------------------|---|-------|-------|---------|--------|
| Mean (phi)            |   | 1.613 | 1.116 | 0.637   | 0.981  |
| Standard<br>Deviation |   | 1.425 | 1.324 | 1.244   | 1.916  |
| Skewness              |   | 0.463 | 0.374 | 0.480 - | -0.431 |
| Kurtosis              | ÷ | 3.347 | 4.778 | 4.725   | 3.205  |

.

.

.

#### Sample %

C5-2

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.44

0.88

2.65

0.88

0.44

1.11

.33.

77

32

98

6

33

1

1.11

0.66

0.66

0.88

0.88

0.0

0.0

0.0

0.0

0.0

0.0

22.12

22.12

0.0

0.0

11.06

11.06

0.0

Size (phi)

-3.00

| · |      |  |
|---|------|--|
|   | C5-3 |  |

0.0

0.0

0.0

0.0

0.61

0.05

0.64

0.68

1.29

1.43

2.72

3.72

4.63

5.67

7.42

8.19

8.10

7.60

6.49

6.01

4.74

1.63

0.50

0.39

0.57

0.57

0.0

0.0

1.70

1.70 2.84

2.84

0.57

0.57

1.13 1.13

51

6.65

5

1.

C5-4

0.0

0.0

0.0

0.0 0.35 0.12

0.42

0.39

0.82

1.24

4.36

5.73

8.91

10.13

8.65 7.38

6.12

5.70

4.26

2.96

0.82

0.57

0.20

0.28

0.28

0.85

0.28

0.28

0.57

0.57

0.57

0.57

0.0

0.0

1.34

97

2

6.74 7.85

-2.50 -2.25 -2.00 -1.75 -1 -50 -1.25 -1.00 -0.75 -0.50 -0.25 0.0 0.25 0.50 0.75 1.00 25 1 1 50 1 75 2.00 2.25 2.50 2.75 3.00 3. 25 3.50 3. 75 4.00 4.25 4.50 4.75 5.00 25 5.50 5.75 6.00 6.25 6.50 6.75
| 1 | 01 |
|---|----|
|   |    |

## Sample %

|                       | C5-2   | C5-3  | C5-4  | C5-5  |
|-----------------------|--------|-------|-------|-------|
| Mean (phi)            | 4.481  | 2.006 | 1.361 | 0.521 |
| Standard<br>Deviation | 2.398  | 1.779 | 1.378 | 1.521 |
| Skewness              | -0.897 | 0.970 | 1.003 | 0.525 |
| Kurtosis              | 2.343  | 3.627 | 5.105 | 4.391 |

1

## Sample 🔏

| Size (phi)                                                                                                                                                                                                                                                                                                                                  | C5-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C6-1                                                                                                                                                                                                                                            | C6-2                                                                                                                                                                                                                           | c6-3                                                                                                                                                                                                                                     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\begin{array}{c} -2.25 \\ -2.00 \\ -1.75 \\ -1.50 \\ -1.25 \\ -1.00 \\ -0.75 \\ -0.50 \\ -0.25 \\ 0.0 \\ 0.25 \\ 0.50 \\ 0.75 \\ 1.00 \\ 1.25 \\ 1.50 \\ 1.75 \\ 2.00 \\ 2.25 \\ 2.50 \\ 2.75 \\ 3.00 \\ 3.25 \\ 3.75 \\ 4.00 \\ 4.25 \\ 4.50 \\ 4.50 \\ 5.50 \\ 5.75 \\ 5.00 \\ 5.25 \\ 5.50 \\ 5.75 \\ 6.00 \\ 6.25 \\ 6.50 \end{array}$ | 0.21<br>0.38<br>0.18<br>0.45<br>0.66<br>0.69<br>0.89<br>1.00<br>1.86<br>2.48<br>3.31<br>4.77<br>6.42<br>7.09<br>7.30<br>7.83<br>8.58<br>9.18<br>11.09<br>10.03<br>7.92<br>2.62<br>0.81<br>0.32<br>0.12<br>0.20<br>1.41<br>1.41<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0 | $\begin{array}{c} 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.13\\ 1.02\\ 0.89\\ 2.67\\ 3.69\\ 6.74\\ 9.03\\ 1.83\\ 9.80\\ 9.16\\ 8.52\\ 6.49\\ 3.05\\ 1.78\\ 1.15\\ 1.02\\ 0.89\\ 1.27\\ 1.27\\ 0.51\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.$ | $\begin{array}{c} 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.34\\ 0.30\\ 0.42\\ 1.11\\ 0.34\\ 1.34\\ 5.68\\ 11.35\\ 13.68\\ 9.10\\ 1.95\\ 0.91\\ 0.54\\ 0.22\\ 0.20\\ 0.10\\ 0.50\\ 5.96\\ 0.0\\ 0.99\\ 0.0\\ 0.99\\ 0.0\\ 0.0\\ 0.0\\ 0$ | $\begin{array}{c} 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.48\\ 0.312\\ 0.42\\ 0.57\\ 1.39\\ 1.75\\ 3.68\\ 5.90\\ 7.18\\ 10.88\\ 5.90\\ 7.18\\ 10.88\\ 5.90\\ 1.18\\ 12.30\\ 4.60\\ 1.48\\ 1.03\\ 3.70\\ 5.25\\ 0.0\\ 0.0\end{array}$ |
| Mean (phi)                                                                                                                                                                                                                                                                                                                                  | 1.773                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.977                                                                                                                                                                                                                                           | 1.832                                                                                                                                                                                                                          | 3.565                                                                                                                                                                                                                                    |
| Standard                                                                                                                                                                                                                                                                                                                                    | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                          |
| Deviation                                                                                                                                                                                                                                                                                                                                   | 1.183                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.767                                                                                                                                                                                                                                           | 1.389                                                                                                                                                                                                                          | 2.455                                                                                                                                                                                                                                    |
| Skewness                                                                                                                                                                                                                                                                                                                                    | -0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.964                                                                                                                                                                                                                                           | 1.375                                                                                                                                                                                                                          | 0.311                                                                                                                                                                                                                                    |
| Kurtosis                                                                                                                                                                                                                                                                                                                                    | 4.824                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.571                                                                                                                                                                                                                                           | 3.999                                                                                                                                                                                                                          | 2.402                                                                                                                                                                                                                                    |

## Table 1

Sample %

| Size (phi)                                                                                                                                                                                                                                                                                                                                           | C7-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C7-2                                                                                                                                                                                                                                                                                           | C8-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C8-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\begin{array}{c} -2.25 \\ -2.00 \\ -1.75 \\ -1.50 \\ -1.25 \\ -1.00 \\ -0.75 \\ -0.50 \\ -0.25 \\ 0.50 \\ 0.25 \\ 0.50 \\ 0.75 \\ 1.00 \\ 1.25 \\ 1.50 \\ 1.75 \\ 2.00 \\ 2.25 \\ 2.50 \\ 2.75 \\ 3.00 \\ 3.25 \\ 3.50 \\ 3.75 \\ 4.00 \\ 4.25 \\ 4.50 \\ 4.75 \\ 5.00 \\ 5.25 \\ 5.50 \\ 5.75 \\ 6.00 \\ 6.25 \\ 6.50 \\ 6.75 \\ 7.00 \end{array}$ | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.32<br>0.14<br>0.14<br>0.23<br>0.41<br>0.68<br>1.14<br>2.19<br>5.34<br>8.22<br>9.95<br>5.80<br>2.83<br>1.37<br>3.70<br>2.46<br>2.60<br>4.56<br>4.56<br>2.28<br>2.28<br>7.99<br>7.99<br>4.56<br>4.56<br>2.28<br>2.28<br>2.28<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42<br>3.42 | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.12<br>0.12<br>0.14<br>0.24<br>0.36<br>0.45<br>0.95<br>1.80<br>3.83<br>8.59<br>15.46<br>17.82<br>14.91<br>8.90<br>5.09<br>2.75<br>2.75<br>0.76<br>0.78<br>1.18<br>1.18<br>2.37<br>2.37<br>2.37<br>2.37<br>2.59<br>0.59<br>0.59<br>0.0<br>0.0<br>0.0 | $\begin{array}{c} 0.0\\ 0.37\\ 0.26\\ 0.28\\ 0.25\\ 0.37\\ 0.20\\ 0.66\\ 0.59\\ 1.10\\ 1.69\\ 2.61\\ 4.07\\ 5.45\\ 9.15\\ 9.57\\ 11.82\\ 13.30\\ 11.70\\ 8.28\\ 4.03\\ 2.55\\ 1.23\\ 1.50\\ 0.64\\ 0.70\\ 1.76\\ 1.76\\ 1.76\\ 1.76\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.59\\ 0.5$ | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.10<br>0.2351<br>1.380642<br>1.380642<br>1.380642<br>1.380642<br>1.380642<br>1.380642<br>1.380642<br>1.49.88792<br>1.4455566<br>1.4455566<br>2.1720<br>0.7200<br>0.000<br>0.000<br>0.000<br>0.000<br>0.1000<br>0.1000<br>0.1000<br>0.1000<br>0.1000<br>0.1000<br>0.1000<br>0.1000<br>0.1000<br>0.1000<br>0.1000<br>0.1000<br>0.1000<br>0.1000<br>0.1000<br>0.1000<br>0.1000<br>0.1000<br>0.1000<br>0.1000<br>0.1000<br>0.1000<br>0.1000<br>0.1000<br>0.1000<br>0.1000<br>0.1000<br>0.1000<br>0.1000<br>0.1000<br>0.1000<br>0.1000<br>0.1000<br>0.1000<br>0.1000<br>0.1000<br>0.1000<br>0.1000<br>0.1000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.00000<br>0.00000<br>0.00000<br>0.000000<br>0.000000<br>0.00000000000000000000000000000000000 |
| Mean                                                                                                                                                                                                                                                                                                                                                 | 4.025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.579                                                                                                                                                                                                                                                                                          | 1.861                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.337                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Standard<br>Deviation                                                                                                                                                                                                                                                                                                                                | 1.678                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.166                                                                                                                                                                                                                                                                                          | 1.235                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.264                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Skewness                                                                                                                                                                                                                                                                                                                                             | -0.018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.265                                                                                                                                                                                                                                                                                          | 0.700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.418                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Kurtosis                                                                                                                                                                                                                                                                                                                                             | 1.763                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.332                                                                                                                                                                                                                                                                                          | 5.295                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.877                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

## Sample %

| Size (phi)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C8-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\begin{array}{c} -2.00 \\ -1.75 \\ -1.50 \\ -1.25 \\ -1.00 \\ -0.75 \\ -0.50 \\ 0.25 \\ 0.0 \\ 0.25 \\ 0.0 \\ 0.25 \\ 1.00 \\ 1.25 \\ 1.00 \\ 1.25 \\ 1.00 \\ 1.25 \\ 1.00 \\ 1.25 \\ 1.00 \\ 1.25 \\ 1.00 \\ 1.25 \\ 1.00 \\ 1.25 \\ 1.00 \\ 1.25 \\ 1.00 \\ 1.25 \\ 1.00 \\ 1.25 \\ 1.00 \\ 1.25 \\ 1.00 \\ 1.25 \\ 1.00 \\ 1.25 \\ 1.00 \\ 1.25 \\ 1.00 \\ 1.25 \\ 1.00 \\ 1.25 \\ 1.00 \\ 1.25 \\ 1.00 \\ 1.25 \\ 1.00 \\ 1.25 \\ 1.00 \\ 1.25 \\ 1.00 \\ 1.25 \\ 1.00 \\ 1.25 \\ 1.00 \\ 1.25 \\ 1.00 \\ 1.25 \\ 1.00 \\ 1.25 \\ 1.00 \\ 1.25 \\ 1.00 \\ 1.25 \\ 1.00 \\ 1.25 \\ 1.00 \\ 1.25 \\ 1.00 \\ 1.25 \\ 1.00 \\ 1.25 \\ 1.00 \\ 1.25 \\ 1.00 \\ 1.25 \\ 1.00 \\ 1.25 \\ 1.00 \\ 1.25 \\ 1.00 \\ 1.25 \\ 1.00 \\ 1.25 \\ 1.00 \\ 1.25 \\ 1.00 \\ 1.25 \\ 1.00 \\ 1.25 \\ 1.00 \\ 1.25 \\ 1.00 \\ 1.25 \\ 1.00 \\ 1.25 \\ 1.00 \\ 1.25 \\ 1.00 \\ 1.25 \\ 1.00 \\ 1.25 \\ 1.00 \\ 1.25 \\ 1.00 \\ 1.25 \\ 1.00 \\ 1.25 \\ 1.00 \\ 1.25 \\ 1.00 \\ 1.25 \\ 1.00 \\ 1.25 \\ 1.00 \\ 1.25 \\ 1.00 \\ 1.25 \\ 1.00 \\ 1.25 \\ 1.00 \\ 1.25 \\ 1.00 \\ 1.25 \\ 1.00 \\ 1.25 \\ 1.00 \\ 1.25 \\ 1.00 \\ 1.25 \\ 1.00 \\ 1.25 \\ 1.00 \\ 1.25 \\ 1.00 \\ 1.25 \\ 1.00 \\ 1.25 \\ 1.00 \\ 1.25 \\ 1.00 \\ 1.25 \\ 1.00 \\ 1.25 \\ 1.00 \\ 1.25 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00$ | 0.0<br>0.0<br>0.0<br>0.0<br>0.67<br>0.40<br>0.53<br>1.19<br>2.42<br>4.27<br>7.59<br>1.93<br>15.10<br>15.54<br>14.96<br>12.03<br>5.60<br>3.31<br>1.41<br>0.98<br>0.28<br>0.35<br>0.18<br>0.08<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0 |
| mean (phi)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.328                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Standard<br>Deviation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.673                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Skewness                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.090                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Kurtosis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.041                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

#### Q-MODE VARIMAX FACTOR MATRIX

| Sample<br>Name                                                                                                               | Comm.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1A<br>1BC<br>1DEFACDEFGABCDEFGHIJABCDEFGABCDFABCDEF<br>3333333333448CDEFGABCDFABCDEF<br>666666666666666666666666666666666666 | 0.748<br>0.923<br>0.9632<br>0.9632<br>0.9632<br>0.9632<br>0.9632<br>0.9632<br>0.9632<br>0.9632<br>0.884433<br>0.88531<br>0.88531<br>0.88531<br>0.88531<br>0.88531<br>0.88531<br>0.88531<br>0.88531<br>0.88531<br>0.88531<br>0.88531<br>0.885334<br>0.8857338<br>0.9959595<br>0.8837718<br>0.92318<br>0.92318<br>0.92318<br>0.92318<br>0.92318<br>0.92318<br>0.92318<br>0.92318<br>0.92318<br>0.92318<br>0.92318<br>0.92318<br>0.92318<br>0.92318<br>0.92318<br>0.92318<br>0.92318<br>0.92318<br>0.92318<br>0.92318<br>0.92318<br>0.92318<br>0.92318<br>0.92318<br>0.92318<br>0.92318<br>0.92318<br>0.92318<br>0.92318<br>0.92318<br>0.92318<br>0.92318<br>0.92318<br>0.92318<br>0.92318<br>0.92318<br>0.92318<br>0.92318<br>0.92318<br>0.92318<br>0.92318<br>0.92318<br>0.92318<br>0.92318<br>0.92318<br>0.92318<br>0.92318<br>0.92318<br>0.92318<br>0.92318<br>0.92318<br>0.92318<br>0.92318<br>0.92318<br>0.92318<br>0.92318<br>0.92318<br>0.92318<br>0.92318<br>0.92318<br>0.92318<br>0.92318<br>0.92318<br>0.92318<br>0.92318<br>0.92318<br>0.92318<br>0.92318<br>0.92318<br>0.92318<br>0.92318<br>0.92318<br>0.92318<br>0.92318<br>0.92318<br>0.92318<br>0.9332<br>0.9332<br>0.9332<br>0.9332<br>0.9332<br>0.9332<br>0.9332<br>0.9332<br>0.9332<br>0.9332<br>0.9332<br>0.9332<br>0.9332<br>0.9332<br>0.9332<br>0.9332<br>0.9332<br>0.9332<br>0.9332<br>0.9332<br>0.9332<br>0.9332<br>0.9332<br>0.9332<br>0.9332<br>0.9332<br>0.9332<br>0.9332<br>0.9332<br>0.9332<br>0.9332<br>0.9332<br>0.9332<br>0.9332<br>0.9332<br>0.9332<br>0.9332<br>0.9332<br>0.9332<br>0.9332<br>0.9332<br>0.9332<br>0.9332<br>0.9332<br>0.9332<br>0.9332<br>0.9332<br>0.9332<br>0.9332<br>0.9332<br>0.9332<br>0.9332<br>0.9332<br>0.9332<br>0.9332<br>0.9332<br>0.9332<br>0.9332<br>0.9332<br>0.9332<br>0.9332<br>0.9332<br>0.9332<br>0.9332<br>0.9332<br>0.9332<br>0.9332<br>0.9332<br>0.9332<br>0.9332<br>0.9332<br>0.9332<br>0.9332<br>0.9332<br>0.9332<br>0.9332<br>0.9332<br>0.9332<br>0.9332<br>0.9332<br>0.9332<br>0.9332<br>0.9332<br>0.9332<br>0.9332<br>0.9332<br>0.9332<br>0.9332<br>0.9332<br>0.9332<br>0.9332<br>0.9332<br>0.9332<br>0.9332<br>0.9332<br>0.9332<br>0.9332<br>0.9332<br>0.9332<br>0.9332<br>0.9332<br>0.9332<br>0.9332<br>0.9332<br>0.9332<br>0.9332<br>0.9332<br>0.9332<br>0.9332<br>0.9332<br>0.9332<br>0.9332<br>0.9332<br>0.9332<br>0. | -<br>0.379<br>0.320<br>0.556<br>0.599<br>0.299<br>0.029<br>0.021<br>0.0312<br>0.0312<br>0.0312<br>0.0319<br>0.0319<br>0.0319<br>0.0319<br>0.0319<br>0.0319<br>0.0319<br>0.0319<br>0.0319<br>0.0319<br>0.0319<br>0.0319<br>0.0319<br>0.0319<br>0.0319<br>0.0319<br>0.0319<br>0.0319<br>0.0319<br>0.0319<br>0.0319<br>0.0319<br>0.0319<br>0.0319<br>0.0319<br>0.0319<br>0.0319<br>0.0329<br>0.0319<br>0.0329<br>0.0329<br>0.0329<br>0.0329<br>0.0329<br>0.0329<br>0.0329<br>0.0329<br>0.09911<br>0.09911<br>0.09911<br>0.09911<br>0.03944<br>0.09911<br>0.09911<br>0.0921<br>0.0391<br>0.09911<br>0.0391<br>0.09911<br>0.09911<br>0.0921<br>0.0391<br>0.0391<br>0.09911<br>0.0391<br>0.09911<br>0.0391<br>0.09911<br>0.0391<br>0.0391<br>0.09911<br>0.0391<br>0.09911<br>0.0394<br>0.09911<br>0.0391<br>0.0391<br>0.09911<br>0.0391<br>0.0391<br>0.0921<br>0.0391<br>0.0391<br>0.0391<br>0.0391<br>0.0391<br>0.0391<br>0.0391<br>0.0391<br>0.0391<br>0.0391<br>0.0391<br>0.0391<br>0.0391<br>0.0391<br>0.0391<br>0.0391<br>0.0391<br>0.0391<br>0.0391<br>0.0391<br>0.0391<br>0.0391<br>0.0391<br>0.0391<br>0.0391<br>0.0391<br>0.0391<br>0.0391<br>0.0391<br>0.0391<br>0.0391<br>0.0391<br>0.0391<br>0.0391<br>0.0391<br>0.0391<br>0.0391<br>0.0391<br>0.0391<br>0.0391<br>0.0391<br>0.0391<br>0.0391<br>0.0391<br>0.0391<br>0.0391<br>0.0391<br>0.0391<br>0.0391<br>0.0391<br>0.0391<br>0.0391<br>0.0391<br>0.0391<br>0.0391<br>0.0391<br>0.0391<br>0.0391<br>0.0391<br>0.0391<br>0.0391<br>0.0391<br>0.0391<br>0.0391<br>0.0391<br>0.0391<br>0.0391<br>0.0391<br>0.0391<br>0.0391<br>0.0391<br>0.0391<br>0.0391<br>0.0391<br>0.0391<br>0.0391<br>0.0391<br>0.0391<br>0.0391<br>0.0391<br>0.0391<br>0.0391<br>0.0391<br>0.0391<br>0.0391<br>0.0391<br>0.0391<br>0.0391<br>0.0391<br>0.0391<br>0.0391<br>0.0391<br>0.0391<br>0.0391<br>0.0391<br>0.0391<br>0.0391<br>0.0391<br>0.0391<br>0.0391<br>0.0391<br>0.0391<br>0.0391<br>0.0391<br>0.0391<br>0.0391<br>0.0391<br>0.0391<br>0.0391<br>0.0391<br>0.0391<br>0.0391<br>0.0391<br>0.0391<br>0.0391<br>0.0391<br>0.0391<br>0.0391<br>0.0391<br>0.0391<br>0.0391<br>0.0391 | -<br>0.506<br>0.850<br>0.309<br>0.120<br>0.322<br>0.577<br>-0.0845<br>0.599<br>0.773<br>0.662<br>0.6831<br>0.200<br>0.6673<br>0.249<br>0.6673<br>0.249<br>0.249<br>0.6673<br>0.8351<br>0.8351<br>0.8351<br>0.8351<br>0.8351<br>0.8351<br>0.8351<br>0.8351<br>0.8351<br>0.8351<br>0.8351<br>0.8351<br>0.8351<br>0.8351<br>0.8351<br>0.8351<br>0.8351<br>0.8351<br>0.8351<br>0.8351<br>0.8351<br>0.669<br>0.669<br>0.6899<br>0.6689<br>0.1133<br>0.0305<br>0.6689<br>0.1133<br>0.0305<br>0.6689<br>0.6688<br>0.747 | 0.548<br>0.166<br>0.086<br>0.166<br>0.088<br>0.038<br>0.040<br>0.038<br>0.040<br>0.038<br>0.040<br>0.038<br>0.040<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180<br>0.04180 | 0.105<br>0.083<br>0.092<br>0.175<br>0.071<br>-0.003<br>0.727<br>0.036<br>0.075<br>0.0075<br>0.075<br>0.036<br>0.046<br>0.058<br>0.0475<br>0.036<br>0.036<br>0.037<br>0.037<br>0.037<br>0.036<br>0.037<br>0.037<br>0.037<br>0.037<br>0.036<br>0.035<br>0.032<br>0.032<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0.035<br>0 | 0.195 - 0.146 - 0.696 - 0.748 - 0.476 0.008 - 0.7488 - 0.476 0.011 - 0.189 - 0.304 0.075 - 0.371 - 0.113 - 0.328 - 0.121 - 0.0100 - 0.426 - 0.551 - 0.637 - 0.2254 - 0.03386 - 0.2257 - 0.1218 - 0.0257 - 0.1251 - 0.2254 - 0.0257 - 0.1251 - 0.2254 - 0.057 - 0.1251 - 0.057 - 0.019 - 0.188 - 0.807 - 0.057 - 0.019 - 0.188 - 0.807 - 0.057 - 0.011 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.019 - 0.01 |
|                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

.;

#### Table 2

#### Q-MODE VARIMAX FACTOR MATRIX

| Sample<br>Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Comm.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A<br>B<br>C<br>D<br>E<br>F<br>G<br>H<br>I<br>J<br>K<br>C1-2<br>C1-2<br>C1-2<br>C2-2<br>C2-1<br>C2-2<br>C2-1<br>C2-2<br>C2-1<br>C2-2<br>C2-1<br>C2-2<br>C2-1<br>C2-2<br>C2-1<br>C2-2<br>C2-1<br>C2-2<br>C2-1<br>C2-2<br>C2-1<br>C2-2<br>C2-1<br>C2-2<br>C2-1<br>C2-2<br>C2-1<br>C2-2<br>C2-1<br>C2-2<br>C2-1<br>C2-2<br>C2-1<br>C2-2<br>C2-1<br>C2-2<br>C2-1<br>C2-2<br>C2-1<br>C2-2<br>C2-1<br>C2-2<br>C2-1<br>C2-2<br>C2-1<br>C2-2<br>C2-1<br>C2-2<br>C2-1<br>C2-2<br>C2-1<br>C2-2<br>C2-1<br>C2-2<br>C2-1<br>C2-2<br>C2-1<br>C2-2<br>C2-1<br>C2-2<br>C2-1<br>C2-2<br>C2-1<br>C2-2<br>C2-1<br>C2-2<br>C2-1<br>C2-2<br>C2-1<br>C2-2<br>C2-1<br>C2-2<br>C2-1<br>C2-2<br>C2-2 | 0.814<br>0.716<br>0.8372<br>0.967<br>0.99862<br>0.99862<br>0.9999<br>0.9919<br>0.9919<br>0.9919<br>0.99714<br>0.99732<br>0.99724<br>0.99724<br>0.99725<br>0.997340<br>0.99725<br>0.99759<br>0.99599<br>0.997540<br>0.997540<br>0.997540<br>0.997540<br>0.997540<br>0.997540<br>0.997540<br>0.997540<br>0.997540<br>0.997540<br>0.997540<br>0.997540<br>0.997540<br>0.997540<br>0.99750<br>0.994710<br>0.99750<br>0.994710<br>0.99470<br>0.99470<br>0.99470<br>0.99470<br>0.99470<br>0.99400<br>0.99400<br>0.99400<br>0.99400<br>0.99400<br>0.99400<br>0.99400<br>0.99400<br>0.99400<br>0.99400<br>0.99400<br>0.99400<br>0.99400<br>0.99400<br>0.99400<br>0.99400<br>0.99400<br>0.99400<br>0.99400<br>0.99400<br>0.99400<br>0.99400<br>0.99400<br>0.99400<br>0.99400<br>0.99400<br>0.99400<br>0.99400<br>0.99400<br>0.99400<br>0.99400<br>0.99400<br>0.99400<br>0.99400<br>0.99400<br>0.99400<br>0.99400<br>0.99400<br>0.99400<br>0.99400<br>0.99400<br>0.99400<br>0.994000<br>0.994000<br>0.994000<br>0.994000<br>0.9940000<br>0.9940000<br>0.9940000000<br>0.9940000000000000000000000000000000000 | $\begin{array}{c} -0.062\\ 0.0035\\ 0.789\\ 0.195\\ 0.789\\ 0.6583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\ 0.583\\$ | $0.894 \\ 0.795 \\ 0.8274 \\ 0.8774 \\ 0.8776 \\ 0.7607 \\ 0.7607 \\ 0.7607 \\ 0.7607 \\ 0.7607 \\ 0.7851 \\ 0.8804 \\ 0.3051 \\ 0.7448 \\ 0.3731 \\ 0.7448 \\ 0.3751 \\ 0.3283 \\ 0.3283 \\ 0.3283 \\ 0.3283 \\ 0.3283 \\ 0.32556 \\ 0.23556 \\ 0.23556 \\ 0.23556 \\ 0.23556 \\ 0.23556 \\ 0.23556 \\ 0.23556 \\ 0.23556 \\ 0.23556 \\ 0.2423 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.2$ | $\begin{array}{c} -0.022\\ -0.057\\ 0.026\\ 0.1951\\ 0.081\\ 0.083\\ 0.0031\\ 0.0031\\ 0.0031\\ 0.0031\\ 0.0035\\ 0.0031\\ 0.0035\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.0038\\ 0.$ | $0.085 \\ 0.256 \\ 0.150 \\ 0.159 \\ 0.1129 \\ 0.1129 \\ 0.1129 \\ 0.1129 \\ 0.1129 \\ 0.1129 \\ 0.1129 \\ 0.1241 \\ 0.1224 \\ 0.1224 \\ 0.1224 \\ 0.1224 \\ 0.1225 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.1231 \\ 0.123$ | $\begin{array}{c} -0.061\\ -0.135\\ -0.002\\ 0.082\\ -0.099\\ -0.126\\ -0.114\\ -0.179\\ -0.276\\ -0.074\\ -0.021\\ 0.087\\ -0.021\\ -0.087\\ -0.066\\ -0.037\\ -0.160\\ -0.037\\ -0.160\\ -0.037\\ -0.160\\ -0.037\\ -0.160\\ -0.037\\ -0.160\\ -0.037\\ -0.160\\ -0.037\\ -0.160\\ -0.037\\ -0.160\\ -0.037\\ -0.160\\ -0.036\\ -0.056\\ -0.365\\ -0.563\\ -0.563\\ -0.563\\ -0.563\\ -0.563\\ -0.567\\ -0.172\\ -0.021\\ 1216\end{array}$ |
| Cun. Var.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 33.404                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 57.618                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 66.927                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 75.249                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 86.465                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                            |

| Sample 1                                                                                                                                                                                                                                                                                                                    | Sample 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Sample 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Sample 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sample 1<br>9.3 cm<br>5.1<br>5.5<br>7.0<br>7.2<br>7.0<br>5.0<br>11.0<br>7.1<br>6.1<br>9.3 cm<br>5.5<br>7.0<br>5.0<br>11.0<br>7.1<br>6.1<br>9.3 cm<br>5.5<br>7.0<br>5.0<br>11.0<br>7.1<br>6.1<br>9.3 cm<br>5.0<br>11.0<br>7.1<br>6.1<br>9.3 cm<br>5.0<br>11.0<br>7.1<br>6.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5 | Sample 2<br>6.6  cm<br>9.2<br>5.9<br>6.3<br>7.1<br>5.6<br>9.0<br>6.6<br>5.3<br>7.0<br>4.5<br>9.5<br>7.5<br>6.5<br>6.1<br>5.6<br>10.6<br>6.3<br>9.2<br>7.4<br>7.2<br>9.0<br>7.2<br>9.0<br>7.2<br>9.0<br>7.2<br>9.0<br>7.2<br>9.0<br>7.2<br>9.0<br>7.2<br>9.0<br>7.2<br>9.0<br>7.2<br>9.0<br>7.2<br>9.0<br>7.2<br>9.0<br>7.2<br>9.0<br>7.2<br>9.0<br>7.2<br>9.0<br>7.2<br>9.0<br>7.2<br>9.0<br>7.2<br>9.0<br>7.2<br>9.0<br>7.2<br>9.0<br>7.2<br>9.0<br>7.2<br>9.0<br>7.2<br>9.0<br>7.2<br>9.0<br>7.2<br>9.0<br>7.2<br>9.0<br>7.2<br>9.0<br>7.2<br>9.0<br>7.2<br>9.0<br>7.0<br>6.2<br>11.0<br>9.1<br>4.9<br>12.0<br>6.0<br>8.6<br>8.0<br>5.6<br>7.2<br>8.0<br>7.0<br>3.1<br>4.5<br>3.5<br>9.5<br>7.7 | Sample 3<br>10.5cm<br>6.4<br>10.6<br>7.1<br>9.3<br>11.2<br>5.0<br>10.6<br>8.1<br>6.3<br>11.4<br>10.9<br>14.8<br>8.0<br>14.9<br>10.0<br>8.9<br>9.8<br>11.4<br>10.0<br>8.9<br>9.8<br>11.5<br>5.3<br>6.5<br>4.3<br>13.0<br>10.3<br>9.6<br>8.3<br>5.1<br>5.2<br>11.5<br>5.1<br>8.0<br>4.5<br>4.5<br>1.5<br>5.6<br>10.6<br>10.6<br>10.6<br>10.6<br>10.6<br>10.6<br>8.1<br>10.9<br>14.8<br>8.0<br>14.9<br>10.0<br>8.9<br>9.8<br>11.5<br>5.3<br>6.5<br>4.3<br>13.0<br>10.3<br>9.6<br>8.7<br>1.5<br>5.1<br>8.0<br>10.3<br>9.6<br>8.7<br>1.5<br>5.1<br>8.0<br>1.5<br>5.5<br>1.5<br>5.5<br>1.5<br>5.5<br>1.5<br>5.5<br>1.5<br>5.5<br>1.5<br>5.5<br>1.5<br>5.5<br>1.5<br>5.5<br>5 | Sample 4<br>6.6 cm<br>9.8<br>8.9<br>12.0<br>14.0<br>11.0<br>7.9<br>8.2<br>11.0<br>7.0<br>11.3<br>10.0<br>8.6<br>12.6<br>10.5<br>6.0<br>11.8<br>7.7<br>8.1<br>23.0<br>7.2<br>21.0<br>9.5<br>7.5<br>9.4<br>6.1<br>11.9<br>11.9<br>11.9<br>11.9<br>11.9<br>11.0<br>9.7<br>7.0<br>17.0<br>10.5<br>8.0<br>9.7<br>7.0<br>17.0<br>10.5<br>8.0<br>9.7<br>7.0<br>17.0<br>10.5<br>8.0<br>9.7<br>7.0<br>17.0<br>10.5<br>8.0<br>9.0<br>6.1<br>14.5<br>13.8<br>8.0<br>9.0<br>6.1<br>14.5<br>13.8<br>8.0<br>9.0<br>6.1<br>14.5<br>13.8<br>8.0<br>9.0<br>6.1<br>14.5<br>13.8<br>8.0<br>9.0<br>6.1<br>14.5<br>13.8<br>8.0<br>9.0<br>6.1<br>14.5<br>13.8<br>8.0<br>9.0<br>6.1<br>14.5<br>13.8<br>8.0<br>9.0<br>6.1<br>14.5<br>13.8<br>8.0<br>9.0<br>6.1<br>14.5<br>13.8<br>8.0<br>9.0<br>6.1<br>14.5<br>13.8<br>8.0<br>9.0<br>6.1<br>14.5<br>13.8<br>8.0<br>9.0<br>6.1<br>14.5<br>13.8<br>8.0<br>9.0<br>6.1<br>14.5<br>13.8<br>8.0<br>9.0<br>6.1<br>14.5<br>13.8<br>8.0<br>9.0<br>6.1<br>14.5<br>13.8<br>8.0<br>9.0<br>6.1<br>14.5<br>13.8<br>8.0<br>9.0<br>6.1<br>14.5<br>13.8<br>8.0<br>9.0<br>6.1<br>14.5<br>13.8<br>8.0<br>9.0<br>6.1<br>14.5<br>13.8<br>8.0<br>9.0<br>6.1<br>14.5<br>13.8<br>8.0<br>9.0<br>6.1<br>14.5<br>13.8<br>8.0<br>9.0<br>6.1<br>14.5<br>13.8<br>8.0<br>9.0<br>6.1<br>14.5<br>12.8<br>14.5<br>12.8<br>12.8<br>12.8<br>12.8<br>12.8<br>12.8<br>12.8<br>12.8<br>12.8<br>12.8<br>12.8<br>12.8<br>12.8<br>12.8<br>12.8<br>12.8<br>12.8<br>12.8<br>12.8<br>12.8<br>12.8<br>12.8<br>12.8<br>12.8<br>12.8<br>12.8<br>12.8<br>12.8<br>12.8<br>12.8<br>12.8<br>12.8<br>12.8<br>12.8<br>12.8<br>12.8<br>12.8<br>12.8<br>12.8<br>12.8<br>12.8<br>12.8<br>12.8<br>12.8<br>12.8<br>12.8<br>12.8<br>12.8<br>12.8<br>12.8<br>12.8<br>12.8<br>12.8<br>12.8<br>12.8<br>12.8<br>12.8<br>12.8<br>12.8<br>12.8<br>12.8<br>12.8<br>12.8<br>12.8<br>12.8<br>12.8<br>12.8<br>12.8<br>12.8<br>12.8<br>12.8<br>12.8<br>12.8<br>12.8<br>12.8<br>12.8<br>12.8<br>12.8<br>12.8<br>12.8<br>12.8<br>12.8<br>12.8<br>12.8<br>12.8<br>12.8<br>12.8<br>12.8<br>12.8<br>12.8<br>12.8<br>12.8<br>12.8<br>12.8<br>12.8<br>12.8<br>12.8<br>12.8<br>12. |
| 12.0<br>3.8<br>4.6                                                                                                                                                                                                                                                                                                          | 5.0<br>5.1<br>6.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7.0<br>10.0<br>6.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8.7<br>11.2<br>9.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

2

Casey Point Foreshore Samples-Intermediate Diameters

1

| addy rorms                      | 101001010 00                    |                                   |                                         |   |
|---------------------------------|---------------------------------|-----------------------------------|-----------------------------------------|---|
| Sample 1                        | Sample 2                        | Sample 3                          | Sample 4                                |   |
| 4.7<br>4.1<br>3.4<br>3.3<br>2.9 | 3.4<br>7.8<br>4.0<br>4.6<br>3.8 | 10.6<br>11.8<br>4.5<br>3.4<br>6.6 | 8.0<br>9.0<br>8.8<br>10.0<br><u>9.1</u> |   |
| 6.3cm                           | 6.7cm                           | 8.4cm                             | 9.7cm Mea                               | n |
|                                 |                                 |                                   |                                         |   |

Casey Point Foreshore Samples-Intermediate Diameters

| Sample 5                                                                                                                                                                                                                                                                                            | Sample 6                                                                                                                                                                                                                                                                                                                                                                                                                                           | Sample ?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Sample 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sample 5<br>29.0cm<br>28.0<br>9.0<br>12.0<br>11.0<br>11.3<br>20.8<br>9.2<br>14.5<br>10.5<br>11.9<br>9.9<br>9.0<br>10.0<br>7.9<br>9.1<br>9.7<br>7.2<br>15.6<br>13.9<br>11.5<br>7.6<br>7.4<br>12.1<br>11.3<br>11.2<br>9.5<br>6.6<br>5.3<br>11.0<br>27.0<br>10.0<br>15.7<br>9.0<br>13.0<br>12.0<br>9.3 | Sample 6<br>10.1cm<br>9.5<br>11.6<br>12.0<br>11.8<br>18.0<br>9.8<br>19.0<br>9.5<br>13.0<br>7.2<br>8.5<br>13.2<br>13.0<br>7.2<br>8.5<br>13.2<br>13.0<br>7.2<br>8.5<br>13.0<br>7.2<br>8.5<br>13.0<br>7.2<br>8.5<br>13.0<br>7.2<br>8.5<br>13.0<br>7.2<br>8.5<br>13.0<br>12.6<br>6.8<br>7.6<br>14.2<br>7.4<br>7.3<br>13.0<br>8.6<br>10.2<br>14.6<br>8.2<br>6.3<br>12.9<br>12.5<br>5.0<br>7.5<br>6.5<br>6.3<br>6.6<br>27.0<br>5.5<br>7.2<br>17.5<br>6.4 | Sample 7<br>28.9cm<br>27.5<br>33.4<br>18.5<br>15.5<br>12.5<br>11.8<br>14.8<br>9.7<br>8.0<br>20.2<br>12.0<br>8.2<br>8.6<br>16.5<br>6.5<br>11.2<br>10.9<br>13.0<br>11.4<br>10.3<br>7.0<br>4.9<br>13.2<br>7.9<br>14.5<br>8.5<br>10.6<br>12.8<br>13.1<br>23.2<br>9.4<br>8.1<br>7.2<br>6.8<br>8.0<br>8.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.0<br>10.6<br>10.5<br>10.6<br>10.5<br>10.6<br>10.5<br>10.6<br>10.5<br>10.6<br>10.8<br>10.6<br>10.8<br>10.6<br>10.6<br>10.9<br>10.6<br>10.9<br>10.6<br>10.9<br>10.6<br>10.9<br>10.6<br>10.9<br>10.6<br>10.9<br>10.6<br>10.9<br>10.6<br>10.9<br>10.6<br>10.9<br>10.6<br>10.9<br>10.6<br>10.9<br>10.6<br>10.9<br>10.6<br>10.9<br>10.6<br>10.9<br>10.6<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.8<br>10.9<br>10.9<br>10.9<br>10.9<br>10.8<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10. | Sample 8<br>28.9cm<br>27.5<br>33.4<br>18.4<br>15.5<br>12.5<br>11.8<br>14.8<br>9.7<br>8.0<br>20.2<br>12.0<br>8.2<br>8.6<br>16.5<br>6.5<br>11.2<br>10.9<br>13.0<br>11.4<br>10.3<br>7.0<br>4.9<br>13.2<br>7.9<br>14.5<br>8.5<br>10.6<br>12.8<br>13.1<br>23.2<br>9.4<br>8.1<br>7.2<br>6.8<br>8.0<br>8.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10.9<br>10. |
| 9.3<br>8.8<br>7.2<br>5.1<br>7.0<br>5.9<br>10.0                                                                                                                                                                                                                                                      | 6.4<br>14.0<br>7.8<br>10.5<br>13.5<br>5.5<br>10.0                                                                                                                                                                                                                                                                                                                                                                                                  | 9.8<br>13.4<br>9.6<br>11.9<br>12.5<br>7.7<br>14.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9.8<br>13.4<br>9.6<br>11.9<br>12.5<br>7.7<br>14.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

Casey Point Foreshore Samples-Intermediate Diameters

| Casey Foint                      | Foreshore Sa                              | mples-Interme                    | diate Diameters                  |
|----------------------------------|-------------------------------------------|----------------------------------|----------------------------------|
| Sample 5                         | Sample 6                                  | Sample 7                         | Sample 8                         |
| 14.0<br>5.2<br>5.0<br>4.0<br>4.9 | 8.5<br>19.0<br>10.7<br>6.9<br><u>14.3</u> | 7.8<br>10.1<br>6.4<br>6.4<br>7.6 | 7.8<br>10.1<br>6.4<br>6.4<br>7.6 |
| 10.1cm                           | 10.7cm                                    | 11.4cm                           | 12.1cm Mean                      |

•

| H. |  |
|----|--|
| ø  |  |
| ס  |  |
| 5  |  |
| 0  |  |
| -  |  |

•

| ҂ѻѵѵҩѻѵѵѵѵѻѵѵѵѹѹѹӥѻѹҩѻҩҩҩҩҩѹѹӥҫҫҫҫҫҫҫҫҫҫ<br>ҩѻҩѽѻӻѵӻѵѻѵѻѻѽӥѻѹҩѽѽѽѽѽѽѽѽѽѽѽѽѽѽѽѽѽѽѽѽѽѽѽѽѽѽ               | Long<br>Diameter (a)                  |       |          |
|--------------------------------------------------------------------------------------------------------|---------------------------------------|-------|----------|
| ѡ <i>ӺѡѡѵӺѵӺӺӺӺѡѵѹ</i> ҂҂ѻѻ҂ѻѻ҂ѻѻ҂ѹ <i>ѵѵѵѵѵѵѵѵѵѵѵѵѵѵѵ</i><br>ѻ҂ѹѹѵѵѵѵѵѵѵѻѻѻѻѻѵѹѵѻѻҫѻѻѵѹѹѹѹѹѹѹѹѹѹ<br>ѻ | Samp.<br>Intermediate<br>Diameter (b) | Ta    |          |
| ͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺ                                                                  | Le 11-A<br>Short<br>Dlameter (c)      | 4 513 | 44<br>44 |
| 800171800480000048800006060000000000000000000                                                          | b/a                                   |       |          |
| <i>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</i>                                                            | o/b                                   |       |          |
|                                                                                                        |                                       |       |          |

·

•

.

• •

#### Table 4

## Sample T1-A

| Long<br>Diameter                 | (a) | Intermedi<br>Diameter    | ate S<br>(b) Dia | Short<br>Ameter                 | (c) | b/a                             | c/b                             |
|----------------------------------|-----|--------------------------|------------------|---------------------------------|-----|---------------------------------|---------------------------------|
| 6.5<br>5.0<br>10.0<br>5.0<br>3.5 |     | 4.0<br>4.7<br>4.0<br>3.8 |                  | 3.5<br>4.6<br>2.9<br>2.4<br>2.6 |     | •72<br>•80<br>•40<br>•72<br>1•0 | •50<br>•76<br>•73<br>1•0<br>•47 |

.

## Table 4

## Sample T1-B

| Long<br>Diameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Intermediate<br>Diameter (b)                                                                                                      | Short<br>Diameter (c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | b/a                                                                                                                           | c/b                                            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|
| 12.5 $10.5$ $12.2$ $10.6$ $10.5$ $14.0$ $8.0$ $8.2$ $8.0$ $8.2$ $7.6$ $7.5$ $7.0$ $7.0$ $7.8$ $8.0$ $9.0$ $7.7$ $7.5$ $8.0$ $9.0$ $7.7$ $7.5$ $8.0$ $9.0$ $7.7$ $7.5$ $8.0$ $9.0$ $9.0$ $8.8$ $8.0$ $9.0$ $9.0$ $8.8$ $8.0$ $9.0$ $9.0$ $8.8$ $8.0$ $9.0$ $9.0$ $8.8$ $8.0$ $9.0$ $9.0$ $8.8$ $8.0$ $9.0$ $9.0$ $8.8$ $8.0$ $9.0$ $9.0$ $8.8$ $8.0$ $9.0$ $9.0$ $8.8$ $8.0$ $9.0$ $9.0$ $8.8$ $8.0$ $9.0$ $9.0$ $8.8$ $8.0$ $9.0$ $9.0$ $8.8$ $8.0$ $9.0$ $9.0$ $8.8$ $8.0$ $9.0$ $9.0$ $8.8$ $8.0$ $9.0$ $9.0$ $8.8$ $8.0$ $9.0$ $9.0$ $8.8$ $8.0$ $9.0$ $9.0$ $8.8$ $8.0$ $9.0$ $9.0$ $8.8$ $8.0$ $9.0$ $9.0$ $8.8$ $8.0$ $9.0$ $9.0$ $8.8$ $8.0$ $9.0$ $9.0$ $8.8$ $8.0$ $9.0$ $8.8$ $8.0$ $9.0$ $9.0$ $8.8$ $8.0$ $9.0$ $9.0$ $8.8$ $8.0$ $9.0$ $9.0$ $8.8$ $8.0$ $9.0$ $9.0$ $8.8$ $8.0$ $9.0$ $9.0$ $8.8$ $8.0$ $9.0$ $9.0$ $8.8$ $8.0$ $9.0$ $9.0$ $8.8$ $8.0$ $9.0$ $9.6$ $7.8$ $8.2$ | 9.5<br>6.2<br>7.2<br>8.5<br>9.0<br>5.6<br>8.5<br>9.0<br>5.6<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0 | 2.6<br>4.0<br>5.5<br>3.8<br>4.8<br>3.6<br>3.6<br>3.6<br>3.6<br>3.2<br>4.0<br>3.2<br>4.0<br>3.0<br>2.4<br>3.0<br>2.4<br>3.0<br>2.4<br>3.0<br>2.4<br>3.0<br>2.4<br>3.0<br>2.4<br>3.0<br>2.4<br>3.0<br>2.4<br>3.0<br>2.4<br>3.0<br>2.4<br>3.0<br>2.4<br>3.0<br>2.4<br>3.0<br>2.4<br>3.0<br>2.4<br>3.0<br>2.4<br>3.0<br>2.4<br>3.0<br>2.4<br>3.0<br>2.4<br>3.0<br>2.4<br>3.0<br>2.4<br>3.0<br>2.4<br>3.0<br>2.4<br>3.0<br>2.4<br>3.0<br>2.4<br>3.0<br>2.4<br>3.0<br>2.4<br>3.0<br>2.4<br>3.0<br>2.4<br>3.0<br>2.4<br>3.0<br>2.4<br>3.0<br>2.4<br>3.0<br>2.4<br>3.0<br>2.4<br>3.0<br>2.4<br>3.0<br>2.4<br>3.0<br>2.4<br>3.0<br>2.4<br>3.0<br>2.4<br>3.0<br>2.4<br>3.0<br>2.4<br>3.0<br>2.4<br>3.0<br>2.4<br>3.0<br>2.4<br>3.0<br>2.4<br>3.0<br>2.4<br>3.0<br>2.5<br>1.0<br>2.0<br>2.4<br>3.0<br>2.5<br>1.0<br>2.0<br>2.4<br>3.0<br>2.5<br>1.0<br>2.0<br>5.5<br>3.6<br>2.0<br>5.5<br>3.6<br>2.0<br>5.5<br>3.6<br>2.0<br>5.5<br>3.6<br>2.0<br>5.5<br>3.6<br>2.0<br>5.5<br>3.6<br>2.0<br>5.5<br>3.6<br>2.0<br>5.5<br>3.6<br>2.0<br>5.5<br>3.6<br>2.0<br>5.5<br>3.6<br>2.0<br>5.5<br>3.6<br>2.0<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5 | .76999014020731417940053172041809707870587053367880<br>.64020731417940053172041809707870533367880<br>.593367880<br>.593367880 | 2756881785618680464636303107686724669943474063 |

## Sample T1-C

| Long<br>Diameter (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (a) Diameter (b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Short<br>Diameter (c)                                                                                                                         | b/a                                              | c/b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\begin{array}{c} 13.0\\ 11.5\\ 10.0\\ 9.1\\ 8.4\\ 9.5\\ 9.0\\ 9.0\\ 9.0\\ 9.0\\ 8.6\\ 5.8\\ 11.5\\ 9.0\\ 9.0\\ 9.0\\ 8.6\\ 8.5\\ 11.5\\ 9.0\\ 9.0\\ 11.0\\ 12.0\\ 11.0\\ 12.0\\ 11.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.$ | $     \begin{array}{c}       10.0\\       7.6\\       6.3\\       6.4\\       6.3\\       8.0\\       5.3\\       7.0\\       4.0\\       6.0\\       7.5\\       5.5\\       6.0\\       8.0\\       8.6\\       6.6\\       5.6\\       7.5\\       8.0\\       11.0\\       7.2\\       6.0\\       5.0\\       6.8\\       6.3\\       11.0\\       7.2\\       7.0\\       7.8\\       6.6\\       5.8\\       5.2\\       6.8\\       4.1\\       5.0\\       5.2\\       6.8\\       4.1\\       5.0\\       5.2\\       6.8\\       4.1\\       5.0\\       5.2\\       6.8\\       4.1\\       5.0\\       5.7\\       7.0\\       6.5\\       6.0\\       4.4\\       8.8\\       10.5\\       8.0\\       8.2   \end{array} $ | 6.1<br>5.0<br>3.8<br>5.8<br>5.0<br>5.9<br>8.3<br>1.0<br>0.5<br>5.9<br>7.0<br>5.0<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5 | ·76630547747747783932207476347770088838978668758 | .61<br>.65<br>.60<br>.87<br>.72<br>.78<br>.75<br>.50<br>.55<br>.98<br>.59<br>.59<br>.59<br>.50<br>.55<br>.50<br>.55<br>.50<br>.55<br>.50<br>.55<br>.50<br>.55<br>.50<br>.55<br>.50<br>.55<br>.50<br>.55<br>.50<br>.55<br>.50<br>.55<br>.50<br>.55<br>.50<br>.55<br>.50<br>.55<br>.50<br>.55<br>.50<br>.55<br>.50<br>.55<br>.50<br>.55<br>.50<br>.55<br>.50<br>.55<br>.50<br>.55<br>.50<br>.55<br>.50<br>.55<br>.50<br>.55<br>.50<br>.55<br>.50<br>.55<br>.50<br>.55<br>.50<br>.55<br>.50<br>.55<br>.50<br>.55<br>.50<br>.55<br>.50<br>.55<br>.50<br>.55<br>.50<br>.55<br>.50<br>.55<br>.50<br>.55<br>.50<br>.55<br>.50<br>.55<br>.50<br>.55<br>.50<br>.55<br>.50<br>.55<br>.50<br>.55<br>.50<br>.55<br>.50<br>.55<br>.50<br>.55<br>.50<br>.55<br>.50<br>.55<br>.50<br>.55<br>.50<br>.55<br>.50<br>.55<br>.50<br>.55<br>.50<br>.55<br>.50<br>.55<br>.50<br>.55<br>.50<br>.55<br>.50<br>.55<br>.50<br>.55<br>.50<br>.55<br>.50<br>.55<br>.50<br>.55<br>.50<br>.55<br>.50<br>.55<br>.50<br>.55<br>.50<br>.55<br>.50<br>.55<br>.50<br>.55<br>.50<br>.55<br>.50<br>.55<br>.50<br>.55<br>.50<br>.55<br>.50<br>.55<br>.50<br>.55<br>.50<br>.55<br>.50<br>.50 |

## Table 4

## Sample T1-C

| Long<br>Diameter                         | (a) | Intermedi<br>Diameter                  | ate<br>(b) Di | Short<br>Lameter                       | ( o ) | t/a                                    | c/b                             |
|------------------------------------------|-----|----------------------------------------|---------------|----------------------------------------|-------|----------------------------------------|---------------------------------|
| 5.0<br>17.4<br>15.1<br>7.5<br>5.5<br>5.5 |     | 3.1<br>6.0<br>8.6<br>5.0<br>4.6<br>4.4 |               | 3.0<br>6.2<br>3.6<br>3.6<br>2.5<br>2.6 |       | •63<br>•34<br>•56<br>•66<br>•83<br>•83 | •96<br>•64<br>•73<br>•72<br>•54 |

.

## Sample 11-D

| Long<br>Diameter (a)                                                                                                                                                                                                                                                             | Intermediate<br>Diameter (b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Short<br>Diameter (c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | b/a                                             | c/b                                                                                                                                             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| 12.0 $11.0$ $9.0$ $12.8$ $12.0$ $7.9$ $11.0$ $11.0$ $10.0$ $9.0$ $12.6$ $10.0$ $6.2$ $8.0$ $12.4$ $11.6$ $10.5$ $6.1$ $10.2$ $8.5$ $7.2$ $6.1$ $10.5$ $9.0$ $8.2$ $9.0$ $6.5$ $7.5$ $10.5$ $9.5$ $8.4$ $9.8$ $4.3$ $7.5$ $6.6$ $9.5$ $7.5$ $10.5$ $5.4$ $5.5$ $7.5$ $11.4$ $5.7$ | 7.8<br>7.0<br>6.0<br>7.6<br>6.0<br>7.3<br>0.0<br>0.3<br>8<br>7.6<br>4.0<br>0.6<br>0.0<br>5<br>1.9<br>4.3<br>0.5<br>5<br>4.0<br>0.0<br>7.5<br>6.8<br>7.7<br>6.5<br>7.7<br>8<br>8<br>6.8<br>4.0<br>0.6<br>0.5<br>5<br>7.7<br>6.5<br>5<br>7.7<br>8<br>8<br>6.8<br>4.0<br>0.6<br>5<br>5<br>7.7<br>6<br>6.0<br>7.7<br>6.0<br>7.7<br>6.0<br>7.7<br>6.5<br>7.7<br>7.8<br>8<br>6.0<br>7.7<br>7.6<br>5<br>7.7<br>7.8<br>8<br>6.0<br>7.7<br>7.6<br>5.7<br>7.8<br>8<br>6.0<br>7.7<br>7.6<br>5.5<br>7.7<br>7.8<br>8<br>6.0<br>7.7<br>7.6<br>5.5<br>7.7<br>7.8<br>8<br>6.0<br>7.7<br>7.6<br>5.5<br>7.7<br>7.8<br>8<br>6.0<br>7.7<br>7.6<br>5.5<br>7.7<br>7.8<br>8<br>6.0<br>7.7<br>7.6<br>5.5<br>7.7<br>7.8<br>8<br>6.0<br>7.7<br>7.6<br>5.5<br>7.7<br>7.8<br>8<br>6.0<br>7.7<br>7.6<br>5.5<br>7.7<br>7.6<br>5.5<br>7.7<br>7.6<br>5.5<br>7.7<br>7.6<br>5.5<br>7.7<br>7.6<br>5.5<br>7.7<br>7.6<br>5.5<br>7.7<br>7.6<br>5.5<br>7.7<br>7.6<br>7.5<br>7.7<br>7.6<br>7.5<br>7.7<br>7.6<br>7.5<br>7.7<br>7.6<br>7.5<br>7.7<br>7.6<br>7.5<br>7.7<br>7.6<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5 | 6.8<br>6.0<br>4.5<br>5.0<br>9.7<br>8.9<br>3.8<br>2.8<br>6.4<br>8.8<br>0.3<br>5.0<br>1.8<br>8.8<br>8.3<br>0.5<br>0.4<br>2.0<br>0.0<br>8.6<br>5.3<br>8.2<br>8.6<br>4.8<br>8.8<br>3.0<br>5.0<br>4.2<br>0.0<br>5.0<br>4.2<br>0.0<br>5.1<br>2.2<br>2.3<br>8.2<br>3.4<br>2.8<br>5.3<br>5.4<br>2.5<br>5.3<br>5.4<br>2.5<br>5.3<br>5.4<br>2.5<br>5.3<br>5.4<br>2.5<br>5.3<br>5.4<br>2.5<br>5.3<br>5.4<br>2.5<br>5.3<br>5.4<br>2.5<br>5.3<br>5.4<br>2.5<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5 | .6486335927603737388323879216000745733367460267 | 8865055416731903030335528440003987001191528322<br>88676765416731903030335528440003987001191528322<br>886767676767676769684400039887001191528322 |

| 4 | 4 | 3 |
|---|---|---|
| 1 | 7 | 1 |

#### Sample T1-D

| Long<br>Diameter | (a) | Intermediate<br>Diameter (b) | Short<br>Diameter (c) | b/a  | c/b |
|------------------|-----|------------------------------|-----------------------|------|-----|
| 12.5             |     | 6.7                          | 5.8                   | • 53 | .86 |
| 8.6              |     | 7.5                          | 5.2                   | • 88 | .69 |
| 9.5              |     | 7.5                          | 5.2                   | • 78 | .71 |
| 10.3             |     | 8.2                          | 3.0                   | • 80 | .36 |
| 8.0              |     | 5.4                          | 4.0                   | • 68 | .74 |
| 11.0             |     | 6.5                          | 3.0                   | • 59 | .46 |

## Sample T2-A

| Long<br>Diameter (a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Intermediate<br>Diameter (b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Short<br>Diameter (c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | b/a                                                                                       | c/Ъ                                                                                              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| 14.0 (cm)<br>10.8<br>13.7<br>8.0<br>11.0<br>7.5<br>5.5<br>11.0<br>9.0<br>13.0<br>8.8<br>8.0<br>7.3<br>8.5<br>10.0<br>11.0<br>7.0<br>7.0<br>9.5<br>8.0<br>9.0<br>10.0<br>9.5<br>9.0<br>10.0<br>9.5<br>9.0<br>11.0<br>7.5<br>6.6<br>8.7<br>9.0<br>11.0<br>7.5<br>6.0<br>11.0<br>7.5<br>6.0<br>11.0<br>7.5<br>6.0<br>11.0<br>7.5<br>6.0<br>11.0<br>7.5<br>6.0<br>11.0<br>7.5<br>6.0<br>11.0<br>7.5<br>6.0<br>11.0<br>7.5<br>6.5<br>12.0<br>10.5<br>8.0<br>6.0<br>8.5<br>7.0<br>8.0<br>7.5<br>6.5<br>12.0<br>10.5<br>8.0<br>6.0<br>8.5<br>7.0<br>8.0<br>7.5<br>6.5<br>12.0<br>10.0<br>7.5<br>8.0<br>6.0<br>8.0<br>7.5<br>6.5<br>12.0<br>10.0<br>7.5<br>8.0<br>6.0<br>8.0<br>7.5<br>10.5<br>8.0<br>6.0<br>8.5<br>7.0<br>8.0<br>6.0<br>8.0<br>7.5<br>10.5<br>8.0<br>6.0<br>8.5<br>7.0<br>8.0<br>6.0<br>8.0<br>7.5<br>10.5<br>8.0<br>6.0<br>8.5<br>7.0<br>8.0<br>6.0<br>8.0<br>7.5<br>10.5<br>8.0<br>6.0<br>8.0<br>7.5<br>10.5<br>8.0<br>6.0<br>8.0<br>7.5<br>10.5<br>8.0<br>6.0<br>8.0<br>7.5<br>10.5<br>8.0<br>6.0<br>8.0<br>7.5<br>7.0<br>8.0<br>8.0<br>7.5<br>7.0<br>8.0<br>7.5<br>7.0<br>8.0<br>7.5<br>7.0<br>8.0<br>7.5<br>7.0<br>8.0<br>7.5<br>7.0<br>8.0<br>7.5<br>7.0<br>8.0<br>7.5<br>7.0<br>8.0<br>7.5<br>7.0<br>7.5<br>7.0<br>8.0<br>7.5<br>7.0<br>7.5<br>7.0<br>7.5<br>7.0<br>7.5<br>7.0<br>7.5<br>7.0<br>7.5<br>7.0<br>7.5<br>7.0<br>7.5<br>7.0<br>7.5<br>7.0<br>7.5<br>7.0<br>7.0<br>7.5<br>7.0<br>7.5<br>7.0<br>7.5<br>7.0<br>7.0<br>7.0<br>7.5<br>7.0<br>7.0<br>7.0<br>7.5<br>7.0<br>7.0<br>7.0<br>7.5<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.5<br>7.0<br>7.0<br>7.0<br>7.5<br>7.0<br>7.0<br>7.5<br>7.0<br>7.0<br>7.5<br>7.0<br>7.0<br>7.5<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0 | 7.0 (cm)<br>8.0<br>6.8<br>6.5<br>5.5<br>7.0<br>7.4<br>5.5<br>7.0<br>7.4<br>5.5<br>6.9<br>7.5<br>5.5<br>6.9<br>7.5<br>5.5<br>6.9<br>7.5<br>5.5<br>7.5<br>5.5<br>7.0<br>7.4<br>5.5<br>6.5<br>7.5<br>5.5<br>7.0<br>7.4<br>5.5<br>7.5<br>5.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7 | 4.0 (cm)<br>5.4<br>3.1<br>2.5<br>4.0<br>3.5<br>3.0<br>7.0<br>5.5<br>3.0<br>7.0<br>5.5<br>3.5<br>3.5<br>3.5<br>3.5<br>3.5<br>3.5<br>3.5<br>3.5<br>3.5<br>3.5<br>3.5<br>4.4<br>7.5<br>2.5<br>3.5<br>3.5<br>4.4<br>7.5<br>2.5<br>3.6<br>4.4<br>7.5<br>2.5<br>3.6<br>4.4<br>7.5<br>2.5<br>3.0<br>3.6<br>5.5<br>3.0<br>3.0<br>5.5<br>3.0<br>5.5<br>3.0<br>3.0<br>5.5<br>3.0<br>3.0<br>5.5<br>3.0<br>5.5<br>3.0<br>3.0<br>5.5<br>3.18<br>5.0<br>3.5<br>3.0<br>5.5<br>3.18<br>5.5<br>3.18<br>5.5<br>3.18<br>5.5<br>3.18<br>5.5<br>3.18<br>5.5<br>3.12<br>3.5<br>3.00<br>4.5<br>3.12<br>3.5<br>3.00<br>4.5<br>3.12<br>3.5<br>3.00<br>4.5<br>3.12<br>3.00<br>4.5<br>3.12<br>3.00<br>4.5<br>3.12<br>3.00<br>4.5<br>3.12<br>3.00<br>4.5<br>3.12<br>3.00<br>4.5<br>3.12<br>3.00<br>4.5<br>3.12<br>3.00<br>4.5<br>3.12<br>3.00<br>4.5<br>3.12<br>3.00<br>4.0<br>4.0<br>3.00<br>5.5<br>3.00<br>4.0<br>3.00<br>5.5<br>3.00<br>4.0<br>3.00<br>5.5<br>3.00<br>4.00<br>5.5<br>3.00<br>5.5<br>3.00<br>4.00<br>5.5<br>5.00<br>3.00<br>5.5<br>5.00<br>3.00<br>4.00<br>5.00<br>3.00<br>5.00<br>3.00<br>5.00<br>3.00<br>5.00<br>3.00<br>5.00<br>3.00<br>5.00<br>3.00<br>5.00<br>3.00<br>5.00<br>3.00<br>5.00<br>3.00<br>5.00<br>3.00<br>5.00<br>3.00<br>5.00<br>3.00<br>5.00<br>3.00<br>5.00<br>3.00<br>5.00<br>3.00<br>5.00<br>3.00<br>5.00<br>3.00<br>5.00<br>3.00<br>5.00<br>3.00<br>5.00<br>3.00<br>5.00<br>3.00<br>5.00<br>3.00<br>5.00<br>3.00<br>5.00<br>3.00<br>5.00<br>3.00<br>5.00<br>3.00<br>5.00<br>3.00<br>5.00<br>3.00<br>5.00<br>3.00<br>5.00<br>3.00<br>5.00<br>3.00<br>5.00<br>3.00<br>5.00<br>3.00<br>5.00<br>5.00<br>5.00<br>5.00<br>3.00<br>5.00<br>5.00<br>3.00<br>5.00<br>5.00<br>3.00<br>5.00<br>3.00<br>5.00<br>3.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>7.00<br>7.00<br>7.00<br>7.00<br>7.00<br>7.00<br>7.00<br>7.00<br>7.00<br>7.00<br>7.00<br>7.00<br>7.00<br>7.00<br>7.00<br>7.00<br>7.00<br>7.00<br>7.00<br>7.00<br>7.00<br>7.00<br>7.00<br>7.00<br>7.00<br>7.00<br>7.00<br>7.00<br>7.00<br>7.00<br>7.00<br>7.00<br>7.00<br>7.00<br>7.00<br>7.00<br>7.00<br>7.0 | • 7 4 8 5 9 3 2 3 0 4 6 3 2 0 8 4 8 2 4 8 4 4 4 3 0 3 2 0 6 0 7 6 0 6 1 8 5 3 1 1 5 5 2 8 | 5292237031687541183993570526556114053653066182<br>5292237031687541183993570526556114053653066182 |

## Table 4

## Sample T2-A

| Long<br>Diameter            | (a) | Intermedi<br>Diameter    | ate<br>(b) D | Short<br>ameter          | (c) | b/a                       | c/b                      |
|-----------------------------|-----|--------------------------|--------------|--------------------------|-----|---------------------------|--------------------------|
| 11.0<br>11.0<br>8.0<br>10.0 |     | 4.7<br>8.5<br>6.0<br>7.5 |              | 2.3<br>5.0<br>3.0<br>6.0 |     | • 58<br>•77<br>•75<br>•72 | .49<br>.58<br>.50<br>.80 |

## Table 4

## Sample T2-B

| Long<br>Diameter (a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Intermediate<br>Diameter (b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Short<br>Diameter (c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | b/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | c/b                                                                                                                                                                                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6.0 (cm)<br>7.5<br>6.0<br>6.3<br>7.0<br>5.0<br>8.0<br>7.6<br>8.0<br>7.6<br>8.0<br>7.6<br>8.0<br>7.5<br>9.5<br>5.2<br>7.0<br>5.0<br>5.5<br>4.5<br>5.0<br>5.0<br>5.5<br>4.5<br>5.0<br>5.5<br>4.5<br>5.0<br>5.5<br>4.5<br>5.0<br>5.5<br>4.5<br>5.0<br>5.1<br>5.0<br>5.0<br>5.5<br>4.5<br>5.0<br>5.0<br>5.5<br>4.5<br>5.0<br>5.0<br>5.5<br>4.5<br>5.0<br>5.0<br>5.5<br>4.5<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5. | 4.0 (cm)<br>5.5<br>5.0<br>3.0<br>4.5<br>3.7<br>4.2<br>3.5<br>3.4<br>5.5<br>4.9<br>6.0<br>3.3<br>6.7<br>4.5<br>5.0<br>6.5<br>7.7<br>3.0<br>3.5<br>5.5<br>4.5<br>3.0<br>3.5<br>5.5<br>2.2<br>7.0<br>4.0<br>3.5<br>5.2.2<br>7.0<br>4.0<br>3.5<br>5.2.2<br>7.0<br>4.5<br>3.5<br>5.2.2<br>7.0<br>4.5<br>3.5<br>5.2.2<br>7.0<br>4.5<br>3.5<br>5.2.2<br>7.0<br>4.5<br>3.5<br>5.0<br>2.2<br>7.0<br>4.5<br>5.0<br>5.2.2<br>7.0<br>4.0<br>3.5<br>2.7<br>5.0<br>4.5<br>5.0<br>4.5<br>5.0<br>4.5<br>5.0<br>5.0<br>4.5<br>5.0<br>4.5<br>5.0<br>5.0<br>4.5<br>5.0<br>5.0<br>4.5<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0 | 2.0 (cm)<br>4.0<br>2.0<br>1.6<br>2.2<br>1.5<br>2.5<br>1.0<br>1.7<br>1.8<br>2.5<br>2.0<br>2.5<br>2.0<br>2.5<br>1.8<br>2.0<br>2.5<br>1.8<br>2.0<br>2.5<br>1.4<br>2.0<br>2.5<br>1.4<br>2.0<br>2.5<br>1.7<br>5.5<br>2.0<br>2.5<br>1.6<br>2.0<br>2.5<br>1.6<br>2.0<br>2.5<br>1.6<br>2.0<br>2.5<br>1.6<br>2.0<br>2.5<br>1.6<br>2.0<br>2.5<br>1.6<br>2.0<br>2.5<br>1.6<br>2.0<br>2.5<br>1.6<br>2.0<br>2.5<br>1.6<br>2.0<br>2.5<br>1.6<br>2.0<br>2.5<br>1.6<br>2.0<br>2.5<br>1.6<br>2.0<br>2.5<br>1.6<br>2.0<br>2.5<br>1.6<br>2.0<br>2.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.6<br>1.6<br>1.6<br>1.6<br>1.6<br>1.6 | .66<br>.73330<br>.67.57.488<br>.754.06<br>.757.406<br>.757.704<br>.657.704<br>.780.884<br>.780.884<br>.79.6666<br>.79.6666<br>.79.6666<br>.50.68<br>.60.750<br>.60.750<br>.60.750<br>.60.750<br>.60.750<br>.60.750<br>.60.750<br>.60.750<br>.60.750<br>.60.750<br>.60.750<br>.60.750<br>.60.750<br>.60.750<br>.60.750<br>.60.750<br>.60.750<br>.60.750<br>.60.750<br>.60.750<br>.60.750<br>.60.750<br>.60.750<br>.60.750<br>.60.750<br>.60.750<br>.60.750<br>.60.750<br>.60.750<br>.60.750<br>.60.750<br>.60.750<br>.60.750<br>.60.750<br>.60.750<br>.60.750<br>.60.750<br>.60.750<br>.60.750<br>.60.750<br>.60.750<br>.60.750<br>.60.750<br>.60.750<br>.60.750<br>.60.750<br>.60.750<br>.60.750<br>.60.750<br>.70.650<br>.70.650<br>.70.650<br>.70.650<br>.70.650<br>.70.650<br>.70.650<br>.70.650<br>.70.650<br>.70.650<br>.70.650<br>.70.650<br>.70.650<br>.70.650<br>.70.650<br>.70.650<br>.70.650<br>.70.650<br>.70.650<br>.70.650<br>.70.650<br>.70.650<br>.70.650<br>.70.650<br>.70.650<br>.70.650<br>.70.650<br>.70.650<br>.70.650<br>.70.650<br>.70.650<br>.70.650<br>.70.650<br>.70.650<br>.70.650<br>.70.650<br>.70.650<br>.70.650<br>.70.650<br>.70.650<br>.70.650<br>.70.650<br>.70.650<br>.70.650<br>.70.650<br>.70.650<br>.70.650<br>.70.650<br>.70.650<br>.70.650<br>.70.650<br>.70.650<br>.70.650<br>.70.650<br>.70.650<br>.70.650<br>.70.650<br>.70.650<br>.70.650<br>.70.6500<br>.70.6500<br>.70.6500<br>.70.6500<br>.70.6500<br>.70.6500<br>.70.6500<br>.70.6500<br>.70.6500<br>.70.6500<br>.70.6500<br>.70.6500<br>.70.6500<br>.70.6500<br>.70.6500<br>.70.6500<br>.70.6500<br>.70.6500<br>.70.65000<br>.70.65000<br>.70.65000<br>.70.65000<br>.70.65000<br>.70.65000<br>.70.65000<br>.70.65000<br>.70.65000<br>.70.65000<br>.70.65000<br>.70.65000<br>.70.650000<br>.70.650000<br>.70.650000<br>.70.650000000000000000000000000000000000 | 502<br>480<br>409<br>522<br>532<br>532<br>535<br>544<br>567<br>504<br>522<br>532<br>535<br>535<br>545<br>567<br>564<br>572<br>567<br>567<br>567<br>567<br>567<br>567<br>567<br>567 |

## Table 4

## Sample T2-B

| Long<br>Diameter                | (a) | Intermediate<br>Diameter (b)           | Short<br>Diameter (c)                  | b/a                                     | c/b                                    |
|---------------------------------|-----|----------------------------------------|----------------------------------------|-----------------------------------------|----------------------------------------|
| 4.5<br>4.6<br>5.0<br>5.0<br>4.1 |     | 2.7<br>2.6<br>4.0<br>3.0<br>4.5<br>3.6 | 2.0<br>1.0<br>2.0<br>2.5<br>3.0<br>1.3 | • 54<br>•61<br>•60<br>•80<br>•90<br>•50 | •73<br>•40<br>•50<br>•83<br>•66<br>•36 |

+

.

## Table 4

#### Sample T2-C

| Long<br>Diameter (a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Intermediate<br>Diameter (b)                                                                                                                                                | Short<br>Diameter (c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | b/a                                                                                                   | с/Ъ                                           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| 14.0 (cm)<br>9.0<br>10.5<br>12.0<br>13.0<br>6.5<br>9.0<br>8.0<br>12.0<br>11.0<br>7.0<br>6.5<br>7.5<br>8.0<br>11.0<br>9.5<br>12.0<br>5.5<br>10.0<br>11.0<br>7.5<br>7.2<br>11.0<br>8.0<br>12.0<br>11.0<br>7.5<br>7.2<br>11.0<br>8.5<br>12.5<br>10.5<br>12.5<br>10.5<br>12.5<br>10.5<br>10.5<br>12.5<br>10.5<br>12.5<br>10.5<br>12.5<br>10.5<br>12.5<br>10.5<br>12.5<br>10.5<br>12.5<br>10.5<br>10.5<br>12.5<br>10.5<br>12.5<br>10.5<br>12.5<br>10.5<br>12.5<br>10.5<br>10.5<br>12.5<br>9.5<br>13.0<br>17.0<br>13.5<br>9.0<br>7.0<br>7.0<br>7.0<br>8.0<br>12.5<br>9.5<br>13.0<br>13.5<br>9.0<br>7.0<br>7.0<br>7.0<br>13.5<br>9.0<br>7.0<br>7.0<br>13.5<br>9.0<br>7.0<br>7.0<br>7.0<br>13.5<br>9.0<br>7.0<br>7.0<br>13.5<br>9.0<br>7.0<br>7.0<br>13.5<br>9.0<br>7.0<br>13.5<br>9.0<br>7.0<br>13.5<br>9.0<br>7.0<br>7.0<br>13.5<br>9.0<br>7.0<br>7.0<br>13.5<br>9.0<br>7.0<br>7.0<br>13.5<br>9.0<br>7.0<br>7.0<br>13.5<br>9.0<br>7.0<br>7.0<br>7.0<br>13.5<br>9.0<br>7.0<br>7.0<br>7.0<br>7.0<br>13.5<br>9.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0 | 9.0 (cm)<br>8.7<br>6.5<br>10.5<br>11.0<br>3.5<br>5.0<br>5.8<br>8.5<br>7.0<br>6.0<br>5.8<br>8.5<br>7.6<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0 | 4.0 (cm)<br>3.0<br>4.0<br>2.0<br>2.4<br>4.32<br>5.50<br>2.4<br>4.55<br>5.50<br>2.080<br>5.500<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.02<br>2.0 | .64617454263223385702003328000800201283920984<br>.646174542632233857020033280005556582002012839920984 | 444188602681366304306029013340402570071781312 |

.

#### Table 4

## Sample T2-C

| Long<br>Diameter                         | (a) | Intermedia<br>Diameter (               | te S.<br>b) Dia | hort<br>meter                   | (c) | b/a                                    | c/b                                    |
|------------------------------------------|-----|----------------------------------------|-----------------|---------------------------------|-----|----------------------------------------|----------------------------------------|
| 7.6<br>5.0<br>11.0<br>9.0<br>5.5<br>10.0 |     | 6.0<br>5.0<br>7.0<br>7.1<br>4.0<br>6.0 | 0               | 4.6<br>5.5<br>3.0<br>2.6<br>4.5 |     | •85<br>1•0<br>•64<br>•77<br>•50<br>•60 | •76<br>•90<br>•78<br>•42<br>•65<br>•70 |

.



## Table 4

## Sample T2-D

| Long<br>Diameter | (a) | Intermediate<br>Diameter (b) | Short<br>Diameter (c) | b/a  | c/b |
|------------------|-----|------------------------------|-----------------------|------|-----|
| 7.0              |     | 3.8                          | 3.0                   | • 54 | •78 |
| 7.0              |     | 4.8                          | 2.8                   | •68  | •58 |
| 6.1              |     | 4.7                          | 3.9                   | •93  | •68 |
| 7.9              |     | 5.9                          | 3.6                   | •72  | •63 |
| 12.2             |     | 7.5                          | 5.9                   | •60  | •78 |
| 6.6              |     | 4.9                          | 2.6                   | •74  | •53 |

## Sample T3-A

| Long<br>Diameter (a)                                                                                                                                                                                                                                                                                     | Intermediate<br>Diameter (b)                                                                                                                                                                                              | Short<br>Diameter (c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | b/a                                                                                                                                                                                                                                | c/b                                                                                     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| 8.0 (cm)<br>9.0<br>1.05<br>12.0<br>10.0<br>11.5<br>7.2<br>7.6<br>13.5<br>18.3<br>9.0<br>15.0<br>21.0<br>9.0<br>15.0<br>21.0<br>9.0<br>15.0<br>21.0<br>9.0<br>15.0<br>6.1<br>6.1<br>6.2<br>7.6<br>8.8<br>6.3<br>6.8<br>6.8<br>6.8<br>6.8<br>6.8<br>6.8<br>6.0<br>7.0<br>17.8<br>6.0<br>6.6<br>10.6<br>7.5 | 5.0 (cm)<br>7.0<br>10.0<br>10.0<br>5.5<br>7.8<br>7.0<br>6.1<br>5.5<br>5.7<br>6.2<br>10.0<br>11.7<br>6.0<br>5.7<br>14.5<br>5.0<br>5.3<br>5.5<br>5.4<br>5.2<br>3.8<br>4.5<br>4.4<br>5.5<br>14.0<br>4.6<br>4.1<br>7.8<br>5.2 | 1.4 (cm)<br>3.8<br>3.6<br>3.5<br>1.6<br>2.5<br>4.5<br>2.8<br>2.8<br>2.0<br>2.7<br>4.4<br>3.2<br>3.1<br>2.9<br>9.8<br>2.6<br>3.8<br>2.1<br>3.1<br>2.0<br>1.5<br>2.5<br>3.1<br>3.0<br>11.5<br>2.5<br>3.1<br>3.0<br>11.5<br>2.5<br>3.1<br>3.0<br>11.5<br>2.5<br>3.1<br>3.0<br>1.5<br>2.5<br>3.1<br>3.1<br>2.5<br>3.1<br>3.1<br>2.5<br>3.1<br>3.1<br>2.5<br>3.1<br>2.5<br>3.1<br>2.5<br>3.1<br>2.5<br>3.1<br>2.5<br>3.1<br>2.5<br>3.1<br>2.5<br>3.1<br>2.5<br>3.1<br>2.5<br>3.1<br>2.5<br>3.1<br>2.5<br>3.1<br>2.5<br>3.1<br>2.5<br>3.1<br>2.5<br>3.1<br>2.5<br>3.1<br>2.5<br>3.1<br>2.5<br>3.1<br>2.5<br>3.1<br>2.5<br>3.1<br>2.5<br>3.1<br>2.5<br>3.1<br>2.5<br>3.1<br>2.5<br>3.1<br>2.5<br>3.1<br>2.5<br>3.1<br>2.5<br>3.1<br>2.5<br>3.1<br>3.1<br>2.5<br>3.1<br>3.1<br>2.5<br>3.1<br>3.0<br>1.5<br>2.5<br>3.1<br>3.0 | .62<br>.78<br>.95<br>.83<br>.57<br>.67<br>.90<br>.42<br>.369<br>.666<br>.567<br>.48<br>.97<br>.83<br>.5662<br>.799<br>.72<br>.62<br>.799<br>.72<br>.64<br>.57<br>.67<br>.67<br>.67<br>.67<br>.67<br>.67<br>.67<br>.67<br>.67<br>.6 | .2846592481564621822868960422920<br>.236451564621822868960422920                        |
| 6.5<br>13.8<br>5.2<br>6.0<br>7.0<br>10.5<br>7.0<br>5.1<br>11.2<br>7.8<br>13.8<br>9.0<br>6.0<br>9.8                                                                                                                                                                                                       | 5.2<br>9.2<br>4.5<br>5.1<br>5.3<br>9.0<br>4.8<br>3.2<br>7.8<br>4.1<br>10.2<br>7.0<br>5.8<br>4.9                                                                                                                           | 3.8<br>3.5<br>2.4<br>1.5<br>2.1<br>3.1<br>2.0<br>2.0<br>4.0<br>1.9<br>4.6<br>5.0<br>3.8<br>2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .82<br>.67<br>.87<br>.85<br>.75<br>.72<br>.69<br>.63<br>.70<br>.63<br>.74<br>.78<br>.97<br>.50                                                                                                                                     | .72<br>.38<br>.53<br>.31<br>.40<br>.34<br>.42<br>.62<br>.51<br>.45<br>.71<br>.66<br>.43 |

## Sample T3-A

| Long<br>Diameter | (a) | Intermediate<br>Diameter (b) | Short<br>Diameter (c) | b/a  | c/b  |
|------------------|-----|------------------------------|-----------------------|------|------|
| 4.2              |     | 3.8                          | 1.5                   | • 90 | • 39 |
| 8.4              |     | 5.0                          | 4.0                   | • 60 | • 80 |
| 5.5              |     | 4.5                          | 2.2                   | • 82 | • 49 |
| 6.8              |     | 5.5                          | 1.9                   | • 80 | • 36 |
| 6.0              |     | 3.5                          | 1.5                   | • 58 | • 43 |
| 6.9              |     | 6.0                          | 4.8                   | • 86 | • 80 |

•

## Table 4

# Sample T3-B

| Long<br>Diameter (a)                                                                                                                                                                                                                                                                                                                                            | Intermediate<br>Diameter (b)                                                                                                                                                                                                                                                                                   | Short<br>Diameter (c)                                                                                                                                                                                                                                                                            | b/a                                         | c/b                                                                                               |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|---------------------------------------------------------------------------------------------------|
| $ \begin{array}{c} 14.0 \ (cm) \\ 8.0 \\ 14.8 \\ 8.7 \\ 15.5 \\ 14.5 \\ 8.4 \\ 16.8 \\ 17.7 \\ 11.3 \\ 13.4 \\ 45.0 \\ 14.0 \\ 15.5 \\ 10.0 \\ 10.0 \\ 16.5 \\ 9.5 \\ 8.6 \\ 10.4 \\ 7.5 \\ 8.6 \\ 8.8 \\ 9.1 \\ 8.8 \\ 9.5 \\ 14.0 \\ 9.6 \\ 8.0 \\ 6.5 \\ 7.0 \\ 6.0 \\ 13.6 \\ 6.0 \\ 14.2 \\ 8.5 \\ 7.1 \\ 5.5 \\ 8.0 \\ 9.6 \\ 9.5 \\ 9.6 \\ \end{array} $ | 12.0 (cm)<br>6.5<br>10.0<br>7.5<br>7.7<br>10.6<br>6.8<br>12.0<br>8.2<br>8.7<br>6.0<br>10.3<br>12.6<br>9.0<br>7.5<br>6.8<br>11.0<br>5.0<br>6.8<br>7.5<br>5.8<br>6.4<br>7.0<br>3.8<br>7.2<br>5.1<br>9.0<br>7.0<br>4.6<br>4.5<br>3.8<br>4.5<br>8.7<br>4.6<br>7.6<br>9.1<br>3.8<br>4.1<br>4.1<br>6.0<br>5.2<br>8.3 | 5.6 (cm)<br>3.0<br>5.1<br>3.7<br>2.3<br>3.8<br>5.7<br>3.8<br>3.1<br>3.5<br>3.0<br>6.5<br>6.9<br>5.2<br>4.0<br>3.2<br>4.5<br>2.1<br>3.8<br>5.8<br>2.6<br>2.0<br>3.1<br>1.9<br>2.4<br>1.8<br>3.4<br>2.5<br>1.9<br>1.8<br>3.5<br>7.5<br>1.6<br>5.0<br>7.9<br>1.3<br>1.0<br>2.9<br>1.5<br>2.2<br>2.3 | 8818603016642585873627491244270454744574566 | 76799963270024837112675744453333443783683272428<br>4445423833456555444557444533333443783683272428 |
| 8.8<br>6.5                                                                                                                                                                                                                                                                                                                                                      | 7.6<br>5.2                                                                                                                                                                                                                                                                                                     | 3.4<br>1.6                                                                                                                                                                                                                                                                                       | •86<br>•80                                  | .44<br>.31                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                  |                                             |                                                                                                   |

#### Sample T3-B

| Long<br>Diameter | (a) | Intermediate<br>Diameter (b) | Short<br>Diameter (c) | b/a  | c/b  |
|------------------|-----|------------------------------|-----------------------|------|------|
| 11.6             |     | 10.0                         | 5.8                   | . 86 | • 58 |
| 7.1              |     | 4.1                          | 2.8                   | . 58 | • 68 |
| 13.0             |     | 10.8                         | 8.0                   | . 83 | • 74 |
| 8.5              |     | 3.6                          | 1.9                   | . 42 | • 52 |
| 11.0             |     | 9.5                          | 5.0                   | . 86 | • 52 |
| 15.1             |     | 10.0                         | 4.2                   | . 72 | • 54 |

## Table 4

## Sample T3-D

| Long<br>Diameter (a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Intermediate<br>Diameter (b)                                                                                                                                                                                                                                                                                                                           | Short<br>Diameter (c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | b/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | c/b                                           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| 17.1 (cm)<br>16.5<br>13.5<br>22.2<br>17.6<br>23.6<br>33.6<br>25.5<br>23.0<br>25.0<br>22.0<br>21.0<br>18.8<br>13.2<br>18.0<br>18.8<br>13.2<br>18.0<br>18.8<br>13.2<br>18.0<br>18.8<br>13.2<br>18.0<br>18.8<br>12.4<br>40.0<br>43.0<br>28.0<br>37.5<br>29.0<br>17.0<br>17.8<br>28.0<br>23.0<br>22.0<br>20.6<br>24.0<br>19.0<br>23.0<br>19.5<br>31.5<br>17.5<br>22.5<br>17.5<br>22.5<br>17.5<br>22.5<br>17.5<br>22.5<br>17.5<br>22.5<br>17.5<br>22.5<br>17.5<br>22.5<br>17.5<br>22.5<br>17.5<br>22.5<br>17.5<br>22.5<br>17.5<br>22.5<br>17.5<br>22.5<br>17.5<br>22.5<br>17.5<br>22.5<br>17.5<br>22.5<br>17.5<br>22.5<br>17.5<br>22.5<br>17.5<br>22.5<br>17.5<br>22.5<br>17.5<br>22.5<br>17.5<br>22.5<br>17.5<br>22.5<br>17.5<br>22.5<br>17.5<br>22.5<br>17.5<br>22.5<br>17.5<br>22.5<br>17.5<br>22.5<br>17.5<br>22.5<br>17.5<br>22.5<br>13.6<br>13.8 | 15.8 (cm)<br>12.0<br>10.5<br>12.8<br>10.5<br>14.0<br>17.0<br>12.5<br>12.0<br>14.5<br>13.7<br>13.0<br>11.0<br>16.0<br>17.8<br>12.2<br>20.0<br>31.0<br>24.0<br>22.0<br>22.0<br>12.8<br>11.5<br>16.5<br>19.0<br>10.3<br>16.5<br>18.0<br>19.0<br>19.6<br>14.5<br>15.5<br>15.0<br>11.6<br>9.8<br>9.5<br>13.0<br>9.8<br>13.2<br>14.2<br>10.4<br>13.0<br>10.7 | 7.8 (cm)<br>6.0<br>6.9<br>9.6<br>8.8<br>7.8<br>9.0<br>7.0<br>11.0<br>7.8<br>6.1<br>7.5<br>4.6<br>6.6<br>7.0<br>14.0<br>7.4<br>9.0<br>22.0<br>13.0<br>7.0<br>10.0<br>4.1<br>4.6<br>11.5<br>7.0<br>6.8<br>12.5<br>15.5<br>7.0<br>8.0<br>8.3<br>6.0<br>7.6<br>5.8<br>3.8<br>7.0<br>7.6<br>5.8<br>3.8<br>7.0<br>7.6<br>5.8<br>3.8<br>7.0<br>7.0<br>7.6<br>5.8<br>3.8<br>7.0<br>7.0<br>7.6<br>5.8<br>3.8<br>7.0<br>7.0<br>7.6<br>5.8<br>3.8<br>7.0<br>7.6<br>5.8<br>3.8<br>7.0<br>7.0<br>7.6<br>5.8<br>3.8<br>7.0<br>7.6<br>5.8<br>3.8<br>7.0<br>7.6<br>5.9<br>5.2<br>9.1<br>2.5<br>8.0 | .90<br>.77<br>.44<br>.55<br>.66<br>.62<br>.93<br>.78<br>.76<br>.58<br>.77<br>.77<br>.87<br>.84<br>.57<br>.84<br>.55<br>.84<br>.57<br>.84<br>.55<br>.58<br>.84<br>.57<br>.85<br>.57<br>.85<br>.57<br>.58<br>.57<br>.58<br>.57<br>.58<br>.57<br>.58<br>.57<br>.58<br>.57<br>.58<br>.57<br>.58<br>.57<br>.58<br>.57<br>.58<br>.57<br>.58<br>.57<br>.58<br>.57<br>.58<br>.57<br>.58<br>.57<br>.58<br>.57<br>.58<br>.57<br>.58<br>.57<br>.58<br>.57<br>.58<br>.57<br>.58<br>.57<br>.58<br>.57<br>.58<br>.57<br>.58<br>.57<br>.58<br>.57<br>.58<br>.57<br>.58<br>.57<br>.58<br>.57<br>.58<br>.57<br>.58<br>.57<br>.58<br>.57<br>.58<br>.57<br>.58<br>.57<br>.58<br>.57<br>.58<br>.57<br>.58<br>.57<br>.58<br>.57<br>.57<br>.58<br>.57<br>.57<br>.58<br>.57<br>.57<br>.58<br>.57<br>.57<br>.58<br>.57<br>.57<br>.58<br>.57<br>.57<br>.57<br>.58<br>.57<br>.57<br>.58<br>.57<br>.57<br>.58<br>.57<br>.57<br>.58<br>.57<br>.57<br>.57<br>.58<br>.57<br>.58<br>.57<br>.57<br>.58<br>.57<br>.57<br>.58<br>.57<br>.57<br>.58<br>.57<br>.58<br>.57<br>.58<br>.57<br>.58<br>.57<br>.58<br>.57<br>.58<br>.57<br>.57<br>.58<br>.57<br>.50<br>.55<br>.58<br>.57<br>.58<br>.57<br>.58<br>.57<br>.58<br>.57<br>.58<br>.57<br>.58<br>.57<br>.58<br>.57<br>.58<br>.57<br>.58<br>.57<br>.58<br>.57<br>.58<br>.57<br>.58<br>.57<br>.58<br>.57<br>.58<br>.57<br>.58<br>.57<br>.58<br>.57<br>.58<br>.57<br>.58<br>.57<br>.58<br>.58<br>.57<br>.57<br>.58<br>.57<br>.58<br>.57<br>.57<br>.58<br>.57<br>.57<br>.58<br>.57<br>.57<br>.58<br>.57<br>.57<br>.57<br>.58<br>.57<br>.57<br>.57<br>.57<br>.57<br>.57<br>.57<br>.57<br>.57<br>.57 | 456584441852850491514252007686607195944656595 |

| 1   | 3 | 1 |
|-----|---|---|
| - 4 | 2 | - |

## Sample T3-D

| Long<br>Diameter | (a) | Intermediate<br>Diameter (b) | Short<br>Diameter (c) | b/a | c/b |
|------------------|-----|------------------------------|-----------------------|-----|-----|
| 10.5             |     | 9.4                          | 6.0                   | •87 | .64 |
| 14.8             |     | 10.5                         | 6.7                   | •72 | .63 |
| 20.6             |     | 10.0                         | 7.6                   | •49 | .76 |
| 18.2             |     | 12.5                         | 4.6                   | •69 | .36 |
| 13.1             |     | 10.0                         | 4.5                   | •76 | .45 |
| 15.8             |     | 7.3                          | 3.6                   | •46 | .49 |

## Table 4

## Sample T3-C

| Long<br>Diameter (a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Intermediate<br>Diameter (b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Short<br>Diameter (c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | b/a                                            | c/b                                           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-----------------------------------------------|
| 19.0 (cm)<br>15.0<br>20.0<br>14.8<br>17.0<br>15.0<br>20.5<br>17.5<br>17.7<br>34.5<br>13.8<br>21.0<br>14.8<br>14.6<br>21.5<br>13.7<br>13.3<br>15.0<br>25.0<br>19.0<br>15.0<br>15.0<br>15.0<br>25.0<br>19.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0 | 14.7 (cm)<br>11.0<br>13.5<br>12.0<br>14.5<br>12.2<br>12.5<br>12.5<br>9.7<br>24.7<br>12.2<br>13.3<br>9.0<br>10.2<br>9.5<br>1.60<br>10.5<br>12.0<br>14.7<br>12.0<br>14.7<br>12.0<br>14.7<br>12.0<br>14.7<br>12.0<br>14.7<br>12.0<br>14.7<br>12.0<br>14.7<br>12.0<br>14.7<br>12.0<br>14.7<br>12.0<br>14.7<br>12.0<br>14.7<br>12.0<br>14.7<br>12.0<br>14.7<br>12.0<br>14.7<br>12.0<br>14.7<br>12.0<br>14.7<br>12.0<br>14.7<br>12.0<br>14.7<br>12.0<br>14.7<br>12.0<br>14.7<br>12.0<br>14.7<br>12.0<br>14.7<br>12.0<br>14.7<br>12.0<br>14.7<br>12.0<br>14.7<br>12.0<br>11.6<br>12.5<br>12.0<br>14.0<br>14.0<br>15.1<br>2.0<br>14.0<br>14.0<br>15.1<br>2.0<br>14.0<br>14.0<br>15.5<br>12.0<br>14.0<br>15.5<br>11.0<br>9.2<br>8.4<br>7.8<br>11.0<br>9.0<br>12.0<br>13.5<br>11.0<br>9.0<br>13.5<br>11.0<br>9.0<br>12.0<br>13.5<br>11.0<br>9.0<br>12.0<br>13.5<br>11.0<br>9.0<br>12.0<br>13.5<br>9.5<br>10.5<br>9.5<br>10.5<br>9.5<br>10.5<br>9.6<br>10.5<br>9.6<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>10.5<br>9.6<br>10.5<br>10.5<br>9.5<br>10.5<br>9.6 | 3.0 (cm)<br>5.0<br>11.0<br>7.6<br>7.6<br>6.5<br>12.0<br>8.4<br>8.0<br>12.5<br>7.6<br>8.325<br>6.5<br>12.0<br>9.0<br>4.5<br>11.0<br>8.7<br>7.5<br>6.3<br>8.2<br>4.4<br>8.9<br>8.0<br>12.5<br>5.5<br>6.3<br>8.2<br>4.4<br>8.9<br>8.0<br>12.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>8.0<br>7.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>8.0<br>7.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5 | •773815111528310543598761302974035626933780098 | 248655967212284363273768137419276704201512662 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                |                                               |

## Table 4

## Sample T3-C

| Long<br>Diameter | (a) | Intermediate<br>Diameter (b) | Short<br>Diameter (c | ) b/a | c/b  |
|------------------|-----|------------------------------|----------------------|-------|------|
| 15.5             |     | 11.6                         | 6.0                  | • 76  | • 51 |
| 15.0             |     | 5.5                          | 4.7                  | • 43  | • 72 |
| 14.8             |     | 10.5                         | 4.6                  | • 71  | • 44 |
| 9.6              |     | ?.5                          | 5.5                  | • 78  | • 73 |
| 10.3             |     | 10.0                         | 4.0                  | • 97  | • 40 |
| 15.0             |     | 10.5                         | 4.0                  | • 70  | • 38 |

#### Wind Velocity Data August 1970 through July 1972

#### August 1970

| Direction (degrees) | Occurrence (%) | Average Speed |
|---------------------|----------------|---------------|
| 1-45                | 4.7            | 10.9          |
| 46-90               | 4.8            | 6.8           |
| 91-135              | 3.5            | 4.7           |
| 136-180             | 14.8           | 9.1           |
| 181-225             | 18.0           | 8.6           |
| 226-270             | 14.8           | 6.4           |
| 271-315             | 15.7           | 5.9           |
| 316-360             | 11.0           | 6.4           |

#### September 1970

| Direction (degrees) | Occurrence (%) | Average Speed |
|---------------------|----------------|---------------|
| · .                 |                | (M.P.H.)      |
| 1-45                | · 8.3          | 7.4           |
| 46-90               | 4.4            | 8.0           |
| 136-180             | 1.5            | 3.8           |
| 181-225             | 20.7           | 8.9           |
| 226-270             | 16.1           | 7.3           |
| 271-315             | 18.5           | 6 4           |
| 316-360             | 14.3           | 7.1           |

#### October 1970

| Direction (degrees) | Occurrence (%) | Average Speed |
|---------------------|----------------|---------------|
| 1-45                | 13.0           |               |
| 46-90               | 8.5            | 9.1           |
| 91-135              | 4.0            | 7.8           |
| 136-180             | 11.6           | 10.1          |
| 181-225             | 14.2           | 7.5           |
| 226-270             | 11.6           | 5.5           |
| 271-315             | 11.6           | 6.1           |
| 316-360             | 14.7           | 8.3           |

## November 1970

| Direction (degrees) | Occurrence (%) | Average Speed    |
|---------------------|----------------|------------------|
| 1-45                | 12.6           | (M.P.H.)<br>10.7 |
| 46-90               | 17.5           | 7.6              |
| 91 <b>-</b> 135     | 6.1            | 6.9              |
| 136-180             | 8.2            | 7.3              |
| 181-225             | 6.3            | 11.4             |
| 226-270             | 8.6            | 5.9              |
| 271-315             | 15.6           | 6.4              |
| 316-360             | 1ē.7           | 7.5              |

## December 1970

| Direction (degrees) | Occurrence (%) | Average Speed |
|---------------------|----------------|---------------|
| 1-45                | 14.9           | 9.5           |
| 46-90               | 6.0            | 11.7          |
| 91-135              | 1.2            | 10.4          |
| 136-180             | 0.9            | 7.6           |
| 181-225             | 3.2            | 11.6          |
| 226-270             | 16.4           | 7.7           |
| 271-315             | 25.0           | 10.8          |
| <b>316-</b> 360     | 25.5           | 10.8          |

## January 1971

| Direction (degrees) | Occurrence (%) | Average Speed<br>(M.P.H.) |
|---------------------|----------------|---------------------------|
| 1-45                | 5.9            | 9.3                       |
| 46 <b>-</b> 90      | 1.9            | 6.7                       |
| 91-135              | 1.2            | 7.1                       |
| 136-180             | 3.2            | 7.5                       |
| 181-225             | 6.0            | 8.5                       |
| 226-270             | 26.7           | 9 <b>.</b> 0              |
| 271-315             | 23.2           | 9.6                       |
| 316-360             | 20.8           | 8.7                       |

Table 5

#### February 1971

| Direction (degrees) | Occurrence (%) | Average Speed |
|---------------------|----------------|---------------|
| 1 115               | 10.0           | (11.5.1.)     |
|                     | 10.0           | 9.8           |
| 46-90               | 5.1            | 9.2           |
| 91-135              | 5.7            | 7.6           |
| 136-180             | 8.1            | 9.7           |
| 181-225             | 13.1           | 9.2           |
| 226-270             | 19.2           | 9.3           |
| 271-315             | 22.9           | 8.7           |
| 316-360             | 9.7            | 7.5           |

## March 1971

| Direction (degrees) | Occurrence (%) | Average Speed |
|---------------------|----------------|---------------|
| 1-45                | 7.0            | 14.1          |
| 46-90               | 5.6            | 10.1          |
| 91 <b>-1</b> 35     | 3.2            | 9.6           |
| 136-180             | 6.7            | 7.4           |
| 181-225             | 13.7           | 10.3          |
| 226-270             | 12.9           | 10.9          |
| 271-315             | 21.9           | 10.9          |
| <b>316-</b> 360     | 15.2           | 9.6           |

## April 1971

| Direction (degrees) | Occurrence (%) | Average Speed<br>(M.P.H.) |
|---------------------|----------------|---------------------------|
| 1-45                | 11.2           | 11.0                      |
| 46-90               | 8.9            | 10.1                      |
| 91-135              | 1.9            | 6.0                       |
| 136-180             | 6.9            | 9.6                       |
| 181-225             | 14.4           | 9.0                       |
| 226-270             | 8.2            | 7.7                       |
| 271-315             | 17.9           | 10.7                      |
| 316-360             | 20.0           | 10.1                      |

#### -
## May 1971

| Direction (degrees) | Occurrence (%) | Average Speed |
|---------------------|----------------|---------------|
|                     |                | (M.P.H.)      |
| 1-45                | 15.4           | 10.6          |
| 46-90               | 5.8            | 7.0           |
| <b>91–1</b> 35      | 2.1            | 7.0           |
| 136-180             | 11.5           | 9.1           |
| 181-225             | 20.3           | 9.4           |
| 226-270             | 18.6           | 9.8           |
| 271-315             | 6.3            | 8.9           |
| 316-350             | 13.2           | 8.6           |

# June 1971

| Direction (degrees) | Occurrence (%) | Average Speed |
|---------------------|----------------|---------------|
| 1-45                | 6.3            | 7.2           |
| 46-90               | 13.9           | 8.1           |
| 91-135              | 2.1            | 4.5           |
| 136-180             | 11.0           | 8.5           |
| 181-225             | 17.2           | 9.1           |
| 226-270             | 24.9           | 8.0           |
| 271-315             | 7.1            | 5.7           |
| 316-360             | 7.6            | 6.1           |

# July 1971

| Direction (degrees) | Occurrence (%) | Average Speed |
|---------------------|----------------|---------------|
| 1-45                | 3.6            | 8.7           |
| 46-90               | 2.5            | <b>7.</b> 4   |
| 91-135              | 1.3            | 5.0           |
| 136-180             | 11.2           | 8 <b>.</b> 9  |
| 181-225             | 18.8           | 9.0           |
| 226-270             | 20.7           | 9.1           |
| 271-315             | 8.2            | 6.3           |
| <b>316-</b> 360     | 6.9            | 7.0           |

137

## August 1971

| Direction (degrees) | Occurrence (%) | Average Speed |
|---------------------|----------------|---------------|
| 1-45                | 6.1            |               |
| 46-90               | 5.2            | 7.3           |
| 91-135              | 1.6            | 5.0           |
| 136-180             | 7.0            | 8.9           |
| 181-225             | 14.5           | 9.0           |
| 226-270             | 24.9           | 9.1           |
| 271-315             | 15.0           | 6.2           |
| <b>316-3</b> 60     | 9•5            | . 7.0         |

## September 1971

| Direction (degrees) | Occurrence (%) | Average Speed   |
|---------------------|----------------|-----------------|
| 1-45                | 12.1           | (M.F.H.)<br>7.4 |
| 46-90               | 7.2            | 6.3             |
| 91-135              | 5.7            | 5.7             |
| 136-180             | 13.9           | 6.4             |
| 181-225             | 15.1           | 8.1             |
| 226-270             | 21.7           | 6.9             |
| 271-315             | 14.1           | 4.4             |
| 316-360             | 9•7            | 5.5             |

## October 1971

| Direction (degrees) | Occurrence (%) | Average Speed |
|---------------------|----------------|---------------|
| 1-45                | 11.9           | 9.1           |
| 46-90<br>91-135     | 13.6           | 8.4<br>6.0    |
| 136-180             | 12.5<br>13.6   | 8.1           |
| 226-270             | 18.7           | 5.7           |
| 271-315<br>316-360  | 8.6<br>4.6     | 5.7<br>5.0    |

138

## November 1971

| Direction (degrees) | Occurrence (%) | Average Speed |
|---------------------|----------------|---------------|
|                     |                | (M.P.H.)      |
| 1-45                | 11.2           | 10.2          |
| 46-90               | 7.1            | 8.5           |
| 91-135              | 6.3            | 7.0           |
| 136-180             | 9.0            | 5.2           |
| 181-225             | 12.3           | 11.1          |
| 226-270             | 11.9           | 6.3           |
| 271-315             | 14.8           | 7.0           |
| 316-360             | 16.2           | 7.8           |
|                     |                |               |

## December 1971

| Direction (degrees) | Occurrence (%) | Average Speed |
|---------------------|----------------|---------------|
| 1-45                | 8.7            | 9.4           |
| 46-90               | 5.8            | 6.2           |
| 91-135              | 2.7            | 6.9           |
| 136-180             | 3.8            | 6.3           |
| 181-225             | 7.5            | 11.5          |
| 226-270             | 18.1           | 8.1           |
| 271-315             | 16.3           | 10.3          |
| 316-360             | 25.1           | 9.1           |

## January 1972

| Direction (degrees) | Occurrence (%) | Average Speed |
|---------------------|----------------|---------------|
|                     |                | (M.P.H.)      |
| 1-45                | 7.1            | 6.4           |
| 46-90               | 1.6            | 7.0           |
| 91-135              | 0.8            | 5.3           |
| 136-180             | 3.6            | 10.3          |
| 181-225             | 8.4            | 9.9           |
| 226-270             | 21.8           | 8.0           |
| 271-315             | 18.8           | 8.5           |
| 316-360             | 20.7           | 8.8           |

139

#### February 1972

| Occurrence (%) | Average Speed                                                               |
|----------------|-----------------------------------------------------------------------------|
|                | (M.P.H.)                                                                    |
| 11.9           | 8.0                                                                         |
| 10.8           | 13.5                                                                        |
| 2.2            | 15.5                                                                        |
| 3.3            | 9.7                                                                         |
| 7.6            | 9.6                                                                         |
| 16.4           | 9.4                                                                         |
| 19.7           | 10.6                                                                        |
| 18.5           | 10.3                                                                        |
|                | Occurrence (%)<br>11.9<br>10.8<br>2.2<br>3.3<br>7.6<br>16.4<br>19.7<br>18.5 |

#### March 1972

Direction (degrees)Occurrence (%)Average Speed<br/>(M.F.H.)1-4513.610.846-9010.98.491-1352.110.7136-1809.110.3181-22515.112.7226-2709.89.6271-31514.711.0316-36020.29.7

#### April 1972

| Direction (degrees) | Occurrence (%) | Average Speed   |
|---------------------|----------------|-----------------|
| 1-45                | 13.3           | (M.P.H.)<br>8.9 |
| 46-90               | 5.3            | 5.8             |
| 91-135              | 3.8            | ų.ų             |
| 136-180             | 10.3           | 7.3             |
| 181-225             | 9.6            | 8.3             |
| 226-270             | 11.7           | 6.5             |
| 271-315             | 15.9           | 7.6             |
| 316-360             | 18.0           | 8.0             |

# 141

# Table 5

# May 1972

| Direction (degrees) | Occurrence (%) | Average Speed    |
|---------------------|----------------|------------------|
| 1-45                | 16.9           | (M.P.H.)<br>11.2 |
| 46-90               | 9.0            | 10.4             |
| 91-135              | 2.2            | 3.7              |
| 136-180             | 17.4           | 8.6              |
| 181-225             | 21.4           | 9.1              |
| 226-270             | 9.5            | 9.1              |
| 271-315             | 5.1            | 5.4              |
| 316-360             | 5.6            | 7.9              |

# June 1972

| Direction (degrees) | Occurrence (%) | Average Speed |
|---------------------|----------------|---------------|
|                     |                | (M.P.H.)      |
| 1-45                | 5.3            | 7.4           |
| 46-90               | 7.1            | .7.9          |
| 91-135              | 4.3            | 11.2          |
| 136-180             | 20.8           | 9.9           |
| 181-225             | 30.4           | 10.3          |
| 220-270             | 17.4           | 8.2           |
| 271-315             | 4.7            | 6.7           |
| 006-016             | 5.0            | 11.4          |