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ABSTRACT

Correldtions between aquifar resistivity and>aquifer
permeability are examined as an improved method for
freshwater aquifer exploration. Layered aquifer models
were developed where ©permeabilities for each layer were
obtained from a vrandom distribution between reasonable
limits. The permeabilities of the 1layers were then
converted to resistivity layers by using a previously
d2veloped semi-empirical relationship between permeability
and resistivity at the small sample level. Hence, the
hydraulic model with layared permeabilities was converted
to an. electrical mod=2l with layered resistivities.
Rasistivities and permeabilities for <the entire aquifer
model were rhen calculated with analytical equations for
linear flow parallel and perpendicular to layering. Trends
were plotted from three hundred models for the four
possible combinations of +these properties with respect to
flow paths. Results showed that the best predictor of
horizontal aquifer permeability in a horizontally layered
aquifer, is the vertical or transverse aquifer resistivity.
Horizontal or longitudinal aquifer resistivity can be used
effactively to pradict horizontal aquifer permeability only
if the electric or hydraulic anisotropy is known.

To compute aquifer properties for the spacially mixed

case, where permeabilitiss were distributed as monomcdal
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probability density functiors, a finit2 difference computer
program was developed. Trends of aquifer resistivity
versus aquifer permeability were developed for the uniform,
exponential and lognormal permeability distributions. Flow
g2ometry was approximately linear (quasi-linear).

To relate the results of lirear flow aquifer property
trends wmore to the field situation, where pump tests
determine aquifer permeabilities based on radial flow, and
the current from an el2ctric sounding mbves from point
socurce to point sink, radial and point ¢o point flow
g2ometries were used to compute aquifer properties where
the aquifer was considered to be isolated from surrounding
strata. Results showed that flow geometry does not make a
sigrificant _difference in computing aquifer proparties in
spacially mixed 1isolated aquifers, yet may be very
important for the layered case.

For non-isolated aquiferé, vhere current is refracted
by surrounding strata, methods of obtaining linear flow
aquifer resistivities by interpreting sounding curves for
various formation resistivity stratifications are
discussed. Results indica+te that good correlations between
aquifer resistivity and aquifer pefmeability are possible
vhen formation stratifications are such that the aquifer
resistivity and its directional sense can be found through

sounding curve interpretations.
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INTRODUCTION

As groundwater 1is increasingly used as a source of
witer supply, *the nesd to plan and manage aquiferbsystems
becomes more important to insure that these resources will
remain pollution free and hydraulically sound. Accurate
estimates of aquifer .properties are essential for
engineers, gygeologists and hydrologists to predict water
levels due to pumpayge, drought, change in stream stage or
infiltration (Walton, 1970).

Over the past decade, geophysical methods have played
A more significant role in aquifer exploration programs
{(Urish, 1978). Surface electrical resistivity 1is an
attractivs exploration technique because: (1) of the
relative 1low cost; (2) it relates to the large aquifer
volumes that control well yields rather than to the local
conditions sampled with test borings; and (3) because of
the analogous physical relationship between electrical
conductivity and hydraulic conductivity. An electric
current flows through saturated intergranular spaces in
porous media in essentially the same channels as hydraulic
flow, with both depending on porosity and tortuoéity {Bear,
1972). Fi=2ld investigations, where hydraulic properties
ware determined by pump tests, and electrical properties

were obtained <+hrough surficial electrical resistivity



methods, have shown a large spread of values with
differences not only in the regression slope, but in sign
as well (Ungemach, 1969; Kelly, 1977; Heigold et al.,
1979) .

These differences nead to be resolved in order to
determine the effectiveness of electrical techniques. As an
initial step toward solving this problem, this study will
attempt to relate average "aquifer permeability" to average
"aquifer resistivity'" wusing idealized models with the
assumption that the soil has an exact relationship between
permeability and resistivity at the small sample scale. The
term permeability as wused in this study includes tﬁe
effects.of th2 grain matrix and the pore fluid.

These avaerayge "aquifer" quantities are dependent upon
the transport properties of the region being studied, as
well as the flow geometry (Warren and frice, 1961) .
Primarily th2 effacts of +the integration of transport
properties will be examined. Flow geometries will be kept
close to linear (quasi-linear) by driving flow through a
confined aquifer section, where constant potentials prevail
at the vertical boundaries. Cases will be examined where
the aquifer is composed of definite layers (each layer with
a different deterministic value of permeability) and where
permeabilitiss are spacially mixed, following a given
probability distribution. To relate results ¢to field
methods, where flow for the hydraulic case is usually

radial ard current in the electrical case moves from point



to point, the effect of flow geom2try on aquifer properties

will be shown.
MATERIAL RELATIONSHIP DEVELOPMENT

An aquifer®'s hydraulic properties may be examined at
various levels, but only two are of interest in this study.
The first is called the material 1level, where a small
sample of soil is tested and its properties are assumed to
be constant in space and direction. Sample sizes are
ganerally small, from 50 cm’for fine sands to uoo«:f for
gravels. The second level refers to the aquifer scale and
is called macroscopic. This broad scopasd macroscopic level
is made up of many material leﬁel parts.

The term *“aquifer permeability" refers to an‘average
permeability at the macroscopic level. Computation of this
term 1is based on hydraulic potential theory. Likewise,
"aquifer vrosistivity" will refer to a macroscopic average
apparent resistivityvbased on electrical potential theory.
Exact equations and methods used to obtain these éverages
under various spacial confiqurations of transport
properties will be presented;

Researchers have shown with empirical and theoretical
studies, that good relationships may exist at the material
level between hydraulic and electric transport properties,
with the best correlation suitable for determining

permeability of a fresh water saturated unconsolidated sand









on porosities obtained by wet packing tests for both the
loosest ( ¢Mm) and the densest (<pm~) states. Indepepdent
variables included the median grain size (Dgc)' uniformity
coefficient (U, = D, /Dy )r and pore water resistivity
(shown for on2 group of points with,Dk)=.5 and q}=30). The
porosity states ( dwﬁ-and dhm ) are actually determined by
regressior equations where average grain size (Dﬂ)) and
uniformity coafficient were independent variables.
Inherernt in *“he plot of Fig. 1 is an assumed inverse trend
between porosity and uniformity coefficient. The "probable
average" curve (Fig. 1) is believed to approximate the
insitu <case, whers it is assumed fine grained material is
more unriform and tends to pack at higher pofosities than
coarse Jgrained material. This +¢rend implies an in-situ
inverse relationship between porosity and permeability,
which many researchers have demonstrated on a sample to
sanple basis (Graton ané Fraser, 1935; Kelly, 1980). A
simplified version of the probable average curve, shown-in
Figs. 1 and 2, was used in this study. |

This study will further simplify the material F vs. k
relationship by assuming pore water resistivity is constant
within an aquifer. The material level relationship of Figq.
2 was converted +to a Ca vs. k relationship by using a
value of 100 o -m. This material level Pa vs. k line is
shown plotted in Fig. 2a, which represents the equation

- M3
k = 5.13x10°° ?«H (3)






where k permeability (cm/sec)

fu = apparent resistivity (q-m)

Fquation 3 is the basic material relationship used in this
study. It should be noted that this equation is for
material that is isctropic and of constant permeability and
resistivity throughout. The basis of this relationship is
not considered since tha aim of the study is to examine
macroscopic transport relationships when the material

relation of ea to k is exactly known. In the re=al situation
this relation 1is probably pot exactly known; however, it
was. felt +he wmaterial 1level uncertainty should not be

included in this study.
Layered Model Development

Estimates of permeabilities from pump tests and
apparent resistivities from surficial electrical
measurements represent average quantities. Field
relationships between aquifer hydraulic and electric
properties differ not only from laboratory relationships
but from one another as well., Kelly (1977) found a direct
relationship between Fa and k, while Heigqgold and others
(1979) foﬁnd an inverse relationship. 1In France, Ungemach,
Mostaghimi and Duprat (1969} showed a direct relationship

between aquifer transverse resistance and transmissivity.

Léboratory tests conductad by Kelly (1976) generally
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t+/d4.

2) Compute *the associated resistivity for each

layer based on equation 3.

3) Compute the aquifer permeability and aquifer
resis+tivity based on equations 4 and 5, for the
case of horizontal bflow with horizontal
layering (khh and ehh y or vertical flow with
vertical layering (khh and vi ) e Compute
aquifer properties vwith equations 6 and 7, for
the case of horizontal flow with vertical

layering (k and th )'or vertical flow with

hv
horizontal layering (kvh and th).

Limiting permeability values in the rangé.of 10 to 600 ftrd
are reasonable for aquifer material in southern Rhode
Island (Gonthier et al., 1974). The random number generator
used in step one was the GGUBFS routine in Int2rnational

Mathematical and Sta%istical Libraries (IMSL, Inc; 1979). .,
RESULTS: LAYERED MODEL

Correlations were tirst attempted where the hydraulic
and electrical cases both have the same flow path. The
procedure outlined 1in the previous section was repeated

three hundred times.
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Data for the case of flow parallel to the layering is-

shown in figure 3, where each point represents one of 300

simulated horizontally layered models ( Q‘hversus klh) or
: N 1 .

one of 300 simulated vertically layered models ((Wv versus
kvv)' Th2 lire for the material level relationship, which
represents an isotropic ayguifer of constant permeability
and apparent resistivity, is also shown in Fig. 3 . FWhen
the values 1in of Fig. 3 are separated according to their
hydraulic anisotropy, the points tend ¢to form lines
parallel to the material relationship or isotropic line.

Hydraulic anisotropy |is defined as the aquifer
permeability for horizontal flow divided by the aquifer
permeability for vertical flow. Thus, the value is equal
to km,/kvh for the horizontally layered case and is always
greater than one. Likewise, electrical anisotropy will be
defined as the aquifer resistivity for vertical flow
divided by the aquifer resistivity for horizontal flow.
For the horizontally 1layered <case the value is eﬂilehh'
vhich 1is also always greater than one. It should be noted
that this is no* the conventional definition of electrical
anisotropy as defined by Keller and Frischknecht, which
would be [0y, 7, -

The results in Fig. 3 representing horizontal
layering ( C bk VS. khh’ were sorted according to hydraulic
anisotropy ranges of 1.0 to 1.1 (Fig. 4), 2.0 to 2.5 (Fig.
5) and 3.5 to 7.0 (Fig. 6).

Results for the case of flow moving perpendicular to
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the layering are shown in Fig. 7, vhere each point
represents one of 300 simulated vertical layered models

( ﬁhvversus k, ) or horizontally layered models ( evhversus

hy
kvh)' The points in Fig. 7 representing vertical layering

(?hv versus k were then sorted according to hydraulic

hv)
anisotropy ranges of 1.0 to .91 (Fig. 8), .5 to .4 (Fig.
9), and .29 to .14 (Fig. 10)a.

Correlations wWer2 then attempted where the hydraulic
and electrical cases had opposite flow paths. This
correlation may be expected to be good, since an
examination of equations 4 and 7 reveals both quantities
are computed as the weighted (layer thickness) arithmetic
mean. Likewise, squations 5 and 6 are similar in that both
are weighted harmonic mean values.

Conditions where the electrical current flows
perpendicular to the layering and the hydraulic flow moves
parallel will be examined first. 1If the horizontal layered
case 1is considered, then Fig. 11 is a plot of th versus
khh for the 300 aquifer models. Fig. 11 also represents
th versus kvv for the vertically layered cas=2. The points
in Pig. 11 representing the horizontally layered case ( ?Vh
versus khh } were then sorted according to hydraulic
anisotropy ranges of 1.0 to 1.1 (Fig. 12), 2.0 to 2.5 (Fig.
13) and 3.5 to 7.0 (fig. 14).

Conditions where the electrical current moves

parallel to the layering and the hydraulic flow moves

perpendicular are shown in Fig. 15, where th versus th
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Ccr fvv versus khv are shown. The poin%ts in Fig. 15
representinq the horizontally layered case ( ehh varsus
kvh ) were then sorted according to hydraulic anisotropy
ranges of 1.0 to 1.1 (Fig. 16), 2.0 %*o 2.5 (Fig. 17) and
3.5 to 7.0 (Fig. 18). |

Figs 19 shows the <correlation between electrical

anisotropy (th'/ehh yand hydraulic anisotropy (kh /kvh ) -

h

?

OBSERVATIONS: LAYERED MODEL

The following observations are made for the layered
case, where flow is linear, permeabilities within a layer
range between reasonable limits and these permeabilities
obey a material relationship similar to that of equation 3

(approximately equal in slope).

1. There is a good correlation between hydraulic arnd

electric anisotropy.

2. If the hydraulic flow and electric current both move
parallel to the layering, th2 aquifer valuas of £ \h
VS. khh (or vi V3. kvv) will always fall on or to
the 1left of the material level ea vs. k line (Pig.
3), with the distance from the line being
proportional to the hydraulic or electric anisotropy

(Figs. 4,5,6 and 19).

32



3.

If the hydraulic flow and electric current both nove
perpendicular to the layering, the aquifer values of
th VS, khv (or»Qvh VS. kvh) will always fall on or
to th2 right of the material level line (Fig. 7),
with the distance from the line béinq proportional
to the hydraulic or electric anisotropy (Figs.
8,9,10 apd 19). Furthermore, each range of

anisotropy comes close to producing a unique

projection against :the G or k axis (Figs. 8,9 and

10) «

If hydraulic flow is parallel and electric current

perpendicular to the layering, aquifer values of Py}
VS. khh (or th VS. kvv) will always fall on or to
the 1left of the material ew vs. k line (Fig. 11),
with much 1less spr=2ad than was exhibited for the
results of th VS. khh (or Evv VS. kvv)
Distances of plotted values from the material line

appear to be proportional to the hydraulic or

electric anisotropy (Figs. 12,13,14 and 19).

If the hydraulic flow moves perpendicular and the

electric current moves parallel to the layering, the
aquifer values of Pl VS- k v (or Pvy US- khv) will
always fall on or to th2 right of th2 material level

line (Fig. 15), with much 1less spread than was

- exhibited for the results of ?hv VS. khv (or CVH VS.

in Fig. 3.
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kvh) in Fig. 7. Disténces of plotted values fronm
the mat=2rial 1line appear *o be provortional to the
hydraulic or electric anisotropy (Figs. 16,17,18 and
19), and each range of anisotropy coma2s closer to

producing a unique projection against the € or k

axis than occurs in Figs. 8,9 and 10.

6. The values of hydraulic anisotropy due to layering
were found to range from 1.0 to about 7.0, with the
majori*ty of the wvalues being between 1.0 and 4.0.
These values may seen lowvw, However, their value is a
multiplication factor to an aguifer with énisotropy

at the material level (micro-anisotropy).
CONVENTIONAL and STOCHASTIC DESCRIPTORS

Permeability values usually show variations in space
within a geologic formation. By conventional definitions,
if permeability is independent of position within a
geologic. formation, - the formation is homogeneous, If
permeability is dependent upon position within a geologic
formation, the formation 1is heterogeneous (Freeze and
Cherry, 1979).

Greenkorn and Kessler (1969) recognized that soil
descriptors such as homogeneous and heterogeneous need to
ba defined stochastically. Their notation, which will be

used in this study, is explained in the following excerpt
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from Freeze (1975).

In general the probability density function for
permeability (for example) is a function of
location and orientation. This function can be
described with five independent variables: three
rectangular coordinaates for 1location and two
ingular coordinat2s for orientation. If the
probability density function 1is independent of
orientation, the media 1is 1isotropic; 1if it is
dependent of orientation, the nmedia 1is
anisotropic. If the distribution is expressible
by a finite linear combination of delta functions,
the medja is uniform; if not, it is nonuniform.
When the distribution is monomodal, the media is
homogeneous; if it 1is multimodal, it 1is
heterogeneous.
Fig. 20 shows example frequency distributions of
permeability for the four possible combinations of
uniformity and homogeneity in isotropic media.
Furthermore, any heterogeneous or nonuniform distribution
will be considered spacially mixed (figs. 20b, ¢, and d).
If numerical modeling is used, an aquifer containing
permeabilities which are spacially mixed will ultimately be
resolved into an assemblage of pieces, where each piece may
be micro-isotropic or micro-anisotropic. Thus the ternms
micro-isotropic and micro-anisotropic will be used in this
study to describe material (or nodal) properties. The
terms isotropic and anisotropic will be reserved for
describing the entire modeled region (aquifer). Note that

these specifications do not destroy the Greenkorn and

Kessler definitions. Thus, an aquifer will be considered
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isotropic only if the assemblage of component piecas are
micro-isotropic and have a uniform homogeneous
distribution,

Clarke (1972), provides a comprehensiive 1list of
terms and definitions +o classify hydraulic models. His
definition of a deterministic model will be used for cases
where the permeabilities do not have some spacial
distribution, ¢that 1is, when the permeability values are

exactly known.
PREVIOUS WORK: STOCHASTIC MODELS

When an aquifer is composed of a mixture of
stratified drift materials, very often the distribution of
permeabilities can be approximated by a probability density
function (Freeze, 1975)a.° Many researchers have used
stochastic models in groundwater hydrology, although none
are known to have been applied to resistiviity modeling.

| The first researchers to stochastically model aquifer
permeabilities were Warren and Price (1961). They found
that the most probable behavior of a nonuniform homogeneous
(see Fig. 20) or a uniform heterogeneous system approaches
that of a uniform systeﬁ with an aquifer permeability equal
to the geometric mean of the nodal permeabilities.

Distributions +tested included wuniform, exponential, and

lognormal. They utilized a three dimensional finite

difference model with single phase flow forced by boundary.
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conditions to move predominately in one direction
(quasi-linear). After steady state total heads were
obtained, total flow was calculated through a plane near a
constant head boundary anrd used to compute aquifer
permeability.

Warren and Price also analyzed the effects of flow
geometry, anisotropy, and partial penetration on computed
aquifer permeabilities. In a comparison betweeen
quasi-linear and quasi-radial flow, they tound that the
expected or mean aquifer permeability 1is essentially
independent of flow geometrye. However, differences in
quasi-radial and quasi-~linear flow geometries were found to
influence the .standard deviation of the aquifer
permeabilities computed for different arrangements of a
distribution. Standard deviation was used as a measure of
wvhat Warren and Price <call th2 scale of heterogeneity.
They also showed this scale of heterogeneity to be a
function of *he number of model elements and the number of
elements in each <class of permeability values on a
discretized frequency diagram (histogram). Limits are zero
for the conventionally defined homogeneously heterogerneous
case, and on2 for completely heterogeneous conditions. The
scale of heterogeneity was used as a measure of the
redundancy or entropy of the permeability distribution in
space. Anisotropy was shown to cause a finite but not a
particularly significant =2ffect, and the apparent increase

in aquifer permeability with increasing micro-anisotropy,
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was attributed to crossflow. Partial penetration of half
*he €ull depth was shown to cause a reduction in the
axpected aquifer ©permeability by about fifteen percent of
the fully penetrating value.

McMillan (1966) found that the standard deviation of

the hydraulic potential was a function of the mean and

standard deviation of the permeability, the mean of the

gradient and the nodal spacing. He used lognormal
permeability distributions in the range of .5 to .8, which
several studies indicated to exist in the field. Bouwer
(1969), wusing -a two dimensional electric analog model,
found the aquifer permeabiiity to be closest to the
geometric mean of nodal permeabilities, when
permeabilitieswere selected from a uniform distribution.
Freeze (1975) thoroughly examined the effect of
uncertainties in soil properties, boundary condition, and
initial conditions on the  hydraulic heads with
one-dimensional steady state and transient flow. For
steady sta*e conditions, he concluded the best possible
predicﬁion that <can be provided for the hydraulic head at

any point 1is a description of the probability density

function of thydraulic head at that point. Freeze also

demonstrated the difficulties (and perhaps the
impossibility) of defining an equivalent uniform media for
transient flow in nonuniform homogeneous geologic
formations. In his analysis he used multivariate relations

batween parmeability, porosity, and soil compressibility.
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COMPUTER MODEL DEVELOPMENT (CARTESIAN COORDINATES)

There ar2 no equations for computing average

macroscopic <transport properties when the material level

components ar2 spacially mixed. However, if the steady

state potentials are known under conditions where the flow

is macroscopically 1linear (quasi-linear), a technique may
be employed to solve for th® "aquifer permeability" (Warren
and Price, 1961). Since there are no analytical solutions
for potential quantities in these spacially mixed problens,
numerical mwmethods will be used to solve a two-dimensional
confined aquifer cross sectional model, where left and
right side vertical boundaries are constant potentials
(2-D, quasi-linear).

Nﬁmerical methods are widely used today and many good
computer codes are available for groundwater models
A(Trescott et al., 1976; Prickett and Lonniquist, 1971).
Resistivity modeling is not as developed, particularly for
spacially mixed problenms. Shortcomings are apparant in
methods used to compute connaction conductivity values (see

appendix D).

In order to facilitate program alterations for
vérious tests and to wuse a minimum of computer core
requirements, a computer model was developed. The model

procedure is as follows:

7. Input permeability valuzs, which can be any of the

40






o
Ve = + = A ®
fu (__ﬁ__>
a3 ™

wvhich is a rearrangement of equation 3.

2. Calculate the connection value electrical

conductivities .

3. Compute the steady state scalar electrical

potentials.
4, Compute the aquifer resistivity.

The computed (aquifer resistivity, aquifer permeability)
points were plotted and compared to the material level line
{equation 3).

Numerical modeling 1is based upon the discretization
of a differential equation which results in a set of
simultareous equations which are then solved fér the
unknown potentials at discrete locations (nodes). In the
hydraulic case, each node has an asssociated permeability
value, or nodal permeability. 1Invariably, the connection
permeability between adjacent nodes must be computed. In
most state-of-the-art hydraulic models (Trescott, 1975;
Trescott et al., 1978), this connection permeability is
computed as the weighted harmonic mean of two adjacent

nodal permeabilities, where the weight factor is the nodal
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thickness orthogonal to flow. The validity of this
approach is easily shown, since this weighted harmonic mean
can be shown fo be the average permeability for flow
perpendicular to the layering (eq. 6).. Connection
permeabilities are computed as the two 1layer case of
equation 6.

Since electrical conductivity is the reciprocal of

electrical resistivity,

e (9)

equation 7 may be rewritten as

n

z h, (10)
VVH = Q—\WY = fn: h‘

ETEAVH

Connection conductivities in the electrical model were
computed as the two layer case of equation 10, which is a
weighted harmonic mean of the nodal conductivities.

In solving for the steady state hydraulic potentials,
the iterative alternating direction implicit procedure
(IADI) was used to solve the finite difference form of the

following equation:

c)h
C> (k)( | (k
- + a Oy O (11)
IX 07,
where h = total hydraulic head

o~
H

permeability in the x-direction
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k = permeability in the y-direction
Y

Likewise, the IADI procedure was used to solve for scalar

electrical po*entials in the following equation:

(g) , 2w

— T’ - O (12)
O oy
where v = scalar electrical potential

conductivity irn the x-direction

= A
tl

conductivity in the y-direction

Comparison_ of equations 11 and 12, reveals they are
completely analogous. This 1is discussed further 1in
appendix F, where -equations 11 and 12 are derived and
discretized.

The IADI method requires the solution of a set of
simultansous equations, which when in matrix form yield a
tridiagonal <coefficient matrix. These.equations are then
solved usiﬁg the Thomas algorithm, which is described in
appendix G.

The TIADI procedure was used for the following
reasons:

1. The algorithm is relatively straight forward and
could easily be adjusted to suit model boundary

conditions should the need arise.



2. According to Roach (1972), ADI methods are very
effective for problems with regular boundary
conditions.

3. The Thomas algorithm is extremely stable with
respect to roundoff errors (Remsen, Hornberger and
‘Moltz, 1973)

U, The IADI procedure was used in other well documented
digital groundwater mod=2ling proygrams (Trescott et

al., 1976; Prickett and Lonnquist, 1971).

Computation of the aquifer permeability followed fhe
method wused by Warren and Price for quasi-linear flow.
They computed aquifer permeability in a 3-D model by
calculating the flow betwvween two steady state potential
surfaces and dividing by a shape factor equal to the change
in potential through the entire model times the total cross
sectional area divided by the total model length.

In this study, quasi-linear horizontal flovw is
achieved by setting conrstant hydraulic head boundaries at
the 1left and right boundaries of the confined (top and

bottom boundaries have no flow across them) aquifer cross

section model. Horizontal flow is then computed by summing

the result of Darcy's law for steady state total heads at
each discrete point over an entire column. Expressed
numerically, the aquifer ©permeability for quasi-linear

horizontal flow is;
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;\ sh. lal (13)
Coos) -—*<*L1 “{AaHA

= |

Fig. 21 shows parameters in this equation,

rucber of model rows

where R

k = connection value of permeability between

L

FRA

h"v and h . {
'J t.Jf

and column respectivealy

, where i, j indicate row

LX,; Y LX)

= : (13a)
LA, LK
ki) K ;a0
ah = change in steady state total hydraulic
4) .
head across al
= hL-_‘) - h;ljf|
Al = length between hij and hljf\
a = nodal cross sectional area (normal to
flow)
&AL = total length over which A H is dissipated
&6 H = total dissipated head through the model
A = total model cross sectional area (normal

to flow)
Equation 13 was applied between columns 2 and 3, since no
numerical error exists at the consfant head nodes in colunmn
2. The value for kv is compu“ed in similar fashion,
vhere flow mov2s vertically.
Since +the elactrical potential flow probleam is

completely analogous ¢to the hydraulic case, the aquifer

resistivity for quasi-linear horizontal current flow was
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computed as

6) — 4 = 1 {(14)
g —. v ‘
h (Th £ T b L AL
= sl nVA
where (ﬁ\ = aquifer conductivity for horizontal
quasi-linear f{low.
a;‘ = connection value of corductivity
"
betwean v.. . and LR
) "

A v..= changa in steady state electrical
potential across 1
AV = total change in stesady state electrical
potential through the model
Other quantities are previously defined.
The value for | Qv is computed in similar fashion, where

current flows vertically.
PROGRAM VALIDATION AND TESTING

The program was first checked against the progranm
developed by Trescott (1976). For the isotropic uniform
case, results wvere identical to five significant figures
with differences representing less than .005% of the total
dissipated head. A model having three vertical layers was
then tested and the aquifer permeability computed from the
numerical results using equation 13 (kh ) was uithin_.009%

of the theoretical value calculated by equation 6 (k ).
hv
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In both of these tests five iteration parameters vere used
with an error «criteria for closure (ECC) of .001 .
Iteration paramerefs are usad +o aid convergence in the
IADI procedure. Their use is discussed in appendix H and
by Trescot+ (1976). The ECC value 1is the maximunm
difference in potential at any discrete point bhetween
successive iterations, as required to achieve the steady
State.

Wwhen ECC values of 1.0, .1, and .01 wer2 used for the
vertically layered model, differences.in hydraulic head,
from ¢the <case of ECC equal to .001, were noted. These
differences are shown in *able 1 and represent the maximum
difference in hydraulic head at any point through the
middle row of the model. A single row was felt to be
representativs, since the difference 1in head within any

column is small when horizontal flow occurs.

Error Criteria for Ecc Maximum % Difference
Closure at Steady Total in Hydraulic Heads
State (ECC) Dissipated from ECC=.001
Head Hydraulic Heads
1. 10% 8.4%

-1 1% «6%

»01 1% -05%

.001 .01% 0%

Table 1 = ELffect of the error criteria for closure on
steady state potentials. * computed at the
middle row of the model.

Table 1 shows the ratio of ECC to the total dissipated head

to be <clos2 to the error in the potential quantities. To
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be <conservative, an FCC value of .001 was wused in
subsequent program runs.

When a uniform distribution of permeabilities (with
limits of 10 +to. 600 fts3) was input to the model with a
total dissipated head of 20 ft. and five Jitaration
parameters, convergence was not achieved. Since the
optimum minimum iteration parameter (wmw]) is compuﬁed by
the program only for simple problems (Trescott et al.,
1976), other values wvere tested by trial and error. First,
the total dissipated head was raised to 100 ahd the limits
of the uniform distribution were restricted to the range of
40 fo 600 ft/d. The fastest convergence occurred when 'Mm
equaled .005.

The other factor that may be critical with the IADI
procedure is th2 number of 1iteration parameters, which

should be 1increased if the difference between the maximunm

and minimum parameters are greater than three orders of

magnitude (Trescott et al., 1976). When nine iteration

parameters were used with the computed W satisfactory
convergence was achieved. Since convergence was not as
good (required more iterations) when Y in equaled .005 with
nine iteration parameters, subsequent runs utilized the

calculated values of LI and nine iteration parameters.
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RESULTS: QUASI-LINEAR STOCHASTIC MODEL

The model was first run with nodal permeabilities
selacted at random from a uniform distribution. This
distribution fits Greenkorn and Kessler's general category

of nonuniform and homogeneous (Figq. 20). Figure 2la shows

the flow ne+ for a typical run with horizontal quasi-linear-

flow (a detailed explanatiorn of the techkniques used to draw
the flow net using computer graphics 1is provided 1in
appendix K). The uniform distribution was selected because
of its simplicity; it is not known to occur in the field.
Appendix H shows how the distribution is simulated with the
IMSL routine GGUBFS. Table 2 shows the limits and the mean
or expected value for the distributions tested. These
limits were selected td keep <the range evenly balanced
about some point on a log k scale; reasons will become

apparent later.

# of models A (lower limit) A (mean) B (upper limit)
tested (£t /d) (ftr4) (ft/4)
Ty T T e g0 98
2 39 97 155
3 ' 25 135 245
4 15 202 389
5 10 305 600

Table 2 : Uniform distribution limits and means
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The model containad 32 rows and 32 columns . For
quasi-linear horizontal flow, kh and CV ;ere determined
from +two separate program runs. Likewise, kv and ev
were obtaired for the quasi-linear vertical flow regime.
Anisotropi=s ki, /kV and Cv /(,h were then computed. Table
3 shows all the data, and the horizontal aquifer
resistivity ( eh) is plotted versus the horizontal aquifer
permeability (kh ) in Fig. 22. It was observed that wider

ranges gave greater deviations in Cn * k points; hence,

h
more points ware plottad for these ranges.

The effect of the number of model nodes was examined
when nmodels of 64 (8x 8) and 3844 (62X62) nodes were
compared. The Qh v kh points aré shown for the 8x8 case
in Fig. 23, and Fig. 24 shows the 62x62 model results.

In an attempt to link the layered deterministic case
with the spacially mixed, a test was conducted where a
deterministic layered model was gradually changed to a
model with a wuniform distribution. Table U4 shows the
distribution 1limits within each layer for each step.
Values of Qh ’ kh are plotted for each step in Fig. 25.

Paths from starting points of th, khh and th, khv are

hboth shown.
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10

11

12

13

14

15

39-155

Kn

fts/d
cn/s

225.92
. 079700

209.25
.073824

229.02
.080798

223.61
.078751

224.61
-079242

148.45
-052374

164.53
.058045

145.60
.051369

153. 41
.054122

111.60
.039372

113.90
-.040182

114,32
-040334

89.970
.031741

88.6U45
-031274

78.510

222.05
-078300

212.57
« 074995

228.07
-080u464

219.99
~-077612

227.49
-080260

147,74
.052121

160.54
. 056639

150.35
.053043

151.78
.053547

110.23
.0384888

114,77
-040492

112.65
-039743

89.894
.03171¢

88.524
.031231

78.480

1.004

1.015

-.9873

1.005

1.025

-968

1.011

1.012

-992

1.015

1.001

1.001

1.000

929.96
966.6§
939.53
959.03
704.58
T41.54
708.88
719.12
555.13
566.6

560.53
4e2.78

459.77

957.35
935.72
967.07
948.96
954.86
702.86.
745.56
703. 44

719.86

464 UL
460.28

411.22

-998
1.010
-996
-998
1.005
- 992

1.001

Table 3: Aquifar permesability and aquifer resistivity values

for the UNIFORM distribution
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Deterministic ——Steps > Uniform
1 2 3 4 5 6

1 500 400-600 300-600 250-600 150-600 10-600
2 20 10-30 10-100 10-250 10-350 10-600
3 500 400-690 300-600 250-600 150-600 10-600
4 20 10~30 10-100 10-250 10-350 10-600
5 500 400-600 300-600 250-600 150-600 10-600
\
Layer

Table 4 : Range of permeability (ft/d) uniform distribution
in each of five layers as the model is:

transformed from a layered deterministic case
(step 1) to a uniform stochastic distribution
{step b). :

An exponential (log-uniform) distribution of nodal

petmeabilitiqs was then tested. Although no basis for this

distribution has been hypothesized, its existance has been

frequently observed (Warren and Price, 1961). Appendix G

shows how this distribution was simulated. The mean or

expected value of 1log k (k in ft/d) was held constant at

1.89 . Rang=2s for log k tested were; 1.79 to 1.99, 1.59 to

2.19, 1.39 to0 2.39, 1.19 to 2.59 ard 1.0 to 2.78 . Fig. 26

shows these tested distributions, which have the same

limiting values of k as the uniform distribution., . Table 5

shows results for the exponential distributions and Fig. 27
Points move downward (away

is a plot of these resules.
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from the isotropic 1line) because of the increased veight
given to low values in the log k range as opposed to the

uniform range.

R QU RSN S — SRR SRR J

!

.
!
v

T.0 1.19 1.391.59 1.79 1.89 1.99 2.19 2.39 2.59 2.78 log k

1.0 15 25 39 62 78 98 155 245 389 600 k(ft/d)

Fig. 26. Sketch of the EXPONENTIAL distributions
testegd.

The loqnofmal distribution of permeability has been
found in many field situations (Law, 1944; Warren, 1961;
McMillan, 1966; Preeze, 1975). This distribution was
tested at two different eeans (4 =1.5 and 2.2) using
standard deviations (g) of .1, .3, .5, and .8 . Appendix
L shows bhow the 1lognormal distribution was simulated.

Table 6 and Pig. 28 display the results.
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10

11

12

13

14

15

Table S: Aquifer permeability and aquifer resistivity values for

Range
of
log k
frrsd

1.0-2.78

"

"

11}

1.19-2.59

1.39-2.39

1.59-2.19

1.79-1.99

k
h

ftrzd
cm/s

63.621
.022318

61.488
.021693

63.889
. 02254

55.155
-019459

62.782
.022150

67.174
.023699

72.913
.025724

67.338
.023757

67.395
- 0237717

70.305
.024804

73.627
.025976

71.481
.025219

75.283
.026560

74.048
.026124

76.563
.027011

k
v

ftsd
cm/s

64.677
.022818

61.125
.021565

61.891
.021835

55.374
-019536

65.584
.023138

67.306
-023745

72.776
- 025675

67.033
- 023649

66.003
-023286

70.124
72.377
- 025534

70.049
-024713

74.425
- 026257

74.102
- 026143

76.586
-027019

-~ 996

- 957

. 998

1.002

1.005

1.021

1.003

1.017

1.02

-999

1.0

the EXPONENTIAL distribution

- w o - -

451.54
412.82
464.95
ﬂ33.2°
462.29
435.12
428.52
415,36
419.81
416.56
408.78
407.05

404.22

4b46.53

445291

452.80

416.88

454,83

431.65

461.93

434.86

B34.75

415.07

421.46

421.61

411. 11

406.53

404.66

1.003

1.010

- 980

- 996

- 9992

-9994

1.014

-9993

1.004

1.012

1.006

-999

1.001
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OBSERVATIONS: QUASI-LINEAR STOCHASTIC MODEL

The following observations are noted from the results
of the stochastic quasi-linear flow nmodels, where
conditions inclﬁded: reasonable isotropic nodal
permeability 1limits applicable to Darcy's 1law, and a
material 1lavel relationship similar to fhat of equation 3

(approximately equal in slope).

1. The 6, * kh point always lies on or to the right of
the material relationship line (Figs. 22 to 25, 27,

28) .

2. Differences in Qn versus kh plots between uniform
and exponential permeability distributions, where
both distributions have the same limit values, are

due to the increasd weighting low values have in an

exponential range compared to the same range being-

uniformly distributed.

3. Aquifers which are conventionally defined
homogeneously Heterogeneous (low scale of
heterogeneity as defined by Warren and Price, 1961)
will show less sca*ter in ph versus kh than ones
which are mwmore heterogeneous (higher scale of

heteroygeneity). Se2 Figs. 23 and 24.
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4, Distances from the material relationship line to the
Qk' kh point are indicative of the spread of the
permeability distribution (standard deviation, for

- example), when the aquifer has a low scale of

heterogeneity (Figs. 22, 24, 27, 28).
FLOW GEOMETRY STUDY

Field methods wused to obtain aquifer permeabilities
and aquifer resistivities do not use the same flow geometry
as is assumed for eguations 4 through 7 or that assumed for
the computer model. The linear and quasi-linear flow
geometries require “the fluid to move through a constant
cross sectional area 1in a straight (of approximately
straight) 1lire from the source to the sink; Aquifer
permeabilities are usually determined 5y pump tests where
flow 1is quasi-radial. In vertidal electric sounding
techniques, a direct current moves from one surface point
to another (quasi-point to point). Both methods utilize
potential theory to interpret field data. The prefix quasi
is used +to imply that transport properties are spacially
mixed such +that flow paths deviate slightly from idealized
smooth lines. Skeiches of the quasi-linear, quasi-radial,
and gquasi-point to point flow geometries are shown in Fig.
28a.

This section will examine two cases of current f£low.
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1. Where the aquifer is considered "isolated"lfrom
surrounding formations. For this case, the current
moves only through the aquifer and is not influenced
(refracted) by materials above and below the
aquifer. Flow geometry is quasi-point to point due

to spacial mixing (Fig. 28a).

2. Where most of the current moves through the aquifer,
yet 1s strongly 1influenced by materials overlying
and underlying the aquifer. The idealized point to
point flow pattern may be severely distorted due to
refraction caused by resistivities of surrounding
strata. This will be referred to as the

"non-isolated" aquifer case.

For the first case, attempts will be mpade to provide
quantitative information showing the significance of flow
geometry ir determining aquifer properties. The use of

results 1in previous sections with simulated field-like

aquifer resistivities at short electrode spacings will be.

evaluated. A comparison between aquifer permeabilities for
linear and radial flow geometries will also be made. The
seacond case will be examined in a more qualitative manner
by citing from the literature some methods which may enable
aquifer resistivities to be obtained from vertical electric
sounding curve interpretations.

Warren and Price (1961) demonstrated how aquifer
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In this study equatior 20 will be used uith’the S
value determined from equation 21, only when streamlines do
not refract or where the rafraction is expected to be small
due to an isotropic hoaogeneously heterogeneous media
(conventional definition). Under these <conditions,
eJuation 20 car be used for 2-D steady state flow , where
the j and 3j+1 columns are confined at their bounds and
serve to separate all inflow rodes from outflow nodes. It
should be noted that equatior 20 is the same as egquation 13
for the quasi-lirear case where I (equals dH/aL), A , and
a are known. Furthermore, it can be shown that the kh
determined by equation 20 for linear flow with horizontal
layering or verzical layering is exactly khh and kkw from
equations 4 and 6 respectively.

For radial flow with horizontal layering where
vertical boundary heads are fully penetrating, equation 20
can be shown to be equivalent to equation 4, since the
radial flow steady state hydraulic heads are the same for
the isotropic uniform homogeneous case (see Fig. 20) and
the horizontally layered cas2. FEquation 20 is rewritten

for the radial aquifer permeability (kr ) as

K/ _—
_ é-i )C;‘J C-l'\L_J’ (22) .
kr,“ & -
S sho.
| ba)
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column (3J)

N

Fig. 28b. Idealized vertical layered mod=1

The value of khv in equa~ion 6 is shown %0 equal the
aquifer permeability value comput2d by equation 20. Some
terms used in the following derivation are shown in Fig.
28b. Rewriting equation 6 in discrete form, as it would be

used to compute khv in the model,

-

2 h 4 kc

3
k.= oW
hv _‘_+-:_l..............o+h‘
kill k'.'B ki’l‘
wvhere C = # of colunns

;,'= connectior permeability
(3
'y between columns j-1 and
J



Let hl = h}BI. ..... l.'.-‘.z hc = h
where b = counsran«
Then
L - Cb
hv é} 4 %; .............. + fg— (24)
k‘.'ll k‘; k‘,(

Multiplying bcth sides of equation 24 by Q/A gives

P v &
hv [%+—§ :
k\“l k‘3
Since AH: {L:- 4 _g_ +_§_}%
k;‘z k. ki
where AH
A

it

(25)

|o-

]_@_
A

RS

~TH

(P2rloff & Baron, 1976)
(26)

total dissipated head
for horizontal flow
through a wmodel with C
ver<ical 1layers of
thickrne2ss b

B
;E a = Ra (27)

=\

R=4¥ cf rows
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equation 30. With data from *“he model, the valus of S was
determined by applying equation 21 to the middle column.
Values of krv » the aquifer permeability due *o radial flow
with wvertical layering, .were then detarminad by applying
equation 20 to steady state heads obtained by the radial
nodel for different arrang=ments of six permeabili<«y
values. |

Results are shown in *able 7, where the lowast valu2

(ad

is approximately half of tne k value and the highest 1is

‘ hv
close +*o double the linear flow value. Clearly
demonstrating that th2 Kk value is depsnd2nt upon the

Yv

exact arrargement of the vartical layering and hence, the
linear and radial flow geometries cannot be exnected to

yield the same aquifer parameters.

Permeabilities (f<=/d) Total k k

in each vertical Flow rv v
Well lay=r {cfd) (ft/4d) khv
400 300 200 100 590 1418506 257 2.11
50 100 200 300 400 347357 63 «52
300 100 50 400 200 995309 180 1.48
100 300 400 200 50 660701 120 «98
50 300 100 400 200 357494 65 «53
400 300 100 50 200 1300169 236 1.93

- e - - - e e - e — —y ap —--— - - o - - - - - - -

Table 7: Effect of vertical layering rearrangement on k
wvhen Kk = 122 fryd

hy
Equation 20 «as not applied +to th2 layered cases
wvhere flow moved from a point source to a point sink. "It

appears =2gquation 20 may only be applied *o situations where
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numerically solving for the steady sState  h=ads in an
isotropic section of <constart permeapility. The
quasi-point . to point numerical sinmulations assuwed a line
source electrode. According *o Muf+i (1978) results from a
2-Dp line source gimulatiorn are corparable to the 3-D point
source <case only when <the rezsults are wused in the
computation of resistivitias. Also, the 2-D case assumes
the «current emitted per unit length of the lire source is
equal to the total current emitted by the point sourca2.
Twelve models werpre formsd tor each distribution and
flow regime, Values of kh ¢ Ky ard k? for the uniform
distribution are compared in Table 9, wher2 the mean (Q)
and standard deviation (@) of each column is also shown.
warren anrd Price (1961) concluded <that <this standard
deviation (T ) is indicative of the scale of heterugeneity.
Tables 10 and 11 show aquifar permeability data for the
‘exponential and logynormal distributions. The exvacted or
mean value (4 ) of nodal pefmeability was 77.6 ft/d for all
distributions, with +the 1limits for the uniform and
exponential cases set at 10 ftyd and 600 ftsd. The
standard deviation (§) was .4 for the lognormal
distribution (k in ft/4). Tabhle 12 shows the aquifer
resistivities for the lognorwal distribution with
quasi-linear (?h) and point to poirt (QP) flow geometries.
Tables 9 to 12 also include the geometric amean of the

aquifer parameters. Tabla 13 shows the ratio of U’/g; to

~

A
be less than the VYV /k ratio for quasi-point to point and
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permeability is shown in table 14. The data indicates that*
flow geomerry does not play a significant role in
determining aquifer permeability when rhe nodal
permeabilities are represented by a stochastic distribution
and the scale orf heterogensity is low. This agrees with
the Warren and Price results tor thes 3-D cas=2.

Actually, the point to point flow is only used in the
field for the electrical casz. Data froa table 12 shows
the mean aquifer resisrtivity with juasi poiat to point flow
is within 4% of the mean value wi+h guasi-linear €low.

To examine the cas? where <lectrode spaicings ar=z
large and the. current 1is inrfluenc2d (refract=2d) by
materials above and below the aquiter (non-isolated
aquifar), vertical electric sounding curve interpretation
techniques can be used to obtain resistivities orf layers in
an assumed horizontally stratified formation. To make a
vertical electric sounding, 3 curcent is introducad into
the ground via two surface electrodes and the potential
difference is measured betwe2r a second pair of elactrodes.
Apparent resistivities are calculated as a function of the
current, potential difference and a gzometric factor based
on the exact electrode configuration.

Previous results from this scudy aTe comparable to
the "isolated" aquifer «cases, whare current moves only
through the aquifer and 1is not r2fract2d by surrounding
strata. This situation exists when overlying mat2rials are

either not present or coasidered neyligible and the
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electrode spacing 1is small (less than the aquifer
thickness). The more common situation is when the aquifer
thickness 1is unknown ard a resistivity layer or layercs
overlie anrd underlie the aquifzr. For this case, apparent
resistivities are obtained as the current electrode spacing
is expanded. These values are plotted against half the
elactrode spacing resultiug in vertical electric sounding
curve, Using interpretation *2chniques, i* is possible to
use this field curve to es*imate the resistivity of the
aquifer when materials of significantly different
resistivity lie above and below the aquiter.

Interpretatior procedures which combine curve
matching methods with techriques that utilize the Dar
Zarrouk parameters appear to be well suited for aquifer
exploration (Kosinski, 1978). The Dar Zarrouk parameters
longitudinal wunit conductance (S} and transverse unict
resistance (T) may sohetimes be estimat=2d4 from sounding

curves. They are defineé as

g = z LI (Zohdy, Eaton & Mabey,1974) (31)
Ce:
T == etz}".’. (zohdy, Eaton & Mabey,1974) (32)

where | is a layer subscript and includes all resistivity
layers in the formation, el is +he longitudinal or
horizontal resistivity , Qt is the transverse or vertical

resistivity and h is the layer thickness. The transverse
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unit resistance (T) is based on currant tlow perpendicular
to the layering, wh2reas the lorgitudinal unit conductance
(S) is based orn currant mcvemen< parallel *o lay2ring.
Surficial geologic formatiors in N2w England

typically consist of an unsaturated zone, the aquifet and a
resistive badrock (iyneous or mstamorphic). To demonstrate
the flow pattern associated with this cas2, the cartesian
coordinate finite differznce mod=21l was us2d to produce a
flow net. Data for +the model was obtained from the
interpretation of electric sounding #36 in a thesis by
‘Kosinski (1978). four layers wer2 used, with @ =1737.a-u

(unsaturated topsoil), Qt =5334 5-n (unsaturated sand angd

gravel), 93_=u68.n:m (saturated aquifer) and Qq =5.17x1()6

o0 (bedrock). Current electrodes are 384 feet apart,
representing a relatively large spacing. The bhedrock
resistivity 1in the fiesld 1s effectively irnfinite, with the
value of S.17x106 used to allow program convargence. flg.
29 shows 97% of <+he flow moves throuqgh “he saturated
aquifer (layer 3), approximating horizontal linear flow.
This model demonstrates why S is the importan* factor and
that the resistivity of the aquifer will be the
longitudinal or horizontal resistivity for the resistive
bedrock case.

The layering arrangement of Fig. 23 would produce a
minimum type sSounding curve, since the resistivity of the
aquifer is 1less than the resistivities of surrounding

strata. For *his case, th2 auxiilary point method implies
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that 1layer resistivities obhtainad through curve matching

vitiass because S is the

P

will be 1longitudinal resist
governing average vparamster (Zokdy, 19b5). This was

demonstrat ed by Kosinski and Kelly (1981), who showved that
when the aquifer 1is +he middls layer »f <*“he miniamum
sounding curve, the singl:s aquifer resistivity value

calculated from the sounding curve is represantative of the
entire aquifer section ir th2 horizon*tal dirzcticn. 7Zohdy,
Eaton and Mabey (1974) diécuss a tz2chnique capable of
obtaining aquifer horizontal resistivity for minimum typ>
sounding curves where the middle low resistivity layer (the
aquifer) is at least three times ¢he thickness of the upper
layer. When the basement lay=2r is very resistive causing
the terminal branch of the éounding curve to rise at a 45
angle, the value of S for all layers above the basement may

be estimated with a simple graphical method. For this case

equation 31 can be used to estimate thas horizontal aquifer

resistivity provided reasonable estimat=s of parametars in
the equation for layers ahove *he aquifer ( ez;and hl ) and
the agquifer thickness may b2 ob%tained by interpretation of
the sounding curve, geophysical methods, borzhole control
or a combination of thsse.

Zohdy, Eaton and Mabey (1974) showed how the
transverse unit resistance of two layers above the basement

(T ) may be estimated throuuyh graphical interpretation of

b,

a three layer wmaximum typs soundirng curve when the

resistivity of the middle layer (Qx) is greater than the
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Vupper ‘Q\) and basemen= (QS) layers (Q‘<Qb>e}). They also
discuss a technique for dotarmining *he transvers2 unit
resistance of the middle layer. Therefore, for the three
layer <case where a maximum sounding curve is obtaired and
the widdle layer repres2nts thz aquifer, it is possible to
estimate values for ths vertical or transverse aquifer
resistivity by incorporating curve matching and simple
graphical techniques.

Fig. 30 shows the flow net obtained from the coaputer
model for a horizontally laysred formation wh=2re
Eh = 8.94-m represents a conductive bas2ment layer. Other
layer resistivity values and the current elactrode
separatiorn are as in Fig. 29. Streamlines show current
flow through the aquifer is approxima%ta2ly vartical. This
approximation will improvs a4s the *hickness of the aquifer
increases. It should be noted that +this case will produce
a double descending type sounding curve since Qna>Q3>Qq'
Howaver, the top two layers (EHa) are very +hin campargd to
the aquifer and +herefors .tha flow pattarn should not
change significantly if these layers had a resistivity
lower than the aquifer, as in %the maximum sounding curve
arrangement. It 1is primarily the low conductivity of the
basement layer <cthat causes current +«0 Mnmove vertically
through the aquifer section. This cas2 will 2xist when the
bedrock is shale, the situartion raported by Duprat, Simler
and Ungemach (1970), or where saline water occurs in the
fissures.and joints of th= upper portion of the bedrock, as

in some sectiorLs of northw:starr Missouri (Frolich, 1974).
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study

CONCLUSIONS

The following conclusions have baen dravn from this

assuming that, at the material level, aquifer soils

are isotropic and ob=2y a relationship similar to equation 3

(approximately egual 1in slope), where pore water

resistivity is cornstant and Darcy's law is valid.

1. For a horizontally layered aquifér, where electric

current moves parallel to the 1layering, it is
possible to estimate horizontal aquifer permeability
when hydraulic or electric anisotropy and aquifer
horizontal (longitudiral) resistivity values are
known. The ‘aquifer horizontal resistivity may be
estimated for the non-isolatad aquifer case using
sounding curve interpretation +echniques and

graphical methods when formations are horizontally
layered and the bhasement layer is very resistive
compared to the aquifer (vertical electric sounding
curves <+hat end with a forty five degree incline).
FPor a horizontally layered aquifer, the estimated
horizontal aquifer resistivity ( ehh) could be used
to estimate aquifer horizontal permeability (khh)
when the hydraulic or electric anisotropy is known

(Fig. 3).
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2.

3.

For cases where electric current moves vertically
through a horizontally layered aquifer, it is
possible to estimate horizontal aquifer permeability
using the aquifer vertical (transverse) resistivity.
The aquifer vertical resistivity may be estimated
for the non-isolated aquifer cas? using sounding
curve interpretation tecnniquas and graphical
met hods when formations are horizontally layered and
the basement 1layesr 1is very conductive compared to
+he aquifer (maximum or double descending type
sounding curve). For a horizontally layered
aquifer, the wvertical aquifer resistivity (ENN
could be wus2d to ecstimate aquifer horizontal
permeability (khh) (Fig. 11). Knovledgé of the
hydraulic or elec+ric anisotropy would improve this
estimate, but it is not necessary to obtain a

reasonable value.

Sirce spacially mixed aquifers do not depend
significantly on flow geometry it may be possible to
estimate the aquifer permeability for the isolated
and non-isolated aquifer cases. In the isolated
case, where current moves in a quasi-point to point
geometry, the apparent resistivity obtained from a
vertical electric sounding will represent the
agquifer vresistivity. Quasi-point to point flow

geometry will be maintained only if the electrode
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spacing is less than the aquifer thickness.

In the non-isolated aquifer case it is
possible ¢to estimate the aquifer resistivity with
vertical electric sounding interpretations. For
this case, *he current path through the aquifer need
rot be horizontal or -vertical, so long as it is
possible to estimate the aquifer resistivity by
interpretaiion.

The known aquifer resistivity may be used with
figures similar to Figs. 22, 27 or 28 to estimate
the horizontal aquifer permeability when the type of
distribution (uniform, exponential, lognormal, e€tc.)
and the mean or standard deviation is known; Figqg.
31 denmonstrates the trend of Fig. 28 applied in an
exampla. When thae spacial permeability distribution
is known to be lognormal with a standard deviation
of .8 and the aquifar resistivity is determined to
be 500 n-m, then the aquifer horizontal permeability
would be estimated at about .022 cm/sec. Figs. 22

and 27 would be utilized in A similar manner.

It is possible to have a relation between aquifer
resistivity and aquifer radial permeability with a
positive or negativa slope when agquifer
resistivities are estima%ed from electric soundings
and aquifer radial permeabilities are estimated from

pump test data. Fig. 28 shows both conditions are

98












102

Fraser, H.J., 1935, "Experimental Study of the Porosity
and Permeability of Clastic Sediments", J. of
Geology, Vol. 43, No. 8, pp. 910-1010.

Freeze, R.A., 1975, "A Stochastic-Conceptual Analysis
of One-Dimensional Groundwater Flow in Nonuniform
Homogeneous Media", Water Resources Research,
vVol. 11, No. 5, pp. 725-741.

Freeze, R.A., and Cherry, J.A., Groundwater, 1979,
Prentice-Hall, Inc., Englewood Cliffs, N.J.,
604 p.

Frohlich, R.K., 1974, "Combined Geoelectrical and Drill-
Hole Investigations for Detecting Fresh-Water Aquifers
in Northwestern Missouri", Geophysics, Vol. 39,
No. 3, pp. 340-352.

Gonthier, J.B., H.E. Johnson, and G.T. Malinberg, 1974,
"Availability of Ground Water in the Lower Pawcatuck
River Basin, Rhode Island", Geological Water Supply
Paper 2033. '

Graton, L.C., and Fraser, H.J., 1935, "Systematic Packing
of Spheres - With Particular Relation to Porosity
and Permeability", J. of Geology, Vol. 43, No. 8,
pp. 785-909.

Greenkorn, R.A., and Kessler, D.P., 1969, "Dispersion in
Heterogeneous Nonuniform Anisotropic Porous Media",
Ind. Eng. Chem., Vol. 61, No. 9, pp. 14-32,

Halliday, D., and Resnick, R., 1970, Fundamentals of
Physics, John Wiley & Sons, N.Y., 837 p.

Heigold, P.C., Gilkeson, R.H., Cartwright, K., and
Reed, P.C., 1979, "Aquifer Transmissivity from
Surficial Electrical Methods", Groundwater, Vol. 17,
No. 4, pp. 338-345.

Higdon, W.T., 1963, Discussion of "Variation of Electrical
Resistivity of River Sands, Calcite, and Quartz :
Powders with Water Content"”" by V.J. Sarma and V.B. Rao,
Geophysics, April, pp. 309-310.

Hill, H.J., and Milburn, J.D., 1956, "Effect of Clay and
Water Salinity on Electrochemical Behavior of Reservoir
Rocks", Petroleum Transactions, AIME, Vol. 207,
pp. 65-72.



10:

Jepsen, A.F., 1969, "Resistivity and Induced Polarization
Modeling", Ph.D. dissertation, University of Calif.,
Berkeley.

Keller, G.V., and Frischknecht, F.C., 1966, Electrical
Methods in Geophysical Prospecting, Pergamon Press, -
Oxford, 517 p.

Kelly, W.E., 1976, Estimating Aquifer Permeability by
Surface Electrical Resistivity Measurements, Technical
Report to the National Science Foundation, August.

Kelly, W.E., 1977, "Geoelectric Sounding for Estimating
AquiferHydraulic Conductivity", Ground Water, Vol. 15,
No. 6, pp. 420-425.

Kelly, W.E., Frohlich, R.K., 1978, Estimating Hydraulic
Properties of Glacial Aquifers with Surface Geophysical
Measurements; Research Proposal to the National Science
Foundation, April 1.

Kelly, W.E., 1980, "Porosity-Permeability Relationship in
Stratified Glacial Deposits", paper presented at
American Geophysical Union Annual Meeting, Toronto,
May 23. :

Kezdi, A., 1974, Handbook of Soil Mechanics, Vol. 1 (Soil
Physics), Elsevier Scientific Pub. Co., N.Y., p. 49.

Kosinski, W.K., 1978, "Geoelectric Studies for Predicting
Aquifer Properties; M.S. Thesis, University of
Rhode Island, Kingston, R.I.

Kosinski, W.K. and Kelly, W.E., 1981, "Geoelectric
Soundings for Predicting Aquifer Properties",
Ground Water, Vol. 19, No. 2, pp. 163-171.

Krumbien, W.C., and Monk, G.D., 1942, "Permeability as a
Function of the Size Parameters of Unconsolidated
Sand, Am. Inst. of Mining & Metal. Engrs., Vol. 151,
pp. 153-163.

Law, J.A., 1944, "A Statistical Approach to the Inter-
stitial Heterogeneity of Sand Reservoirs, Trans.
of A.I.M.E., Vol. 155, pp. 202-222,






105

Remson, I.{ Hornberger, G.M., and Molz, F.J., 1971,
Numerical Methods in Subsurface Hydrology,
Wiley-Interscience, N.Y., 389 p.

Roach, P., 1972, Conceptual Fluid Dynamics, Hermosa
Publishers, Alburquerque, N.M.

Rushton, K. R., and Redshaw, S. C., 1979, Seepage and Ground-
water Flow, John Wiley & Sons, N. Y., 339 p.

Sarma, V. V. J., and Rao, V. B., 1962, "variation of Elec-
trical Resistivity of River Sands, Calcite and Quartz
Powders with Water Content", Geophysics, Vol. 27, No. 4,
pp. 470-479.

Terzaghi, C., 1925, Engineering News Record, Dec. 3,
1925, p. 914. '

Trask, P.H., 1931, Amer. Assoc. Petrol. Geol. Bull.,
Vol, 15, p. 273.

Trescott, P.C., 1975, Documentation of Finite Differ-
ence Model for Simulation of Three Dimensional
Groundwater -Flow, U.S.G.S. Open File Report, 75-
438, Sept.

Trescott, P.C., Pinder, G.F., and lLarson, S.P., 1976,
Techniques of Water-Resources Investigations of the
U.S.G.S., Chapt. Cl, Finite-Difference Model for
Aquifer Simulation in Two-Dimensions with Results
of Numerical Experiments, U.S. Gov. Printing Of-
fice.

Ungemach, P., Mostaghimi, F., and Duprat, A., 1969,
"Essais de Determination Du Coefficient D'Emmagasine-
ment en Nappe Libre Application of la Nappe Alluviale
du Rhin", International Assoc. of Scientific Hydrol-
ogy, Vol. 14, No. 2, pp. 169-190.

Urish, D.W., 1978, "A Study of the Theoretical and Prac-
tical Determination of Hydrogeological Parameters
in Glacial Outwash Sands by Surface Geoelectrics",
Ph.D. Dissertation, Univ. of Rhode Island, Kingston,
RT.



10¢

Walton, W.C., 1970, Groundwater Resource Evaluation, Mc-
Graw-Hill Book Co., NY, p. 6064.

Warren, J.E., and Price, H.S., 1961, "Flow in Hetero-
geneous Porous Media", Soc. of Petrol. Eng. J., Vol.
l, pp. pp. 153-169.

Willardson, L.S. and Hurst, R.L., 1965, "Sample Size Es-
timates in Permeability Studies", J. Irrig. Drain.
Div. Amer. Soc. Civil Eng., Vol. 91 (IRl), pp. 1-9.

Winsauer, W.0. and McCardell, W.M., 1953, "Ionic Double-
Layer Conductivity in Reservoir Rock", Petrol. Trans.,
A.I.M.E., Vol. 198, pp. 129-134, '

Worthington, P.F., and Barker, R.D., 1972, "Methods for
the Calculation of True Formation Factors in the
Bunter Sandstone of Northwest England", Engineering
Geology, Vol. 6, pp. 213-228,

Worthington, P.F., 1977, "Influence of Matrix Conduction
Upon Hydrogeophysical Relationships in Arenaceous
Aguifiers", Water Resources Research, Vol. 13(1),
pp. 87-92.

Wyllie, M.R.J., and Gregory, A.R., 1953, "Formation Fac-
tors of Unconsolidated Porous Media: Influence of
Particle Shape and Effect of Cementation", Petrol.
Trans., A.I.M.E., Vol. 198, pp. 103-109.

Zohdy, A.A.R., 1965, "The Auxiliary Point Method of
Electrical Sounding Interpretation, and Its
Relationship to the Dar Zarrouk Parameters",
Geophysics, Vol. 30, p. 644-660.

zZzohdy, A.A.R., Eaton, G.P., and Mabey, D.R., 1974, "Ap-
plication of Surface Geophysics to Groundwater In-
vestigations”, Techniques of Water Resources Inves-
tigations of the U.S.G.S., Chapt. D1, Book 2.






108

Appendix A

Material Level Relationships

Porosity and permeability are the hydrogeological properties that
most researchers have attempted to correlate with electrical properties
at the material level. Archie (1942) introduced the concept of formation

factor in his study of brine saturated rocks. Formation factor is

defined as
F = _ﬁo_ (\)
Qw
where Q? = bulk resistivity of the brine saturated rock
and Qw = resistivity of the brine

According to Archie (1950) and Carothers (1968), formation factor (F) is
inversely related to the porosity (¢ ) by,

F=ad ™ (Archies Law) (2)
where a and m are constants relating to the rock type. Unconsolidated
sands have also been shown to follow the trend of Archies Law (Wyllie and
Gregory, 1953).

Patnode and Wyllie (1950), and Hill and Milburn (1956) found the
formation factor to vary with porewater resistivity in argillaceous sand-
stones tested in the laboratory. Later, Worthington and Barker (1972)
made similar observations of the argillaceous material of the Bunter
Sandstone of Northwest England. Winsauer and McCardell (1953) attributed
the abnormal effect to absorption on the clay surface, which varies with
electrolyte concentration. Both Hill and Milburn (1956) and Worthington
and Barker (1972) distinguish between this formation factor, which
changes with pore water resistivities, and a formation factor dependent

only on solid properties. The Worthington and Barker term of "apparent






This model was disputed by Winsauer and McCardell (1953) on the basis
that it implied a constant cohtribution to the conduction by éo]id
constituents (taken to include surface conduction), independent of
porewater conductivity. This is illustrated in equation (3) where »/€¢
is a constant. Yet Worthington and Barker (1972) demonstrated the good
fit of equation 3 to their empirical data. They extrapolated F; from Fg
VS, @y data used jn equation 3. True formation factor could be
determined easier by saturating the sample with pore water of high
conductance to surpress the effects of surface conduction.

The relationship between porosity and true formation factor appears
to be very strong. Groundwater modeling, however, requires values for
the hydraulic conductivity or permeability (k). The relationship of true
formation factor to permeability is not as well understood, but tests
indicate that true formation factor increases as permeability decreases
with a broad trend on a log-log scatter diagram (Worthington). Inherent
in this relationship is the direct correlation between permeability and
porosity, which is demonstrated by Worthington's data for unsorted
sandstones.

A demonstration of the effect of the ¢:k relatiohship on the F; :k
relationship is shown in figure Al. Here two cases are illustrated.
Case A shows a direct relationship between ¢ :k which yields the inverse
relationship for F; :k, ‘assuming the validity of Archies Law. The Case B
Situation yields the direct relationship between Fi:k because an inverse
relationship was used for § :k.

Since F;:k relationships seem to depend on the ¢ :k correlations, the

latter relationship deserves some attention. The concepts of porosity
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data indicate a relationship between grain size and F, for fresh waters.
The data show F, increases with increasing grain size, indicating that F,
may correlate well with perneability.

Laboratory data from Jones and Buford (1951) viere used by Alger
(1966) and Croft (1971) to develop a relationship between apparent
formation factor and permeability. The Jones and Buford samples were
graded with relatively constant porosities, ranging from .40 to .45, and
the pore vater resisitivity was 35 -n. Kelly (1976) measured
perneability and apparent formation factor concurrently, using a
permeanmeter with electrodes embedded in the cell to enable the
measurement of conductance (inverse of resistivity). His samples were
clean, of constant porqsity (.415) and . Was approximately 10 A -n.
Points from the Jones and Buford, and Kelly (1976) data are shown in
figure A2. Both are in good agreement.

llorthington (1977) claims the Jones and Buford sanples may have
contained some clay and he points out that it is the argillaceous nature
of the samples which calls for the use of apparent formation factor. He
claims that the finer graded samples contain more clay and this changing
clay content is what brings about the good F, :k relationship. Evidence
from Kelly (1976) indicates the F, :k correlation is strong in graded
samples of fairly constant porosity that did not contain clay. It
appears Horthington's conclusion would serve to enhance the F :k
relationship in graded argillaceous sand deposits.

Currently there is no laboratory data of F, vs. k for ungraded clean
sarnples where the porosity may vary. The behavior of such a sample to
sample relationship was postulated in a dissertation by Urish (1978).

His theoretical riodel used an equation developed by Pfannkuch (1969) for'
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apparent formation factor and the Kozeny-Carnen equation for
perrneabil ity.The Pfankuch model was selected because of its comprehensive
treatment of the role surface conductivity plays in the electrical

transport process, even in clean sands. This model is expressed as;

1 =1 + 1 + 1 (%)
W T R R
or in conductance terms
o=y q
K, o= Ko o+ K, o+ K | (9)
vthere
Ko = 1 conductance of the combined or bulk phase
Ro
Ke = 1. conductance of the pore water phase
Rf
Kg = 1 conductance of the dispersed or soil matrix
Py phase '
Kg = 1. surface conductance
R
s

and the subscripted R values denote the resistance for each phase. When
this nodel is expressed in terms of the geometry of the matrix'system,
incorporating the concépt of tortuosity and assuming there is no
conduction through the soil matrix or dispersed phase, the resulting

expression for the apparent formation factor (F ) is:

F = Fe (Urish, 1978) (10)
« | + X g
-
where F, = intrinsic or true formation factor
= f (&) Archies Law
k¢ = specific surface conductivity (mho)
kg = conductivity of the porewater phase
(mho-cm~1)
S‘> = specific internal pore surface (cm™1)
= S, 1o% . suchcearen

$ Void voluwme



where ST = total specific surface, & = porosity

F. may be considered as a function of porosity (¢ ) and tortuosity.

Since tortuosity is difficult to express numerically, most researchers
show true formation factor to be a function only of porosity. Typical is
the one by Dakhnov (1962), expressed as

.33
F': ! +.?.5-("'d>)2
i l"(/‘ﬁb).m

(Urish, 1978) (1)

Loudon (1952), as a result of laboratory investigations, concluded
that the Kozeny-Carmen equation agreed better with observed permeability
then any other published theoretical equation. This equation is

expressed as,

3 .
¥ ¢
k = . cm/sec (Loudon, 1952) (I2)
RS (1-9)° ,
where: d = porosity
= 7489.16 cm~! sec! °
g .16 cm -~ sec™ at 10 C
c = 5 (for spherical particles)
St = ' ey _ +eotal surface area
T total specific surface volume of grains
= a (XS] + XpSp...... + XnSn) cn!
where: a = angularity with a range from 1.1 for rounded sands to
1.4 for angular sand
X = fractions of the total sample by grain size
S = = specific surface of equivalent diameter sphere in

6
D each grain size fraction, where D = equivalent
diameter

Examination of these theoretical equations for Fa and k, show that
both are very dependent upon surface area, with internal specific surface
(SP) found in the denominator of the Pfannkuch expression and total

specific surface_(ST) found in the denominator of the Kozeny-Carmen
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equation. Thus changes in surface area will effect Fq and k in the same
manner,

The other common parameter in equations 10 and 12 is the porosity,
which when increased, will serve to decrease Fq and increase k. When the
porosity is fairly constant, the F, 1k relationship proves to be one that
is'strong and direct on a theoretical basis, since the surface area
parameters control. This is the case most researchers have shown
empirically (Sarma & Rao, Alger, Croft, Kelly, Worthington), where graded
samples of relatively constant porosity exhibit increasing ST and-SP as

the average grain size (D decreases. It should also be noted that if

so)
the sorting coefficient (So) increases as Dso decreases, the surface
area parameters will increase at an even greater rate, and very strong

Fq ik correlations might be exbected. However, the D :S, inverse

relationship does not appear to occur in granular outwash deposits (see

appendix B). This relationship does not appear to be of significance in
establishing the direct F, 2k relationship since samples with small D¢,
values exhibiting small sorting coefficients (S,), will still show
larger S, and S, values then sambies containing large D, values and
large S, values. Furthermore, the porosity fluctuations from sample
to sample should not provide significant influence to alter the direct
relationship for F,:k, since the magnitude of porosities must be from 0.0
to 1.0 (and practically from .2 to .7), which cannot control over the ST
and SP values that are always at least one order of magnitude higher.
These observations are shown by Urish (1978), where the direct Fa ik
relationship results when the Pfankuch and Kozeny-Carmen expressions are
utilized. The porosities he uses in equations 10, 11, and 12 are based

on wet packing tests for natural outwash samples. These were obtained
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for both the Toosest (®yay) and densest (Pyy) states. Figure A3
shows the hypothesized in-situ behavior of Fq vs. k for q’MAX and

MIN as grain size changes. Also shown is the effect of changing pore
water resistivity for one group of points. Inherent in this plot is an
inverse trend between uniformity and porosity. The probably average
curve shows theoretical in-situ behavior when an inverse trend exists for
porosity vs. permeability. Validity of the Urish model is demonstrated
when the resulting F, vs. k plot for spherical particles of constant
porosity equal to .4 correlated well with the Jones and Buford data
(figure A4), which was for an average porosity of .42 (minimum was .40,
maximum was .45) and samples were well sorted. Examination of Urish's
input data for ungraded in-situ samples shows an inherent inverse
relationship between porosity (¢ ) and permeability (k) and a poor
correlation between average grain size (Dso) and uniformity coefficient
(Vo). |
Data from Worthington (1977) (illustrated in figure A5) for unsorted
argillaceous sands shows an Eazk inverse relationship. This situation
agrees with the case A trend of figure 1. The inverse relationship
appears to reverse as the pore water resistivity increases and the
formation factor departs from the true value. This reversing trend may
have been seen clearer if tests for pore water resistivities higher than
25 »n-m were run. Since Werthington claims that matrix conducting
properties of unsorted sands will vary unsysfematica11y owing to
different concentrations and arrangéments of the conducting minerals it
must be the surface area parameters (S.r and Sg Jthat are responsible for
converting the inverse F; :k trend into a direct F, ik relationship.

From empirical and theoretical studies, both FL:k and the ﬂ +k


















Appendix B

Porosity and Permeability

Since intrinsic formation factor vs. permeability relationships
appear to depend on the form of the porosity vs. permeability
correlations, the latter relationship deserves some examination.
According to Graton and Fraser (1935), who examined the concepts of
porosity and permeability for spheres, if the diameter of the particle
spheres is kept constant, the porosity will depend only on the packing.
Furthermore, if the packing is the same, porosity will remain constant,
regardless of’the particle sphere size. Permeability also depends on
packing, however, this is not the whole of the story. If the absolute
size of the spherical particles in a given packing arrangement is
ihcreased; the permeability will increase.

The in-situ case is not one of uniformly sized particles. Fraser
examines the following factors, which he be]ieveé affect the in-situ
porosity of natural clastic deposits:
absolute grain size
non-uniformity in the size of the grain

proportions of various sizes of grain
shape of grain (angularity)

£ WM
« e e =

plus the following more general factors

5. method of deposition
6. compaction during and following deposition

As has‘already been stated, the actual size of the particle has no
influence on the porosity of uniform spheres. According to Fraser this

is not true for natural sediments, since as the grain size decreases,
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while porosity and permeability commonly vary in the same direction,

. there is extremely elastic variation between the two properties, so that,
under certain conditions, low porosity may be associatedvﬁith high
perneability; and very often indeed, material of high porosity has very
Tow permeability. Here they are implying these associations of low
porosity with high permeability are possible on a sample to sample

basis. This in-situ condition can be explained due to the different
depositional environments of coarse and fine sediments. Silts and clays
are deposited mainly by slow settling fron slack water, whereas coarse
gravels are deposited in-a high energy environment with much less
uniformity in texture and more Tateral variation than sands (Fraser,
1935). This suggests that for an alluvial deposited soil mass, the finer
the average soil particle is, the Tower was .its depositional energy and
the more uniformity it wi11 possess. '

From the{artic]es by Graton and Fraser (1935) and Fraser (1935) then,
it wouid seen logical that porosity would correlate with average grain
size and uniformity, wheré average grain size would tend to indicate the
type of packing. Permeability might also be expected to correlate well
with average grain size and uniformity'cbefficient, where the average
grain size would indicate the absolute size scale as well as the
depositional packing energy.

The importance of grain size and degree of sorting relative to
in-situ porosity is reasonably well established. Urish (1978) shows good
correlations between dependent variable, porosity (¢ ) and independent
variables, average grain size (D ) and uniformity coefficient
(U,) (U,= Dy /D,, ). When his average porosities for twenty two wet
packing tests are correlated to D, and S,, the following equation

. P~ DS-D-""YS;‘M ‘ (‘3)









the geometric mean diameter as the‘average grain size and the phi
standard deviation as a sorting indicator. Only these Sizing parameters
were varied, with other factors such as packing and shape kept as
constant as possible during their experiments. Porosities were kept at
40% and the temperature was 68 *F. Furthermore, each sizing distribution
of glacial outwash (Wisconsin age) was represented as a straight line on
phi probability paper and is therefore a log normal distribution by
weight. ~The laboratory tests best fit the following expression;

L3
k = 760 D, e *darcies (7)

where U_¢

phi standard deviation

D, = geometric mean diameter

When the phi standard deviation ( q&) was converted to sorting

coefficient (S ) and the average grain size (D, ) is used interchangeably

50)

with the geometric mean diameter (D,), the expression becomes

,(s, - !) 3
2 3 1.67

_k\: 13 DSo ) em/sec )

Equation 18 is plotted in figure B5.

A similar experiment was carried out by Masch and Denny (1966). They
used washed Colorado River sand and sythesized samples for various values
of average grain size (DSD) and inclusive standard deviation,
Temperatures were constant at 60° F but they do not specify porosities as
constant. Distributions were 1ine5r plots on semilogarithmic probability
paper, where grain sizes were in phi units and cumulative percent courser
values were evenly spaced. Their distributions were close to log normal

but Jacked the characteristic tails when plotted on a fhequency diagram.

132









The results are plotted in figure B6, which demonstrates the added
influence on permeability of high S, values (greater than 3) as grain
Size increases.

Differences between the results of Krumbien and Monk (figure B10) and
those of Masch and Denny (figure B1l) may be due in part to variable
porosities since Masch and Denny do not explicitly state their
porosities. The porosities may be important because of their ability to
indicate packing, The assumption of D., being an indicator of paﬁking
may be poor. Both plots do however, show similar trends (i.e., increases
in k with increasing D¢, and constant S_ --- decreases in k with
increasing S and constant Dso). A set of curves more characteristic of
a particular region may be obtained by sample testing. Such a
relationship should still follow the general trends exhibited by these
researchers, with deviations due to different depositional features
(alluvial, ice contact, glacial outwash, etc.).

Regression analysis of permeability (k), average grain size (Dso) and
sorting coefficient (So) from 38 samples of the Pawcatuck River Basin in
Rhode Island (Allen et al.) gave the relationships shown in the following

equations.

I.S4  -1.53 '

k= 30, S, m.c. =7 (19)
1S1 -velS, .

k = .10 Dso e m.c. = .72 (z0)
33/, -2.74

k = ,\q Dsb So m.c. = .(06 (’L‘)

o /s, -led S, .
k= .20, e m.c. = .S (22)

Multiple correlation coefficients (m.c.) are indicated and graphs of

these expressions are shown in figures B7 thru B10. Equations 19 and 20
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data points for pump test permeabilities and apparent formation factors
were obtained from the Wenner electrode configuration. Bore hole samples

showed the clay fraction was less than 4%. vThe regression they obtained

wdas
-.933 |
k =386.4 Qq ()
and since F, = Qa/ Quw
-.q33
k = .213 F, (2%)

when the mean value of water resistivity ( Pw= 1818 a-em) is
incorporated. Equation 25 is plotted on figure Cl.

Only one researcher has done theoretical work with field scale.
corre1afions between hydraulic and electrical transmitting properties.
Urish (1978) investigated the effect of layering by considering the
calculation of "aquifer permeability" and "aquifer resistivity" for
layered aquifer models. He assumed in-situ permeabilities of sands
(constant within each layer) and then determined the 1ayer resistivities
from the "probably average" curve of figure A3, with pore water
resistivity equal to 100 »-m. When both the layering and the flow were

horizontal, the aquifer permeability (k and the aquifer resistivity

hh)
( th) were calculated by the following equations:

R O (Perloff & Baron, 1976) (Z0)

(Zohdy et al., 1974) (a)
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where
kxy = aquifer permeability with
x = h = horizontall flow and
X = v = vertical
y = h = horizontal
y = v = vertical layering

ny = aquifer resistivity (x and y same as in kxy )

permeability in layer i

L

k
@i = resistivity in layer i
h

. = thickness in layer i

The results showed a significant difference between the predicted
horizontal permeability (based on the theoretical homogeneous material)
and the calculated horizontal permeébi]ity, thus indicating the influence
of the averaging process. \Ilthen aquifer resistivity vs. aquifer
perneability was plotted, the approximate regression 1ine was shown to be
flatter than the slope of the "probable average curve", which represents
an isotropic aquifer of constant permeability. Since only four models
were tested and only horizontal layered models were considered, these
results may not adequéte]y define the general field case, where layering
may be vertical or spacially mixed. »
Differences between laboratory and field results based on empirical
studies are undoubtedly influenced by measurement errors, inaccurate
aquifer porewater resistivities, inaccurate estimates of thicknesses due
to poorly defined lower boundaries or iower boundaries effectively
different for electrical and hydrological purposes, and field scale

averaging of permeabilities and resistivities.
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Appendix D

‘Numerical Modeling of Resistivity

The state-of-the-art of digital resistivity modeling is not as well
developed as its hydraulic counterpart. Aiken et al, (1973) developed a
finite difference algorithm for two-dimensional problems, which must be
sent up with square grids. They note that the model developed by Jepsen
(1969) was only a special case of theirs. Mufti (1976) shows that finite
difference modeling is a very powerful tool capable of yielding accurate
results for a variety of two dimensional geologic structures. He uses
the simple arithﬁetic mean for the connection conductivity values,

contrary to the practice of using the harmonic mean in hydraulic models.

Consider %.L ‘
~ &N ‘Pey’of{ S 28
khv £ 12— Bauvon (1976) ( )
2,
- & 2 ohdy etal.(1979) (29)
hv %_Hi 1 ‘

where k hvis the aquifer permeability when horizontal flow and vertical
layering occur, and G‘hv is the aquifer conductivity with the same flow
and layering conditions. The connection value between adjacent nodes in
the hydraulic model is the two layer case of equation 28, therefore
equation 29 should be used as the connection value of conductivity, since
the hydraulic and electrical cases are completely analagous potential

problems.
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Appendix E

Log - Normal Permeability Distribution

There is general agreement that field perneabilities follow a log
normal distribution. Thé first to propose this distribution was Law
(1944), viho analyzed cores from a carbonate oil reservoir. Examination
of frequency plots for permeabilities in oil sands by Musket (1946)
demonstrates the Tog nornal trend. These findings were further supported
by Harren et al. (1961), vho showed perneabilities from build up tests in
01l reservoirs yield 1og nornal distributions. Willardson and Hurst
(1965) found log normal distribution for soils from Australia and
California; and lcMillan (1966) presented additional evidence that
perneabilities and transnissivities are lTog normally distributed.

Freeze (1975) cites indirect evidence supporting a log normal
frequency distribution for permeability. Log normal distributions of
specific capacity, which is related to transmissivity; normal
distributions for porosity, which when used in an exponential function
correlates well with permeability; and the fact that the geometric mean
provides the best estimate of aquifer permeability in spacially mixed

(permeability) media, all support a log normal permeability distribution.
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The connection permeability in the r-direction is computed using
potential theory. Figure G4 provides a sketch with labeled qUantities,
Nodal permeabilities, kI and k2 are shown in Figure G4 where k: extends
between surfaces A and B, and k, extends between B and C. As water moves
radiai]y toward the well, the head loss through k' is Ah|, and through kl

R Arb: The combined head loss through both nodes is AH.

Then
AH: Ah‘ +bhz_ (57)

The flow through the section may be written;

Q:k\t\_}“r‘Ae:kLi‘ETl INANE (5—3‘)

AV\ O r,_









Appendix H

The IADI Procedure and the Thomas Algorithm

For a steady state 2-D model in the hydraulic or electrical case and
for radial or cartesian coordinates, the general form of equations 38,

41, 51, and 53 may be written;

(a"\j H’_i.\j +(‘[U' +O("-J') ¢i.}' = a‘.'Jl (}S‘-U-_, +b"'}' %@JM t C".J' ¢¢'—I,J' +0/1‘:/' ¢i+lu' (03)

where i model row

model column

]

J

d)t',J'

Equation 63 will apply at every node in the model. Thus there are as

scalar potential at row i and column j

many equations as there are nodes.

The iterative alternating direction implicit procedure for steady
state problems first involves reducing the Targe set of simultaneous
equations to a number of small sets. This is done by taking each row as
an individual set of simultaneous equations, with hydraulic heads in
adjacent rows held constant. According to Peaceman and Rachford (1955),
the set of row equations is then implicit in the direction along the row
and explicit in the direction orthogonal to the row. The set of row
equations forms a tridiagonal matrix and is solved readily by the Thomas
algorithm.

After all sets of row equations have been processed row by row,
attention is focused on solving the node equations again using the Thomas
algorithm for an individual column while all terms related to adjacent

columns are held constant. Finally, after all equations have been solved
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column by‘co]umn, an "iteration" is completed. The above process
continues until the change in hydraulic head at any point between
successive iterations is within a specified error criteria value.

As first applied to the row equations, the basic equation becomes

n-1 (#n E n n-1
. +b- V4 ctd- D, =a P, + b LD,
(a‘j + L,J)Sb‘, +(C'U d"J)sb"J RO iy ¢,,J+| j 95,,,'\)
h-1
t ‘7/;9' ¢;+:,J' (64)
where n = iteration index
n n-l!
It was necessary to separate ¢5J into ¢5J and ¢,U to utilize

the correct spacial derivative terms. That is,_for example, the

ox
. ok
term in equation 37 is computed for the n th iteration and g_%fag
is computed for the n-1 iteration.

To accelerate convergence, iteration parameters are applied to
equation 64. The use and computation of iteration parameters is
explained by Trescott et al. (1976). Equation 64 becomes

n n-| n h
b (et d-I)p . ma b D
(a(.u 4 b‘uJ +IP) ¢‘/J (C‘,'j + d"J IP}ib{'J I'J ¢“J-/ "J L,J-”
n-/
+ C‘.'J‘ ¢‘ / . +0( ¢[+I,J' ((DS)

Since the ¢'s at the n-1 iteration are known in equation 65, the
coefficient matrix of the nodal simultaneous equations of each row will
be tridiagonal. Solution of this tridiagoha] problem will be achieved

using the algorithm generally attributed to Thomas. Douglas (1959)

showed the scheme to be extremely stable with respect to round off errors.

The form of equation 65 used with the implicit column equations would

b
c n-1 h n-/ n-1

(atu"f'})t:j '—IP)¢ + (C"JJ'dl\\j +IP>¢"\] - ’JSbIJ'I —,Lb"lJ ¢‘1J+[

Y ’
Ly Sbi-l, -+ d, ¢>¢+) (66

D (ky2h

168



Sets of simultaneous equations for each column also form tridiagonal
coefficient matrices and are solved by the Thomas algorithm.

The steps toward the solution of a 7 X 7 problem will be demonstrated.
Figure H1 shows a typical row with impermeable boundaries and the
lTocation of factors a, b, c,and d at a typical node. The model will
always maintain perimeter nodes with permeabilities of zero. A1l sources

and discharges are located at interior nodes of constant potential.

Figure Hl, Typical Row with Impermeable Boundaries

Applying equation 65 at column 2,

T

n n n-i d)h-\ -(C v d _I )d) n-1
Cbn: qtcb' +\D'-¢3 +C"-¢i~\ "’0{., 1,1 1 L P/ T (@7)

o, + b + T,

where unlabeled row subscripts imply the i'th row.
Equation 67 can be formlulated into a known part (G) plus a factor

(F) multiplied by an unknown potential value.

qbz_ = C’),_ + F.,_ eP}h ‘ (C’g)
n-l n-1 ! h—’
where (5. = e d)‘" + C, 4)‘-_,'7_ + 0{ 43[4,,1 - (C1+dL "IP) ¢7.
* d, + b, + IP
bo
'F; =

a. -i—‘b,,_ + 1?
1 ' - U (eirdi-Ip) 4>'n-‘
et RKNOWNJ =g ¢%+| Ll dj ¢i*“j - (Cj td] p L

E;j:: aj + b +1p

169






























4) NUM = nodal permeability

5) go to step 1 until all nodal permeability values are determined

Exponential Distribution
The exponential or log uniform distribution had limits of A and B,
where the Towest value of A was one, and the frequency scale was log k (k
in ft/d). The distribution was generated as follows:
1) a random deviate (R) is generated between zero and one
n
2) compute NUM = R-10 (integer)
where n = smallest integer such that
n =8B
3) if NUM is less than A- 10 " g1nteger) then go to step 1;
if NUM is greater than B- 10" 1nteger), then go to step 1;
otherwise proceed to the next step

4)  compute XNUM = NUM/lOn-l (real)

o XNUM
5) compute k(i,j) = 10 (real)
where k (i,j) = nodal permeability at row i, colunn j

_6) go to step 1 until all nodal permeabilities are computed

Normal Deviate

The algorithm used to compute the log normal distribution, first
required a normal deviate with a mean of zero and a standard deviation of
one N [p, i] . This was achieved using the IMSL routine called GGNQF

(IMSL, Inc., 1979).

Log Normal Distribution
The log normal distribution LN [YY,U}] distribution with mean (”y)
and standard deviation ( Jy) was generated by the following procedure:

1) generate a normal deviate N [p 1]
where 4 = 0 and T=1
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Appendix J

Stream Function

Strean functions are of great importance for understanding
groundwater flow (Rushton and Redshaw, 1979). A comprehensive derivation
and discussion of the stream function was given by Bear, 1972. He

states;

In practical terms, it is impossible to label a

single fluid particle (say in an experiment of flow

through porous media) and observe its motion.

Instead we label a group of particles occupying a

small neighborhood, or we continuously inject a

tracer into a point in a steadily moving fluid. In

laminar flow, in spite of hydrodynanic dispersion,

and in the case of a continuous injection, in spite

of the lateral dispersion, it is possible to

define the average path of the particles and to use

it in defining the flow.
Accoring to Bear at any instant of time there is at every point in the
flow domain a ve]ocity (from Darcy's law) vector with a definite
direction. The instantaneous curves that are at every point tangent to
the direction of velocity at that point are called streanlines of the
flow. Assuming the existence of streamlines in a steady state situation,
a stream function may be derived. The derivation by Bear (1972) is
demonstrated here for the 2-D case.

Figure J1 shows a streamline with tangential velocity (V) at dr, an

element of arc along the streanline. Since by the definition of a

streamline, V and dr nust have the same direction, then
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are the streamlines. When equation 81 is written for an isotropic media
and multiplied by k, equation 82 is obtained. Thus, in an isotropic |
medium, streamlines are perpendicular to the equipotential surfaces.
Furthermore, since the differential equations (81) define what happens at
a point, we may have k = k(x, y), i.e., a non homogeneous medijum (Bear,
1972).
Rearranging equation 80 gives

Vodx -V, dy =0 ©@3)
The solution of 83 is

¢ =Y(x, y) = constant (34)
The condition for equation 83 to be an exact differential 6f same
function ¥ =Y (x, y) is

AL PO

———

(Bear, 1972)
0X dy

which is the continuity equation. Since the continuity expression
describes flow of an incompressible fluid in a nondeformable medium, the
stream function (H’) as defined here is valid only for such a case. When

equation 83 is rewritten as

dy = E&.-: (%
= Nex

it follows that this expression defines for any point in the xy plane an
angle, -
oL = Fon 1[(";‘/)

which the tangent to equation 84 makes with the +x axis. Equation 84
actually describes a family of curves for various values of the constant.

Since Y is an exact differential, then along any streamline,

A - - —
d\\):%,x.dX—%_a_a_\gd\/—Vde dey =D





















Figure_JS shows an exaggerated picture of horizontal quasi-1inear
flow. Flow vectors (g) cross every nodal boundary, where inflow rust
equal outflow. These vectors are the q values of equations 95 and 96,
which are used to compute the \? values. The dashed 1ine represents a
possible path of integration, where equation 95 is used when moving in
the y direction and equation 96 when moving in the x direétion.
values of Figure J5 are not nondimensionalized.

The algorithm used in the computer program of appendix K for point to
point flow first computes total inflow at the high constant potential
node, vhich is used to nondimensionalize other \Y va1ués. Boundary
conditions are known to be the maximum or minimun Y value. Interior
values are then computed using equation 97 or 98. The computer program
uses equation 97. Figure J6 provides nodal flow vectors (q) and
values for an exaggerated point to point flow regine. Flow continuity is
preserved at every node. The Y values are not nondimensionalized and
boundary conditions are the maximum (40) and mininun (0) streamlines.
Interior Y values are computed based on equation 97 or 98.

llhen total head values are contoured over a streamline plot, a flow
net results. Figure J7 shows the computer drawn flow net for a section
with a Tow permeability center. To see if the stream functioh algorithm
gave reasonable results when refraction occurs, a section with a wedge
shaped interface was run. Figure J8 shows the flow net for this section,
vhere flow appears to remain orthogonal to the total head contours. The
technique was also applied to an isotropic section with point to point
4f1ow (figure J9), and the same section with anisotrophy of 10 to 1

(figure J10). Both show reasonable results.
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Shaded boundaries are impermeable. :
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Appendix K

2-D Cartesian Coordinate Program

The 2 D quasi-linear flow program performs the following tasks:
1. Nodal permeabilities are assigned
2. If the electrical case is specified in the options, nodal

permeabilities are converted to apparent electrical
conductivities by

.
k
U; = L/ s:;x/o'b)

which is an approximation to the "probably average" curve of
Figure 1, developed by Urish, 1978.

3. Solves for the steady state potentials using the iterative
alternating direction implicit (IADI) procedure. Zero values of
permeability are placed around the perimeter of the model, hence
the no flow boundary is at the nodal boundary between the
perimeter node and the adjacent interior node. Constant
potential boundaries are located at the node center.

4. Aquifer permeability and aquifer resistivity are computed based
on potential theory. ‘

5. If specified in the options, stream function values are computed.

6. If specified in the options, stream function values and/or
potential quantities are written onto a data set, where they may
later be read by the Cal Comp contouring program to produce a
flow net.

The program will solve for steady state potentia]s when constant head
values are located anywhere in the 2-D section. However, the stream
function and aquifer property determining algorithms are suitable only
for boundary conditions which produce linear, quasi-linear or surficial
point to point flow. Stream function algorithms may be developed for
other cases where constant head nodes appear only on the model perimeter.

User instructions and a listing of the cartesian coordiate program

follow.
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s XgKe]

a0n

(¢]

(2]

33 PORMAT (3I10,1P10.5)
35 PORMAT (16 (A4, 1X))
READ(5,40) (XD (J),J=1,8HCOL)
40 PORMAT (8F10.1)
READ(5,40) (YD (I),I=1,NROW)
COMPOTE AX AND AY
AX= X-DISTANCE PROB ONE NODE CENTER TO THE HEXT
AY= Y-DISTANCE PROM ONE NODE CENTER TO THE NEXT

DO 42 J=2,NCOL

42 AX(J)= (XD (J)+XD (J-1)) /2.0
DO 44 I=2,NROW

44 AY(I)=(YD(I)+YD(I=1))/2.0

IF(ISO.EQ.1) GO TO 80
IFP(IS0.EQ.2) GO TO 91
IP(ISO.EQ.3) GO TO 50
IP(ISO.EQ.4) GO TO 84
IP(ISO.EQ.5) GO TO 60
OTHERWISE
READ VALUES FOR A LAYERED DETERMINISTIC HODEL

READ(5,35) LAYTY
READ(5,96) LAYERS
IP(LAYTY.EQ.CHECK(8)) GO TO 78
OTHERWISE THE MODEL IS HORIZONTALLY LAYERED
DO 76 IL=1,LAYERS
READ (S,73) LAYLO,LAYHI,PEBSN
73 FORMAT(2I10,F10.2)
DO 76 I=LAYLO,LAYHI
DO 76 J=2,HCOLM1
K(I,J)=PERA
76 CONTINUE
GO TO 95

THE MODEL IS VERTICALLY LAYERED

78 DO 79 IL=1,LAYERS
READ(5,73) LAYLO,LAYHI,PERN
DO 79 I=2,NROWM1
DO 79 J=LAYLC,LAYH
K(L,J)=PERM :

79 CONTINOE :
GO TO 85

PERMEABILITY VALUES HAVE A LOG NORMAL DISTRIBUTIOM
OVER THE ENTIRE REGION
50 READ(5,40) MBAN,SDEV
WBITE(6,51) HNEAN,SDEY

204
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51 PORMAT ('0°',/,5X,'PERMEABILITIES ARE LOG NORMALLY DISTRIBUTED®,

$' OVER THE ENTIRE REGION',/,7S5X,'MEAN=',F10.5,
$/,75X,STNDRD. DEV. =1 ,F10.5)
DO 54 I=2,HROWN1
DO 54 J=2,ACOLM1

FIBST PICK A NORMAL DEVIATE

52 YPL=GGNQP (DSEED)

THEN CONVERT N 0,1 DEVIATE TO ¥ MEAN,SDEV DEVIATE
KLOG=SDEV*YFL+NEAN

VALUE KLOG= LOG OF K
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K(I,J)=10%%KLOG
54 CONTINOE
GO TO 95

C PERMEABILITIES ARE READ IN AT EACH NODE
60 READ (5,40) ((K(I,J).J=1,8COL),I=1,NRON)
GO TO .95

C PERBEABILITY VALUES ARE ALL THE SAME
80 DO 82 I=1,NROW
Do 82 J=1,NCOL
82 K(I,J)= PERN
GO TO 95

PERMEABILITY VALUES HAVE AN EXPONENTIAL DISTRIBOUTIOH
OVER THE BENTIRE REGION )
EXLO= MININUM LOG OF K VALUE *100
EXHI= MAXINUM LOG OP K VALUE *100
THE HIGHEST VALOE FOR EXHI IS 300
84 READ(5,96) BXLO,EXRI
DO 88 I=1,NROR
DO 88 J=1,NCOL
86 YPL=GGUBFS (DSEED)
NUM=INT(YFL*1000.)
IFP(NUM.LT.EXLO) GO TO 86
IF(NUM.GT.EXHI) GO TO 86
XNUN=PLOAT (NUM) /100.
K(I,J)=10*%%XNON
88 CONTINDE
GO TO 95

[sXsNeNeKz X2!

c
C THE PERMEABILITY VALUES ARE UNIFORMLY DISTRIBUTED
C WITH A DIPPERENT DISTRIBUTION WITHIN BACH OF THE LATERS
* 91 READ(S5,96) LAYERS
DO 93 IL=1,LAYERS
READ (5,96) ONILO, UNTHI, LAYLO,LAYHI
WRITE(6,94) URILO,UNIHI,LAYLO,LAYHI
XER=1000. :
IF(UNIHI.LE.100) XER=100.
DO 93 I=LAYLO,LAYHI
DO 93 J=2,NCOLN1
92 YPL=GGUBFS (DSEED)
NUM=INT (YPL*XER)
IF(NUM.LT.ONILO) GO TO 92
IF (NUM.GT.UNIHI) GO TO 92
K (I,J) =PLOAT (NUH)
93 CONTINDE
94 FOBRNAT ('0',/,5X,'PERMEABILITY BRANGE POR UNIPORN DISTRIBUTION=',
116,2X,'T0*,16,1X,*PT/D*, 1%, POR LAYERS',1X,I2,1X,*TO",1X,I2)
96 PORMAT (4I10)

95 DO 100 I=1,NROW
K(I,1)=0.0

100 K(I,NCOL)=0.0
pa 110 J=1,NCOL
K(1,J)=0.0

110 K (NROW,J)=0.0

205
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aaqaoan

s XKz Es K2

Oaooon

aOoaan

aaa

READ ANISOTROPY AT EACH ROW
VALUE IS THE RATIO OFP KH/KV
120 READ(5,40) (AMNISO(I),I=1,NRONW)

COMPOTE KY(I,J) VALUES
THESE ARE THE KODAL VALUES TO BE USED IR CONPUTING
KHARM (I,J,2) --THE CONNECTION VALUE IN THE Y-DIRECTION
DO 112 I=2,NROWN1
DO 112 J=2,NCOLMT
112 KY(I,J)=K(I,J) /ANISO (I)
CONVERT HYDRAULIC CONDUCTIVITIES TO ELECTRICAL CONDUCTIVITIES IP SPECIFIED
IP(ELEC.NE.CHECK (3))GO TO 117
DO 115 I=2,¥ROWN1
D0 115 J=2,NCOLN1
KY(I,J)=1/(((XY(I,J)*.0003528) /5.13E~06)*%.7)
115 K(I,J)=1/({{K(I,J)*.0003528) /5.13E-06) $%.7)

CONPUTE THE ARITHMATIC,HARMONIC AMD GEOMETRIC NEANS OF THER
PERMEABILITY (CONDUCTIVITY) DISTRIBUTION

117 SUMK=0.0
RECIPK=0.0
PRODK=0.0
DO 119 T=2,MROUNT
DO 119 J=2,NCOLMI
SUMK=SUMK+K(I,J)
BECIPK=BECIPK+ (1./K(I,J))
PRODK=PRODK+ALOG10 (X (I,J))
119 CCNTINUE
XROWM2=PLOAT (NROWM2)
YCOLM2=PLOAT (NCOLN2)
ARITHK=SUMK/ (XROWNM2%XCOLMN2)
HARMK= (YBOWM2%XCOLMN2) /RECIPK
GEONK=10%% (PRODK/ (XROWN2*ICOLN2))

PERMEABILITY (CONDUCTIVITY) VALUBS ARE WRITTEN ONTO A DISK DATA SET
TO BE USED WITR PLOTTING
IP (CONK.HEB.CHECK (1)) GO TO 130
DO 105 I=2,NROWMI1
DO 105 J=2,NCOLMI
WRITE(10,2110) K(I,J)
105 CONTINUE

ECHO CHECK OF INPUT PARAMETERS

130 WRITE(6,140) .NROW,NCOL,EC,ITHAX
140 PORMAT - ('0',4X,*# OF ROWS =',T25,I5,/,5X,'# OF COLUNHS =',T25,I5,/
$//7/,5X,'CLOSURE ERBROR CRITERIA=*, E16.5 ,5X,'BAXINOM ITERATIONS
$=1,15) .
WRITE (6,148) CONH,CONK,ELEC,MINI,STRF,PLOV,SKIP,VARP
148 FORNAT (*0',/,5X,'PROBLEN OPTIONS SPECIFIED:',2X,10A8)
IF (SKIP.EQ.CHECK (7)) GO TO 175
WRITE (6, 150)
WRITE(6,160) (XD(J),J=1,NCOL)
150 PORMAT ('0*',/,5X,'DELTAX NODAL VALUES')
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nnaonaoann e Ne Xy

(e NeNg]

N0

160 PORNAT (°0',u4X,10P12.1/(5X,10F12.1))
WRITE(6,170)
WRITE(6,160) (YD(I),I=1,NROH)
170 FORMAT (*0',SX,'DELTAY NODAL VALODES')
175 ¥RITE(6,180) ,
180 FORMAT (*1',5X,*HORIZONTAL PERNMEABILITY VALUES AT NODE CENTER')
DO 190 I=1,NROW
190 WRITE(6,200) I,(X(I,J),Jd=1,NCOL)
200 PORMAT ('0',I2,2X,10F12.6/(5X,10F12.6))
210 PORMAT (*0',I2,2%,10I10/(5SX,10110))
WRITE(6,220)
220 FORMAT ('0',5X,'ANISOTROPY BATIO KH/KV')
WRITE (6,160) (ANISO(I),I=1,NROW)

WRITE AX AND AY

IF (SKIP.EQ.CHECK(7)) GO TO 262
WRITE(6,250)

250 PORMAT('0',5X,'AX VALUES!)
WRITE(6,160) (AX (J),J=2,NCOL)
WBITE (6,260)

260 PCRNAT (*0',5X,*AY VALUES')
WRITE (6,160) (AY (I),I=2,NROH)

CONPUTE XHARM(I,J,1) AND KHARN(I,J,2)

KHARM (I, J,1)= HARMONIC MEAN OF THE PERMEABILITIES AT ADJACEMNT NODES
IN THE X DIRECTION )

KHARM (I, J,2)= HARMONIC MEAN OF THE PERMEABILITIES AT ADJACEHT HODES
IN THE Y DIRECTION

262 DO 270 I=2,HROWM1
DO 270 J=2,8COL
270 KHABM (I,J,1)=((XD{3-1)+XD(J)) *K(I,J-1) *K(I,J}))/ (K (I,Jd)*XD (J=1) +
$K (I, J~1) XD (J))
DO 280 I=2,NROW
DO 280 J=2,NCOLHN1
280 KHARM(I,J,2)=((YD(I+1)+YID(I))*KY(I-1,J)*KY(I,J))
$/ {KY (I,3) *¥D(I-1)+KY (I~1,J)*¥D(I))

WRITE VALUES OF KHARM

IP (SKIP.EQ.CHECK(7)) GO TO 325
WRITE (6, 290)

290 FORMAT (*1%,//,5X,'VALUES OF KHARM I,J,1')
DO 300 I=2,HROWM1

300 WRITE(6,200) I, (KHABH(I,J,1),J=2,NCOL)
WRITE (6,310)

310 PORMAT (*'1',//,5X,'VALOES OF KHARK I,J,2!)
DO 320 I=2,NB0W

320 WRITE(6,200) I, (KHARM(I,J,2),J=2,NCOLN1)

SET BOUNDARY CONDITIOHNS

NOTE *¢* PERIMETER BOUNDARY POINTS CAN BR EBITHER CONSTANT HEAD OR IMNPERMEABLE

NOTE *#%% PFLOW SHOULD BE PROR RIGHT 70 LEFT OR TOP TO BOTTOR
I.B. HIGH HEADS SHOULD BE LOCATED AT THE TOP OR LEFT SIDE

SET ALL HEADS EQUAL TO SOME INITIAL VALUB

207
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C AND ALL IC{I,J) VALUES TO ZERO

naoaoaoaoan

(o]

325 DO 330 I=1,NROW
DO 330 J=1,NCOL
I1C(I1,3)=0

330 H(I,J)= 50.0

READ LOCATIONS OF CONSTANT HEAD NODES

ALONG THE PERINMETER

NOTE: THE PERIMETER IS THE ONLY LOCATION FOR A SOURCE OR A SINEK
THAT IS =-- A HIGH CONSTANT HEAD OB A LOW CONSTANT HEAD

READ THE TOP ROW
READ {5,336) (IC(2,J),J=2,NCOLN1)
336 FORMAT (16I5)
READ THE BOTTOM ROW
READ (5,336) (IC(NROWN1,J),J=2,NCOLN1)
READ THE LEPT SIDE
READ(5,336) (IC(I,2),I=3,NRONM2)
READ THE RIGHT SIDE
READ (5,336) {(IC(I,NCOLN1),I=3,8R09N2)

READ HEAD VALUES ALONG THE PERIMETER
READ TOP ROW

BREAD(5,350) (H(2,d),J=2,NCOLN1)
READ THE BOTTOM ROW

READ(5,350) (H(¥BOWN1,J),J=2,NCOLN1)
READ THE LEPT SIDE

READ(5,350) (H(I,2),I=3,NBOUN2)
READ THE RIGHT SIDE

“READ(5,350) (H(I,NCOLM1),I=3,NROWN2)
350 FORMAT (8D10.3)

WRITE STARTING HEAD MATRIX
IP (SKIP.EQ.CHECK (7)) GO TO 392
WRITE(6,360)

360 FORMAT(*1',//,5X,*STARTING HEAD MATHIX')
DO 370 I=1,NBROW

370 WRITEB(6,200) I, (H(I,J),J=1,NCOL)
WRITE(6,380)

380 FOR4AT(*1',//,5X,*CONSTANT HEAD NODES')
DO 390 I=1,4RON

390 WBITE (6,210} I,(IC(I,Jd),J=1,HCOL)

392 IP(MINI.EQ.CHECK{4)) GO TO 396
HMIN=2.
XVAL=3.1415%%2/ (2. *NCOL**2)
YVAL=3.1415%%2/ (2. *NROW**2)
DO.395 I=2,NROW
DO 195 J=2,NCOL
IP(K(I,J).EQ.0.0) GO TO 395
XPART=XVAL*(1/ (1+XD (J) *#2/YD(I) **2*ANIS0(I)))
YPART=YVAL® {1/ (1+YD (I) **#2*ANISO (I} /XD (J) #%2))
HMNIR=AMIR1(HMIN,XPART,YPART)

395 CONTINUE

396 ALPHA=EXP (ALOG (HNAX/HMIN)/ (NUMPAR~1))
ITPARA (1) =HMIN
DO 397 NTINE=2,NUMPAR

397 ITPARM(NTIME)=ITPARM(NTINE~1) *ALPHA

208
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WRITE(6,398) NUMPAR, (ITPARN(J),J=1,NUKPAR)

398 PORMAT ('0',3X,IS5,2X,'ITERATION PARAMETEBS:',6D012.3,//,6X,10D12.3)
IF (NINI.BQ-CHECK(8)) WRITE (6,399)

399 PORMAT ('0¢,2X,*NOTE--NININUN ITERATION PARANETER WAS SET)

IER=0
400 CONTINUE
C SOLUTION ALGORITHM USING THE ITERATIYE ALTERNATING DIRECTION INPLICIT PROC.
DO 500 I=1,NROW
DO 500 J=1,NCOL
500 HBOLD(I,J)=H(I,J)
DO 510 L=2,NCOLA1
510 HNEBW (L)=H(1,L)
IF (MOD(IER,NUMPAR)) 520,520,530
520 NTH=0
530 NTH=NTH+1
PARN=ITPARM (NTH)

IER=IER+ 1
ERR(IER)=0.0

ROW CALCULATIONS

(e NgNe]

DO 700 KK=2,NROW
I=KK
DO 620 J=2,NCOLNM1
IP(K(I,J))605,620,605

605 A= (KHABM(I,Jd,1)*YD(I))/AX(J)
B= (KHABN (I,J¢1,1)*YD(I)) /AX (J¢1)
C=(KHARM (I,J,2)*XD(J))/AY (I)
D= (KHARM (I+1,J,2)*XD (J)) /AY(I+1)
QPARN=(A+B+C+D) *PARN
E=A+B+QPARN
QKNOWN=C*H (I-1,J) +D*H(I+1,J) - (C+D-QPARN) *H(I,J)
IF(J.EQ.2) GO TO 615
IP(IC(I,J-1).EQ.~-1) GO TO 610
G(J)= (A*G (J-1) +QKNOVWN) / (E-A%P (J-1))
F(J) =B/ (E-A*F (J-1))
GO T0 620

610 G(J)=(A*H(I,J=-1) +QKNOWN) /E
F (J)=B/E
GO TO 620

615 G (2)=QKNOWN/E
F(2) =B/E

620 CONTINUE

C CALCULATE HEADS BY BACK SUBSTITUTION

N=NCOLN1
A(I-1,N) =HNEW ()
IP(IC(I,NCOLNY).EQ.-1) GO TO 640
HNEW (N) =G (N)
GO TGO 655

640 HNEW (N)=H{I,N)
GO TO 655

650 HNEW(N)= G (N)+P(N) *HNEW (N+1)

655 N=KR-1
IF(N.EQ.1) GO TO 700
H(I-1,N) =HNEW ()
IFP (IC(I,N) .NE.~1) GO TO 650
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COMPUTE HEADS AROUND THE PERIMETER OF THE MODEL
THIS IS DONE TO GIVE A BETTER PLOT EFPECT

ALOKG TOP ROW
DO 950 J=1,NCOL
950 H(1,J)=H(2,J)

ALONG,L BOTTON ROW
*.D0 960 J=1,HCOL
960 B(NROW,J)=H(NROWN1,J)

ALONG LEPT VERTICAL BOUNDARY
DO 970 I=1,NROW
970 H(I,1)=H(I,2)

ALONG RIGHT VERTICAL BOUNDARY
DO 980 I=1,NROW
980 H{I,NCOL)=H{I,NCOLNY)

WRITE(6,1005) (ERR(I),I=1,IER)

1005 PORMAT (*1*,5X,'HEAD DIFFERENCE POR EACH ITERATION',//,
$(/,3X,10P12.5))

1010 WRITE(6,1020) IER,ERR(IER),IET,JET

1020 PORMAT (*1¢,//,10X,*STEADY STATE HEAD MATRIX AFTER',I4,2X,*ITERATIO
$NS*,//,10X,*LARGEST READ DIPPERENCE =*,E12.3,2X,*'AT POINT',2X,'ROW
$¢,13,2X,'COLUNN',I3)

1030 DO 1040 I=1,NROW

1040 WRITE(6,200) I, (H(I,J),J=1,NCOL)
IF (CONH. NE.CAECK (2)) GO TO 1100
DO 1042 I=1,NROW
DO 1042 J=1,NCOL

1042 WRITE(11,2110) H(I,J)
WRITE (6, 1043)

1043 PORMAT (*0',4X, ' **#**% HEADS WRITTER ONTO DSN *a%s%!)
GO TO 1100

1045 WRITE(6,1055)

WRITE(6,1005) (ERR(I),I=1,IER)

1050 WRITE(6,1060) IER,ERR(IER),IET,JET

1055 PORMAT ('17,'**ssxsssss%¢ [TERATIONS EXCEEDED ###sssssssasst)

1060 PORMAT (*1°,//,10X,*HEAD MATRIX APTER',I4,2X,*ITERATIONS',//,10X,*
SLARGEST HEAD DIFPPERENCE =',E12.3,2X,°AT POINT',2X,'RONW',I3,2X,
$*COLUNN',I3)

pO0 1070 I=1,NEOW
1070 WRITE (6,200) I, (H(I,J),J=1,NCOL)
GO TO 3000

1100 IP(ELEC.EQ.CHECKX(3)) GO TO 1120 .
OTHERWISE CONVEBT PERMEABILITIES FROM PT/D TO CM/SEC
CARITH=ARITHK*.0003528
CHABN=HABMK*.0003528
CGEON=GEONK#.0003528

WBITE(6,1110) ABYTHK,CARITH,GEONK,CGFOM,HABRMK,CHARN
1110 FORMAT ('1°*,5X,'STATISTICAL MEANS OF THE PERMEABILITY',
1¢ DISTRIBUTION!',//,8X,'ARITHMATIC MEAN=',P10.4,1X,*'PT/D*,1X, .-
2*=v,1X,F10.6,1X,'CN/SEC',//,8X,  GEOSETRIC MNEAN=!',P10.4,1X,'FT/D’,
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31x,*=*,1x,p10.6,,1x,'CH/SEC',//,8X,'BARNONIC BEAN=',P10.4,1X,
4'pT/D',1X,'=',1X,P10.6,1X,*CH/SEC")
GO TO 1140
Cc
C CONVERT CONDUCTIVITIES TO RESISTIVITIES
1120 ARITHK=1./HABBK
GEOMK=1, /GEONK
HABMK=1./ABITHK
WRITE (6, 1130) ARITHK,GEONK,BABRMK
1130 POBMAT (*1¢,5X,°'STATISTICAL MEANS OF THE RESISTIVITY ',
1'DISTRIBUTION',//,8X,*ARITHNATIC MEAN=*,F10.4,1X,'0HN-NETERSY,
2//,8X,"GEONETRIC MNEAN=',P10.4,1X,'OHN-METERS',//,8X,
J'HARNONIC MEAN=',P10.4,1X,'0OHN-METERS*)
[of
1140 IP(FLOW.EQ.CHECK(6)) GO TO 1300
IP(WARP. EQ.CHECK (9) .OR.PLOW.EQ.CHECK (10)) GO TO 1293

OTHERWISE THE PREDOMINANT FLOW MUST BE HORIZONTAL
COMPUTE THE EQUIVALENT HORIZONTAL PERMEABILITY

[sNeNsEsNeNeNe!

Q=0.0
AREA=0.0
AREA= TOTAL CBOSS SECTIONAL ABREA THAT THE FLOW PASSES THROOGH

aa

DO 1200 I=2,NROWA1
AREA=AREA+YD (I)
Q=Q+ (KHARM (I, LEQUIV, 1) # ((H(I,LEQUIV~-1)~H(I,LEQUIV))/AX (LEQUIV))
1#YD (I))
1200 CONTINOE
C LENGTH=MACROSCOPIC LENGTH OVER WHICH THE TOTAL HEAD DIFFERENCE
C (DHEAD) IS DISSIPATED
c
LENGTH=0.0
DO 1250 J=3,NCOLA1
LERGTH=LENGTH ¢ AX (J)
1250 CONTINUE
c
C KHEQPD=EQUIVALENT HORIZONTAL PERMEABILITY IN UHITS OF FT./DAY
KHEQFD= (Q®LENGTH) / (DHEAD®AREA)
C KHEQCS=EQUIVALENT HORIZONTAL PERNEABILITY IN UNITS OF CM./SEC.
KHEQCS=KHEQFD*. 0003528
IF (ELEC. EQ.CHECK(3)) GO TO 1290
c
C OTHERWISE WE HAVE THE HYDRAULIC CASE
WRITE(6,1280) KHEQFD,KHEQCS,Q, LENGTH, AREA, DHEAD
1280 PORMAT(*0*,/////,5%,RACROSCOPIC PARAMETERS®,//,8X,*EQUIVALEST *,
1*HORIZONTAL PERMEABILITY=',FP10.4,1X,'PT/D',1X,'=*,F10.6,1X,
2'Cn/SEC*,//,8X,'TOTAL FLOW=',6F10.1,1X,'CFD*,//,8Y, *LERGTR=",P10.4,
31X,'FT*,//,8Y, AREA=* ,F10.4,1X,'SQ.FT.',//,81X,
4*TOTAL DISSIPATED HEAD=',F10.4,1X,¢FT."!)
GO TO 1400 '
1290 KHEQFD=1/KHEQFD
C THE EQUIVALENT ELECTRICAL HORIZONTAL COEDUCTIVITY WAS CONVERTED TO
C AN EQIVALENT HORIZONTAL ELECTRICAL RESISTIVITY
C CONYERT CURRENT PLOW TO AMPERES
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Q=Q/3.281
WRITE(6,1292) KHEQPD,Q,LENGTH,AREA,DHEAD
1292 FORMAT (*0',/////,5X,*HACROSCOPIC PARANETERS®,//,B8X,EQUIVALENT®,
1' HORIZONTAL ELECTHRICAL BESISTIVITY=*,F10.4,1X,'OHN-NETERS',//,8X,
2'TOTAL CURBENT PLOW=',F10.6,1X,'ANPERES?,//,8X, ' LENGTH=',F10.3, 1X,
3*PT.,//,8Y,AREA=¢,F10.3,1X,*SQ.PT.*,//,8X, ' TOTAL VOLTAGE DROP=',
4F10.4, 1K, ' VOLTS')
GO TO 1400
c .
C COMPUTE THE AQUIFER PERNEABILITY FOR POINT TO POINT PLOW USING
C THE METHOD SHONN BY WABREN AND PRICE
c
1293 PKI=0.0
DO 1294 I=2,NROWN1
PKI=PKI+KHARN (I,LEQUIV,1)* (H(I,LEQUIV-1)-H (I,LEQUIY))
1294 CONTINOE
KHEQFPD=PKI/WPFACT
¥RITE (6, 1298)
IP (ELEC. EQ.CHECK (3)) GO TO 1296
WRITE (6,1295) PKI,KHEQFD
GO TO 1400
1295 PORMAT ('0°,5X,*PKI=',1X,P10.2,1X,'PT**2/D%,///,51, ,
1'AQUIFER PERMEABILITY=',1X,F10.3,1X,'FT/D") _ -
c _
1296 KHEQFD=1./KHEQFD
WRITE(6,1297) FKI,KHEQFD
1297 FORMAT (*0*,///,5X,*'PKI=*,1X,FP10.6,11,°VOLT/OHN-N*,///,5%,
1'AQUIPER RESISTIVITY=',1X,P10.2)
1298 PORMAT ('0',/////,5X,"MACROSCOPIC TEANSPORT PROPERTIESY,
1* WERE COMPUTED BY THE WARREN £ PRICE TECHNIQUE!)
c
GO TO 1400
c ,
C HERE THE PREDOMINANT PLOW IS VERTICAL
C COMPUTE THE EQUIVALENT VEBTICAL PERSEABILITY
c
1300 IF(WARP.EQ.CHECK(9)) GO TO 1393
Q=0.0
AREA=0.0
DO 1350 J=2,NCOLM?
ABEA=AREA+XD (J)
G=Q+ (KHARN (LEQUIV,J,2) * ({H(LEQUIY-1,J)-H (LEQUIV, J))/l!(LEQUIV))
1%1D (J))
1350 CONTINOE
c .
C LENGTH= NACROSCOPIC LENGTH OVER WHICH THE TOTAL HEAD DIFFERENCE
C (DHEAD) IS DISSIPATED
C COMPUTE LENGTH
LENGTH=0.0
DO 1370 I=3,NBOUN1
LENGTH=LENGTH#AY (I)
1370 CONTINUE
c . .
C KVEQPD=. EQUIVALENT VERTICAL PERNEABILITY IN UNITS OF PFT./DAY
KVEQFD=(Q*LENGTH) / (DHEAD*AREL)
C KVEQCS= EQUIVALENT VERTICAL PEBMEABILITY IN ONITS OF CH./SEC.
KYEQCS=KVEQPD#*.0003528
IF (ELEC.EQ.CEECK(3)) GO TO 1390
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c
c
C COMPUTE INTERIOR VALUES OF THE STREAN FUNCTION MOVING ALONG
C SUCCESSIVE COLUMNS PROM THE BOTTOM STBEAMLINE
c .
DO 1800 J=2,NCOLM2
DO 1800 I=2,NBOWM1
I1I=NRON-I
STREUN(II,J)=STRPUN(II+1,J) +(KHEARM (II+1,J+1,1)% ((A(XI+1,J)-
SH(II+1,J+1)) /AX (J+1))%YD(II+1))
1800 CONTINUE
c
C SET THE VALUES OF STRPUN(I,1) AND STRFUN(I,NCOLN1) TO
C PRODUCE A BETTER PLOT EFPECT
c
DO 1850 I=1,NROWN1
STRPON (I, 1) =STRFUN (I, 2)
1850 STRPUN(I,NCOLM1)=STRFUN(X,NCOLN2)
c
C NONDIMENSIONALIZE THE STREAM PUBCTION
c
STRNOR=STRPUN (1,LSTRN)
DO 1900 I=1,RROWM1
DO 1900 J=1,NCOLM1
1900 STRPUN(I,J)=(STRPUN(I,J)/STRNOR) *100.
c
C WBITE OUT THE VALUES OP THE NONDINENSIONALIZED STREAN PUNCTION
c
WRITE(6,2100)
2100 PORMAT(*1',5X,'STREAM PUNCTION VALUES?)
DO 2000 I=1,NROWAM1 :
2000 WRITE(6,2640) I, (STRPUN(I,J),J=1,HCOLN1)
c
C WRITE STHEAN FUNCTION VALUES ONTO DSH
DO 2200 I=1,NBO¥M1
DO 2200 J=1,NCOLM1
2200 WRITE(13,2110) STRPUN(I,J)
2110 PORMAT {30X,F10.5)
WRITE(6,2300)
2300 PORMAT ('0¢,**%% STREAR POUNCTIOB VALUES WRITTEN ONTO DSH &%)

GO TGO 3000

Q0O (9]

C COMPUTE STREANM FUNCTION POR VERTICAL FLOW
C SET RIGHT SIDE STREAM FUNCTIONR VALUES TO ZERO
C
2500 DO 2510 I=1,NBOWN1
2510 STRFOUN(I,NCOLM1)=0.0
C
C COMPUTE INTEBIOR VALUES OF THE STREAM PUNCTION NMOVING ALONG
C SUCCESSIVE ROWS PROM THE RIGHT SIDE STREAN LINE
C WHERE THE STREANM FUNCTION IS EQUAL TO ZERO
C
o
pQ 2520 I=2,NROWN2
DO 2520 J=2,NCOLNY
JJ=NCOL-J
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STRPUN(I,JJ)=STRPUN(I,JJ+ 1)+ (KHARN (L+1,JJ+1,2) ¢ ((H(L,JJ+1)~
TH(I+1,3d¢1)) /AY (I+1)) *XD (JJ+ 1))
2520 CONTINUE
c
C SET THE VALUES OF STRPON(1,J) AND STRFOH (NBROWN1,J) TO
C PRODUCE A BETTER PLOT EPPECT
DO 2525 J=1,NCOLMN1
STRPUN (1,J)=STRPUN (2,J)
2525 STRPUN (NROWM1,J)=STRFPUN (NRO¥HN2,J)
c
C NONDIMENSIONALIZE THE STREAM PUNCTION
c
STRNOR=STRFUN (LSTRH, 1)
DO 2530 I=1,NROEN1
DO 2530 J=1,NCOLN1
2530 STRPUN(I,J)=(STRFON(I,J)/STRHOR) *100.

c
C WRITE THE VALUES OF THE NONDINENSIONALIZED STREAM PUNCTION
c
WRITE (6,2100)
DO 2540 I=1,NROWH1
2540 WRITE(6,200) I, (STRPUN(I,J),J=1,NCOLN1)
c
C WBITE STREAM PUNCTION VALUES ONTO DATA SET
c
DO 2550 I=1,NROWN1
DO 2550 J=1,NCOLM1
2550 WRITE(13,2110) STRFUN(I,J)
WRITE (6,2300)

GO TO 3000

a0 (o]

C COMPUTE STREAN FUNCTION FOR POINT TO POINT PLOW
C SET RIGHT SIDE STREAM PUNCTION YALUES TO ZERO
c
2560 DO 2570 I=2,NROWM2
STRPUN (I,1)=0.0
2570 STRFUN(I,NCOLM1)=0.0
c
C COMPUTE INTERIOR VALUES OF THE STREAN FUNCTION NOVING ALONG
C SUCCESSIVE ROWS FROM THE RIGHT SIDE STREAM LINE
C WHERE THE STREAM PUNCTION IS EQUAL TO ZERO
c .
c
DO 2600 I=2,NROWN2
DO 2600 J=2,NCOLN2
JJ=NCOL-J
Q1=KHARM (I+1,JJ+1,2) ¢ ((H(I+1,JJ+1)-H(I,Jd+1))
1/AY (I+1)) *XD (JJ+ 1)
2600 STRFUN(I,JJ)=STERFUN(I,JJ+1)+Q1
c
C CONPUTE TOTAL INFLOW AKD OUTPLOW AT THE
C CONSTANT HEAD NODES IN ROW 2
[of
QIN=0.0
COUT=0.0
DO 2606 J=2,HCOLA1
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IF(IC(2,J).GE.0) GO TO 2606
C OTHERWISE COMPUTE PLOW THROUGH THE LEPT(QL), BRIGHT (QR)
C AND BOTTOMN (QB) FACES OF THE CONSTANT HEAD NODE
QL=KHABM (2,J,1)* (H(2,Jd) ~H(2,J~=1) ) Z/AX (I} *YD (2)
QR=RHABM (2,3+1,1) * (H(2,J) ~B(2,J+1) ) /AX (J+1)*YD(2)
QB=KHARM (3,J,2) * (H(2,J) =H (3,3)) 7/AY (3) *XD (J)
QNODE=QL+4QR+QB
IF (QNODE.LT.0.0) GO TO 2604
C OTHERWISE INFLOW OCCURS AT THE NODER
QIN=QIN+QNODE
GO TO 2606
C OUTFLON OCCURS AT THE NODE
2604 QOUT=QO0T+(QNODE
2606 CONTINOE

SET STREAM PUNCTIOM VALUES OF RO¥ 1
THIS IS VALID ONLY WHEN ALL INPLO¥ IS FROS ONE HNODE
AND ALL OUTFLOW LEAVES AT ONE NODE
LSTRN1=LSTEM-1
DO 2608 J=1,LSTRM1
JJ=NCOL-J
STRFUN (1,J)=0.0
2608 STRPUN(I,JJ)=0.0
J1=LSTRH
J2=NCOL-J1
DO 2609 J=J1,J2
2609 STEPUN(1,J)=QIN
C
C MAKE THE BOTTOM ROW OF THE STREAN PUNCTION= 0.0
o

sNeNeNe]

DO 2610 J=1,8COLN?
2610 STRFUN (BROWN1,J)=0.0
c
C HONDIMENSIONALIZE THE STREAM PUNCTION
C AS BASED ON THE TOTAL INFLOW
DO 2620 I=1,HNROWNY
DO 2620 J=1,NCOLM?
2620 STRPUN (I,Jd)=(STRFUN(I,J)/7QIN)*100.
o
C WRITE THE VALUES OF THE NONDIMENSIONALIZED STREAM PUNCTION
c
WRITE(6,2100)
DO 2630 I=1,NRCWN1
2630 WRITE(6,2640) I, (STRFUN(I,Jd),J=1,NCOLN1)
2640 FORMAT ('0',I12,2X,10F12.3/(5X,10F12.3))
c
YRITE(6,2650) QIN,QOUT
2650 FORMAT (*0¢',3X,'PLOV¥ INTO THE MODEL=',F12.2,//,
13X,'FLON OUT OF THE MODEL=',F12.3)
c : .
C WRITE STREAM FURCTION VALUES ONTO DATA SET
c
DO 2660 I=1,NROWM1
DO 2660 J=1,NCOLM1
2660 WRITE(13,2670) STRFUN{I,J)
2670 PORMAT (301,F10.4)
WRITE (6,2300)
c

3000 sTOP
END












(JUNE 78) MAIN 0S/360 FORTRAN H EXTENDED

nNaaO

aan

aann

(s W]

aacaon

40

BREAD (5,40) (BD(J),J=1,NCOL)
PORMAT (8P10.1)
READ(5,40) (2D (I),I=1,NRON)

CONMPUTE AR AND AZ

AR=
A=

42

4a

B~-DISTANCE PBOM ONE NODE CENTER TO THE NEXT
Z-DISTANCE FROM ONE NODE CENTER TO THE NEXT

DO 42 J=2,NCOL
AR (J)= (RD(J) +&D(J-1)) /2.0
DO 44 I=2,NRONW
AZ(I)=(ZD(I)+2D(I-1))/2.0

CONMPUTE R(J) VALUES

R(J

4e

) IS THE RADIUS TO THE J'TH NODE CENTER
B (1) =-AR (2)

B(2)=0.0

DO 46 J=3,NCOL

R(J) =B (J=1) ¢AR (J)

IF(ISO0.EQ.1) GO TO 80
IF(IS0.EQ.2) GO TO 91
IF(IS0.BQ.3) GO TO S50
IF(ISO.EQ.4) GO TO B4
IF(IS0.EQ.S) GO TO 60

OTHERWISE
READ VALUES FPOR A LAYERED DETERMINISTIC MODEL

READ (5,35) LAITY
READ (5,96) LAYERS
IF{LAYTY.EQ.CHECK(7)) GO TO 78

OTHERWISE THE MODEL IS HORIZONTALLY LAYERED

73

76

THE
78

79

DO 76 IL=1,LAYERS
READ(5,73) LAYLO,LAYHI,PEBHN
FORMAT (2I10,F10.2)

DO 76 I=LAYLO,LAYHAY

DO 76 J=2,NCOLM1
K(I,J)=PERN

CONTINUE

GO TO 95

MODEL IS VERTICALLY LAYERED
DO 79 IL=1,LAYERS
READ(5,73) LAYLO,LAYHI,PERN
DO 79 I=2,NROWAN1

DO 79 J=LAYLO,LAYAI
K(I,J)=PERN

CONTINDE

GO TO 95

PPRMEABILITY VALUES HAVE A LOG NORMAL DISTRIBUTION
OVER THE ENTIRE BREGION

50

51 POBRMAT ('0',/,5X,'PERMEABILITIES ARE LOG NORMALLY DISTRIBUTED?,

READ (S5,40) MEAN,SDEY
WRITE(6,51) BEAN,SDEV

$* OVER THR ENTIRE REGION',/,7S5X,'MPAN=!,P10.5S,
$/,75%,'STEDRD. DEV. =¢,P10.5)
DC S4 I=2,NROWN1

221

DATE 80.346/0
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DO 54 J=2,NCOLN1
C FIRST PICK A NORMAL DEVIATE
52 YFL=GGNQP(DSEED)
C THEN CONVERT ¥ 0,1 DEVIATE TO ¥ MEAN,SDEV DEVIATE
KLOG=SDEV*YPL+MEAN
C VALUE KLCG= LOG OF K
K(I,J)=10%*KL0OG
S4 CONTINUE

GO TO 95
c
C .
C PERMEABILITIES ARE READ IN AT EACH NODE
60 READ(S5,40) ((K(I,J),J=1,8COL),I=1,NRO¥)
GO TO 95
c

C PERMEABILITY VALUES ARE ALL THE SAME
80 DO 82 I=1,NROW
DO 82 J=1,NCOL
82 K(I,J)= PERHN
GO TO 95

PERMEABILITY VALUES HAVE AN EXPONENTIAL DISTRIBUTION
OVER THE ENTIRE REGION
EXLO= MININOM LOG OF K VALUE #*100
EXHI= MAXINUM LOG OF K VALUE *100
THE HIGHEST VALUE POR EXHI IS 300
84 READ(S5,96) EXLO,EXHI
Do 88 I=1,NROW
DO 88 J=1,NCOL
86 YPL=GGUBEFS (DSEED)
NUM=INT(YPL*1000.)
IP (NUM.LT.EXLO) GO TO 86
IP (NUN.GT.EXHI) GO TO 86
XNUM=PLOAT (NUM) /100.
K(I,J)=10%*XNON
88 COKTINOE
. GO TO 95

aaoOonoan

c
C THE PEBRMEABILITY VALUES ARE UNIPORMLY DISTRIBUTED
C WITH A DIPPERENT DISTRIBUTION WITHIN EACH OP THE LAYERS
91 READ(5,96) LAYESS
DO 93 IL=1,LAYERS
READ(5,96) UNILC,UNIHI,LAYLO,LAYHI
WRITE(6,96) UNILO,UNIHI,LAYLO,LAYHI
XER=1000.
IP (UNIHI.LE.100) XER=100.
DO 93 I=LAYLO,LAYHI
DO 93 J=2,NCOLM1
92 YPL=GGUBPS (DSEED)
BUM=INT (YFL*XER)
IF (NOM.LT.UNILO) GO TO 92
IF(NUM.GT.ONIHI) GO TO 92
K (I,J)=PLOAT (NUN)
93 CONTINOE

222
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94 POBMAT ('0%,/,5X,'PERMEABILITY RANGE FOR UNIFORM DISTRIBUTION=!,

116,2%,'T0*,16,1X,*FPT/D*,1X,*FOBR LAYERS®*,1X,12,1X,*TO', 1X,I2)

96 PORMAT (4I10)
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95 DO 100 I=1,NROW
K(I,1)=0.0

100 K(I,NCOL)=0.0
DO 110 J=1,NCOL
K(1,J)=0.0

110 K (NROW,J)=0.0

READ ANISOTROPY AT EACH ROW
VALUE IS THE RATIO OF KH/KY
120 READ(5,40) (ANISO(I),I=1,NROH)

COMPUTE KY(I,J) VALDES
THESE ARE THE NODAL VALUES TO BE OSED IN COMPUTING
KCONN(I,J,2) --THE COMNECTION VALUE IN THE Z-DIRECTION
DO 112 I=2,NROUM1
DO 112 J=2,NCOLM1
112 KY(I,J)=R(I,J)/ANISO(I) .

223
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CONVERT HYDRAOLIC CONDUCTIVITIES TO ELECTRBRICAL CONDUCTIVITIES IF SPECIFIED

IF (ELEC. NE.CHECK (3)) GO TO 117

DO 115 I=2,NB0WN1

DO 115 J=2,NCOLN1

KY (I,d)=1/{((KY(I,J)*.0003528)/5.13E-06)*+.7)
115 K(I,J)=1/(((XK(I,J)*.0003528)/5.13E-06)*%x.7)

CONPUTE THE ARITHMATIC,HARMONIC AND GEOMETRIC MEANS OF THE
PERMEABILITY (CONDUCTIVITY) DISTRIBUTION

117 SUMK=0.0
RECIPK=0.0
PRODK=0.0
DO 119 I=2,NROWM1
DO 119 J=2,NCOLN1
SUNK=SUMK+K (I,J)
RECIPK=RECIPK+ (1./K(I,J))
PEODK=PRODK+ALOG10 (K (I,J)})
119 CONTINUE
‘ XBOWM2=FLOAT (NROWN2)
XCOLM2=FLOAT (§COLN2)
ABITHK=SURK/ (XROWM2*XCOLM2)
HARMK= (XROWM2*XCOLM2) /RECIPK
GEOMK=10*% (PRODK/ (XRO¥N2*XCOLN2))

PERMEABILITY (CONDUCTIVITY) YVALUES ARE WRITTEN ONTO A DISK DATA SET
TO BE USED WITH PLOTTING
IF (CONK. NE.CHECK (1)) GO TO 130
DO 105 I=2,NRONWN1
B0 105 J=2,NCOLM1
WRITE(10,2110) K(I,J)
105 CCNTINUE

ECHO CHECK OF INPUT PARANETERS

130 SRITE(6,140) NROW,NCOL,EC,ITHAX

140 FORMAT ('0',4X,'# OF ROWS =',T25,15,/,5X,*% OF CCLUMNS =*,T25,I5,/
$///.5%,'CLOSURE ERROR CRITERIA=', E16.5 ¢5X,'MAXINUN ITERATIONS



224

(JUNE 78) NAIN 05/360 FORTRANW H BXTENDED DATE 80.3u46/t

(s NeNe] [eNsNe!

naoooaaan

148

150
160

170
175
180

190
200
210

220

$=1,15)

WRITE(6,148) CONH,CONK,ELEC,MINI,STRF,SKIP

PORMAT (°0°*,/,S5X,*PROBLEM OPTIONS SPECIPIED:*,2X,10A8)
IP (SKIP.EQ.CRECK(6)) GO TO 175

YRITE(6,150)

WRITE(6,160) (BD(J),J=1,NCOL)

FPOa"AT ('0¢',/,5X,'DELTA-R (DR) NODAL VALUES')

FOAMAT (*0*,4X,10P12.1/(5X,10F12.1))

WRITE (6,170)

WRITE(6,160) (ZD(I),I=1,NROW)

PORMAT (*0°',5X,'DELTA-Z (DZ) NODAL VALUESY)
WRITE (6, 180)

POBMAT (*1',5X,'HOBIZONTAL PERMEABILITY VALUES AT NODE CENTER')
DO 190 I=1,NROW

WRITE(6,200) I, (K(I,J),Jd=1,NCOL)

PORMAT (*0°,12,2K,10F12.6/(5Y,10F12.6))

PORMAT ('0',I2,2X,10I10/(5X,10I10))

WRITE(6,220)

PORMAT (*0°,5X,"ANISOTROPY BATIO KH/KV!)

WRITE (6,160) (ANISO(I),I=1,NRO¥)

WRITE AR AND AZ

2590

260

WRI
261

265

IF (SKIP. EQ.CHECK(6)) GO TO 261
WRITE (6,250)

POBMAT (*0',S5X,"AB VALUES®)
WRITE (6, 160) (AR (J),Jd=2,NCOL)
WRITE (6,260)

POBNAT ('0¢,5K,'AZ VALOESY)
WRITE(6,160) (AZ(I),I=2,NRON)

TE B VALUES

IP (SRIP.EQ.CHECK(6)) GO -TO 262
WRITE (6,265)

PCBNAT (*0',5X,'R VALUESY)
WRITE (6,160) (B(J),J=1,NCOL)

COMPUTE XCONN(I,Jd,1) AND KCONN(I,J,2)

KCONN(I,J,1)= CONNECTION VALUE OF THE PERMEABILITIES AT ADJACENT MNODES

IN THE B DIRECTION

KCONN(I,J,2)= CONNECTION VALUE OF THE PERMEABILITIES AT ADJACENT MHODES

IN THE Z DIRECTION

262

NOT

270

DO 270 I=2,NROWN1

KCONN(I,2,1)=0.0

KCONN (I,NCOL,1)=0.0
KCONN(I,3,1)=((R(3)+BD(3)/2.) *K(I,2)*K (I,3)* (RD(2)/4.)

1#R (3)) 7/ ( ((RD (2) /2.) *K (I, 3) ®R (3) +8D(3) *K (I,2) * (RD (2) /4.
2)) *RD(2) /2.)

DO 270 J=4,NCOLM1
E #%* ° (R(J~1) +RD(J=1)/2.) IS THE BADIUS WHERE THE
CONNFCTION PERMEABILITY IS CONPUTED
KCONH (I,J,1)=(((B(J)+RD (J) /2.) = (B(J=1)~BD(J=1)/2.)) *K(I,J-1)*

1K(I,J)*B (J-1)*B(J) )/ ((BRD(J-1) *K (I,Jd) *B (J) +BD (J) *K(I,J~1)*B{(J-1)

2)* (R (J-1)+BD(J-1)72.))
DO 280 I=2,NBOW
DO 280 J=2,NCOL#N1
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280 KCONH(I,J,2)=((ZD(I+1)+ZD(I))*KY(I-1,J)*KY(I,J))
$/(KY (I,J)%2D (I-1) +KY(I-1,J) *2D (1))

WRITE VALUES OF KCONN

IF (SKIP.EQ.CHECK(6)) GO TO 325
WRITE(6,290)

290 PORMAT ('1',//,5X,'VALUES OF KCONN I,J,1!)
DG 300 I=2,NROWM1

300 WRITE(6,200) I, (KCONN(I,J,1),J=2,NCOL)
¥BRITE (6,310)

310 FORMAT (*'17,//,5X,*VALUES OF XCONM I,J,2¢)
DO 320 I=2,NBOW

320 WRITE(6,200) I, (KCONN(I,J,2),J=2,NCOLHNT)

SET EOONDARY CONDITIONS

NOTE #*##+ PERIMETER BOUNDARY POINTS CAN BE EITHER CONSTANT HEAD OR IMPEBMEABLE
NOTE **% PLOW NUST BE PROM BRIGHT TO LEFT

I.E. HIGH HEADS SHOULD BE LOCATED ON THE LEPT SIDE

SET ALL HEADS EQUAL TO SOME INITIAL VALUE
AND ALL IC(I,J) VALUES TO ZERO
325 po 330 I=1,NROW
DO 330 J=1,NCOL
Ic(1,J) =
330 H(I,J)= 50.0

BEAD LOCATIONS OF CONSTANT HEAD NODES

ALONG THE PERIMETER

NOTE: THE PERIMETER IS THE ONLY LOCATION FOR A SOURCE OB A SINK
THAT IS -- A HIGH CONSTANT HEAD OR A LOW CONSTANT HEAD

READ THE TOP ROW
READ (5,336) (IC(2,J),J=2,NCOLN1)
336 FORMAT (16I5)
READ THE BOTTOM ROW
READ (5,336) (IC(NROWN1,J),Jd=2,NCOLN1)
READ THE LEPT SIDE
READ (5,336) (IC(I,2),I=3,NRO¥N2)
READ THE RIGHT SIDE
READ (5,336) (IC(I,NCOLN1),I=3,NROWN2)

READ HEAD VALUES ALONG THE PERIMETER
READ TOP ROW

READ(5,350) (H(2,J),J=2,NCOLN1)
READ THE BOTTOM ROW

READ (5,350) (H(¥ROWM1,J),J=2,NCOLN1)
BREAD THE LEPT SIDE

READ(5,350) (H(I,2),I=3,8ROWN2)
READ THE RIGHT SIDE

READ (5,350) (H (I,NCOLM1),I=3,HROUN2)
350 FORMAT (8D10.3)

WRITE STARTING HEAD MATRIX
IF (SRIP. FQ.CHECK (6)) GO TO 392
WRITE(6,360)

360 FORMAT(*1',//,5X,'STARTING HEAD MATRIIXY)
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nno

DO 370 I=1,NROW

370 WRITE(6,200) I, (H(I,J),d=1,NCOL)
WRITE (6, 380)

380 PORMAT('1',//,5Y,'CONSTANT HEAD NODES')
DO 390 I=1,NROW

390 WRITE(6,210) I,(IC(I,J),Jd=1,HCOL)

392 IP(MINI.EQ.CHECK(4)) GO TO 396
HMIN=2.
XVAL=3.1415%%2 /(2. *HCOL#**2)
IVAL=3.1415%%2/ (2. *NROW**2)
DO 395 I=2,NROW
DO 395 J=2,NCOL
IF (K(I,J).EQ.0.0) GO TO 395
XPART=XVAL* (1/ (1¢BD(J) ¢*#2/ZD(I) #*2%ANIS0(I)))
YEART=YVAL® (1/ (1¢ZD (I) **2#ARISO (I) /RD (J) #%2))
HMIN=AMINT (HMIN,XPART, YPART)
395 CONTINDE
396 ALPHA=EXP(ALOG (ENAX/HNIN)/(NUMPAR-1))
ITPARM (1) =HNIN
DO 397 NTIME=2,NUNPAR
397 ITPARM (NTIME)=ITPARN (NTIME-1)*ALPHA
WRITE(6,398) NUMPAR, (LTPARM (J),J=1,NUNPAR)
398 FORMAT ('0¢,3X,I5,2X%,'ITERATION PARAMETERS:',6D12.3,//,6X,10D12.3)
IP(MINT.EQ.CHECK (4)) WRITE (6,399)
399 POBMAT (*0',2X,"NOTE--MININOM ITERATION PARAMETER WAS SET')

IEBR=0
400 CONTINUE
SOLUTION ALGORITHM USING THE ITERATIVE ALTERNATING DIRECTION IMPLICIT PROC.
DO 500 I=1,8R0%
DO 500 J=1,HCOL
500 HOLD(I,J)=H(I,J)
DO 510 L=2, NCOLM1
510 HNEW (L)=H(1,L) :
IF (MOD(IER,NUMPAR)) 520,520,530
520 NTH=0
530 NTH=NTH+1
EARM=ITPARM (NTH)

IBR=IER+1
ERR(IER)=0.0

ROW CALCULATIQONS

DO 700 I=2,NBOW
DO 620 J=2,NCOLM1Y
1P (K(I,J) .EQ.0..08.IC(I,Jd).EQ.=1) GO TO 620
605 IP(J-NE.2) GO TO 606
A=0.0
B= (KCONN (I,3,1) *(BD(2) /2.) #ZD(I)) /AR (3)
C= (KCONK (I,2,2)* ((RD(J)/2.)%¢2)/2.) /AZ (I)
D= (KCONN (I+1,2,2) % ((RD{J) /2.) #%2) /2.) /AZ(LI¢1)
GO. TO 608
606 A= (KCONN(I,J,1)% (B(J-1)+RD{J-1)/2.)*2ZD(I)) /AR (J)
B= (KCONN (I,J¢1,1) #(R(J) +BD (J) /2.) *ZD (I}) /AB (J+ 1)
C= (KCONN (I,J,2) ®R (J) *BD (J) ) /AZ (I)
D= (KCONN (I+1,J,2) %R (J) *RD (J)} } /AZ (I+1)
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c

N0

608

610

615

620

QPARN= (A+B+C+D) *PARN

E=A+B+QPARN

QKNOWN=C*H (I-1,J) +D*H(I+1,J) - (C+D-QPARA) *H (I,J)
IF (J.EQ.2) GO TO 615

IF (IC(I,J-1}.EQ.-1) GO TO 610

G (J) = (A*G (J- 1) +QKNOWN) / (E~A*F (J- 1))
P (J) =B/ (E-A%F (J-1))

GO TO 620
G(J)=(A*H (I,J=1) +QKNOWN) /B
F(J)=B/E :

GO TO 620

G(2) =QKNOWN/E

P{(2) =B/E ’

CONTINUE

CALCULATE HEADS BY BACK SUBSTITOTIOR .

640

650
655

657
700

703

706

708

N=NCOLN1

H(I~1,¥)=HNEW (N)

IF (IC(I,NCOLN1).EQ.-1) GG TO 640
BNEW (K) =G (N)

GO TO 655

HNEW (N) =H (I, N)

GO TO 655

HHEW (H) = G(N)+P (N) *HNEW (N+ 1)
N=N=-1

IP (N.EQ.1) GO TO 657
H(I-1,8) =ANEW (N)

IF (IC(I,N) .NE.-1) GO TO 650
GO TO 640

CONTINOE

CCHTINUE

COLUNMN CALCULATIORS

D0 703 L=2,%BOWHN1
ANEW(L)=H(L,1)

DO 800 J=2,NCOL

DO 720 I=2,KROWA1
IP(K(I,J).EQ.0..0B.IC(I,J).EQ.=1) GO TG 720
IF(J.NE.2) GO TO 706 '
A=0.0

B= (KCONN (I,3,1)*#(BD(2) /2.) *2D(I}) /AR (3)

C= (KCONN (I,2,2)* ((BO(J) /2.) %%2) /2.) /AZ(I)

D= (KCOBN (I+1,2,2) % ((BD(J)/2.) %%2) /2.) /AZ (I+1)
GO TO 708

A= (KCONN(I,J,1)% (B(J-1)+RD(J=1)/2.)*ZD(I)) /AR (J)
B= (KCONN (L ,J+1,1) *(B(J) +RD (J) /2.) *2D (I)) /AR (J+1)
C= (KCONN(I,Jd,2) *R (J) *RD (J) ) /AZ (I)

D= (KCONN (L+1,Jd,2) €B(J) *8D (J) ) Z/AZ (I+1)

QPARN= (A+B+C4+D) *PARM

E= (C+D+QPARN)

QKNOWN=A®H (I,J=-1) +B*H(T,J+ 1) - (A+B-QPABN) *H(I,J)
IF(I.EQ.2) GO TO 715

IF (IC(I-1,J).EQ.-1} GO TO 710
G(I)=(C*G(I-1) +QKNOWN) / (E-C*F (I-1))

F(I) =D/ (E-C*P(I-1))

GO TO 720

710 G(I)=(C*H(I-1,J) +QKNOWN) /E
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C

C.

anooaoaan

0o

F(I)=D/E
GO TO 720
715 G(2) =QKNOWN/E
F(2)=D/E
720 CONTINUE
CALCULATE HEADS BY BACK SUBSTITUTION
H=BROWN1
H(N,J~1) =HNEW (N)
IP (IC(NROWN1,J).EQ.~1) GO TO 740
HNEW (N) =G (N)
G0 TO 755
740 HNEW (N)=H(H,J)
GO TO 755
750 HNEW (N)=G (N) +F (N) *HEE# (N+1)
755 N=N-1
IF (N.EQ.1) GO TO 757
H{H,d-1) =HNEW (¥)
IF(IC(N,J) .NE.~1) GO TO 750
GO TO 740
757 CONTINOE
IF (J.EQ.NCOL) GO TO 800
DC 770 I=2,HROWM1
ET=DABS (HNEW (I) ~HOLD (I,J))
IF (ET-GT.ERR(IER)) GO TO 760
Ga TO 770
760 ERR(IER)=ET
IET=I
JET=J .
770 CONTINUE
800 CONTINUE

CHECK CLOSURE CRITERIA FOR STEADY STATE
1000 IF(IER.GE.ITMAX) GO TO 1045
IF (ERR(IER).GT.EC) GO TO 400
OTHERWISE THE STEADY STATE HEADS HAVE BEEN COMPUTED

CONPUTE HEADS AROUND THE PERIMETER OF THE MODEL
THIS IS DONE TO GIVE A BETTER PLOT EPPECT

ALONG TOP ROW
Do 950 J=1,NCOL
950 H(1,J)=H{(2,J)

ALONG BOTTOM ROW
DO 960 J=1,NCOL
960 H(NROW,J)=H(NROWK1,J)

‘ALONG LEPT VERTICAL BOUNDARY
DO 970 I=1,NRON

970 H(I,1)=H(I,2)

ALONG RIGHT VEBTICAL BOUNDARY
DO 980 I=1,NROW

980 H{I,NCOL)=H(I,NCOLN1)

WRITE(6,1005) (ERR(I) ,I=1,IER)

1005 FORMAT(*1¢,5X,'HEAD DIFFPEBRENCE FOR EACH ITERATION',//,

$(/,31,10712.5))
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