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Abstract 

Quantitative description of ground-water flow in fractured-rock aquifers is 

difficult because flow may be non-Darcian and hydrologic parameters are scale 

dependent. Due to its relative efficiency, the application of a continuum, or 

equivalent porous medium (EPM) approach to describing flow is desired 

wherever it can be deemed appropriate. The suitability of imposing such 

conditions on a ground-water flow model of a prototype fractured-bedrock island 

aquifer in Narragansett Bay, Rhode Island was investigated following favorable 

analysis of long-term drawdown data suggestive of Darcian ground-water flow. 

A borehole geophysical investigation of the island's municipal production 

well is corroborative, suggesting that ground-water flow into the well appears to 

decrease systematically with depth. Geophysical results were also used to 

develop transmissivity distributions from specific capacity measurements 

obtained throughout the study area. The distributions were useful for evaluating 

transmissivity values used in a finite-difference ground-water flow model. 

Due to the limited borehole data, surface geophysics were employed to 

investigate aquifer properties at a larger scale. Very low frequency (VLF) 

induction electromagnetics were applied across the study area to identify 

electromagnetically conductive subsurface structural features, perhaps 

suggestive of preferential flow. Highly conductive features were identified, 

corresponding with observed lineaments and other geomorphological features. 

These are interpreted to be large water-bearing fracture zones coincident with 
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the dominant bedrock foliation and fracture patterns observed in outcrop and 

acoustic borehole televiewer images. For purposes of finite-difference modeling 

however, explicit characterization of permeability in these areas is difficult due to 

the implicit nature of the geophysical method. 

A simplified representation of fracture-zone permeability is incorporated 

into a finite-difference model of the aquifer assuming that decreases in formation 

factor across fracture zones, inferred from geophysical results, provide a 

minimum for permeability increases across these zones. The discrepancy 

between finite-difference model-generated head and field-measured head was 

minimized using a otherwise horizontally uniform distribution of layer 

transmissivity values. Finite-difference model transmissivity is higher, on 

average, than transmissivity estimated from specific capacity, however is within 

the range of the measured distribution. Model-head discrepancies are 

pronounced in fracture-zone areas identified in the VLF data. At best, a very 

generalized description of flow results, such that a description of solute transport 

is inappropriate. 
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Preface 

This thesis is written in manuscript form, conforming to the style adopted the 

journal Ground Water. Part one of the manuscript includes an introduction, 

methodology, a description of the physical setting, the results with discussion, a 

summary and conclusions. Part two reports supplementary information, e.g. 

further analyses, raw data, formulae used for calculations and a description of 

assumptions used. 
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Introduction 

Quantitative description of ground-water flow in fractured-rock aquifers is 

difficult because flow may be non-Darcian and hydrologic parameters are scale 

dependent. Modeling field-scale flow with a reasonable level of resolution is 

therefore often impossible. This study attempts to illustrate that flow in a small 

fractured-bedrock aquifer system may be adequately and quantitatively 

described using Darcian continuum, or equivalent porous medium (EPM), 

precepts. 

The impetus for the extensive study of fracture flow is its importance to 

contaminant migration in fracture systems. Neretieks (1980) considered the 

importance of the diffusion of radionuclides from fractures into the surrounding 

rock matrix, a topic culminating in the passage of the United States Nuclear 

Waste Policy Act of 1982 and, subsequently, the choice of Yucca Mountain as a 

potential site for the country's nuclear waste repository. This spawned a wealth 

of papers geared to the study of advective processes in fractures themselves, 

some of which have utilized the continuum approach (Bibby, 1981, Huyakorn et 

al., 1983a&b, Pankow et al. 1986, Endo et al., 1988, and Johnson and DePaulo, 

1994). 

Numerous studies have been conducted in an attempt to model ground

water flow in fractured-rock aquifers, many of which have taken the EPM 

approach. Applications of the continuum concept to fractured environments 

include a regional study using a one-mile grid spacing (Gerhart, 1984) and a two-
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dimensional continuum model developed by Harte and Winter (1995) for the 

hypothetical study of the hydraulic exchange between crystalline rock and glacial 

deposits. Endo et al. (1984) developed criteria for the recognition of EPM 

behavior in an anisotropic medium based on effective hydraulic porosity using 

specific discharge and flow velocity. Berkowitz et al. (1988) used numerical 

methods to establish appropriate "equivalent" porosities for purposes of 

validating the continuum approach and suggested means for applying the 

principles to field-scale experiments. The problem associated with applying the 

EPM approach to field applications is that required representative elementary 

volumes (REV) are often at scales beyond the resolution desired. A stochastic 

representation of permeability has been developed by Neumann (1987) such 

that the continuum approach can be employed in resolving field-scale problems 

using aquifer units smaller than the traditional REV. Generally, for problems at 

scales smaller than REV's, fracture network models recognizing the 

characteristics of discrete fractures are required, but their employment solving 

field-scale problems is difficult due an inability to describe fracture geometry. 

Models of this type have been studied and modified by researchers such as 

Raven et al. (1988), Moreno et al. (1988), Brown (1989) and Ge (1997). 

Due to its relative simplicity and efficiency, the application of a continuum 

approach to modeling flow is desired wherever it can be deemed appropriate. A 

prototype for such an aquifer may exist in Rhode Island, evidenced by what 

appears to be Darcian behavior in long-term drawdown data. The Town of 

Jamestown, located on Conanicut Island (Figure 1 ), is facing current 
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and potential problems regarding its water supply. Water quality and quantity 

are issues the town must face in the short term. Water quality problems 

impacting the fractured-bedrock aquifer at central Conanicut Island, from which a 

portion of the municipal water supply is derived, range from salt-water intrusion 

to the introduction of anthropogenically derived nitrate and the potential 

proliferation of coliform bacteria (Veeger et al., 1997; Sandorf, 1998). The 

behavior of these contaminants and the required preventive and remedial efforts 

are dependent on the sources of the contaminants and their mechanical, as well 

as diffusive, behavior. The former type of behavior, which is linked to water flux, 

provides the impetus for this study. A successful quantitative description of the 

aquifer's flow characteristics provides a critical step towards an understanding of 

advective processes in the Conanicut Island ground-water system and the 

proximity and behavior of the fresh water-salt water interface to Jamestown's 

municipal well. 

Methodology 

The employment of a range of analytical techniques to the study is 

considered important in order to avoid relying too heavily on any one method. 

The following analyses provide the basis for an investigation of the validity of 

imposing Darcian continuum conditions on a quantitative description of the 

prototype aquifer: 1) time-drawdown behavior, 2) borehole and surface 

geophysics, and 3) analysis of a finite-difference ground-water flow model of the 

prototype aquifer. 
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Although calibration of a finite-difference model assuming Darcian 

continuum conditions supports the use of EPM precepts, additional evidence is 

desired to corroborate suitability. Long-term drawdown curves are suggestive of 

Darcian behavior if they exhibit linear behavior when plotted on semi-log axes 

(Cooper and Jacob, 1946). The application of long-term drawdown data to the 

investigation of fractured-rock aquifers has been studied by Gringarten and 

Witherspoon (1972) and Gernand and Heidtman (1997) with an emphasis on the 

impact of single-fracture flow on drawdown curves. Long-term drawdown data, 

although not widely available for the study area, provide a detailed look at the 

aquifer's response to pumping at the scale of drawdown and estimates of rock 

transmissivity and storativity for model construction. 

Borehole geophysical data, specifically heat-pulse flow meter and 

acoustic borehole televiewer results, are employed to characterize the vertical 

distribution of fractures and ground-water flow. These methods provide 

information about apparent flow "continuity" at drawdown and borehole scales. 

Borehole geophysics have been used extensively for the purpose of 

characterizing aquifer hydraulics. Keys and MacCary (1971 ), and more recently 

Paillet and Crowder (1996), have outlined general principles and interpretation 

methods for different borehole geophysical tools. The application of borehole 

geophysics to fractured rock has been useful for delineating fracture orientations 

and yield. Morin et al. (1997) applied a variety of downhole tools, including a 

acoustic borehole televiewer and a heat-pulse flow meter, to the study of an 

aquifer in the Passaic Formation in New Jersey. 
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Due to the limited scale of long-term drawdown and borehole geophysical 

data, surface geophysics were applied to expand the investigation of aquifer 

properties. A variety of surface geophysical methods were considered for the 

purpose of characterizing the aquifer at a larger scale, e.g. geoelectrics, very low 

frequency (VLF) electromagnetics and ground-penetrating radar. With the first 

two methods, significant current density anomalies would indicate the potential 

for coincident subsurface zones of enhanced permeability. Significant spatial 

variability over short distances would further be suggestive of a discrete bedrock 

permeability distribution at the aquifer scale. Earth-resistivity methods have 

been used quite extensively by geophysicists for the location of water-bearing 

rock and sediment. More recently, the focus has been on the relationship 

between the electrical conductance of earth materials and hydraulic conductance 

or permeability (Katsube and Hume, 1987; Frohlich et al., 1996). The inference 

of a correlation between current density and hydraulic conductance at Conanicut 

Island is intended to identify potential discontinuity of rock permeability, i.e. to 

refute the continuum hypothesis set forth above. 

VLF was chosen for this study due to its apparent suitability for use in the 

fractured environment being investigated (Michaud and Covel, 1998). VLF 

induction electromagnetics data are used to investigate the spatial variation of 

inferred current density across the study area. An explanation of VLF 

geophysics and theory development can be found in the Appendices. It suffices 

here to note that the method involves discrete measurements of induced 

electromagnetic field orthogonal to the strike of near-planar, electromagnetically 
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conductive, subsurface features, e.g. ore bodies and/or water-bearing fracture 

zones. Models of equivalent current densities are developed using an inversion

based filter developed by Karous and Hjelt (1983). 

The final step for evaluating a continuum approach to describing ground

water flow in fractured rock is the development and analysis of a finite-difference 

ground-water flow model. Computer code developed by Mercer et al. (1980) 

was initially considered for this purpose because of its ability to handle a salt 

water-fresh water interface. Due to the characterization of ground-water flow as 

predominantly shallow, changes to the position of the interface have little impact 

on Layer 1 head. Therefore, MODFLOW (McDonald and Harbaugh, 1988) and 

the 1/0 interface program Processing Modflow (Chiang and Kizelbach, 1996) was 

eventually selected for project simplification. The model is expected to identify 

areas for which continuum precepts may not be appropriate. Calibration difficulty 

and unreasonable model behavior are used as criteria against which the 

suitability of a continuum approach will be measured. 

Physical Setting 

The Pennsylvanian-age Rhode Island Formation of northern Conanicut 

Island is comprised of highly deformed metasedimentary rock, the history of 

which is summarized by Burks et al., 1998. During an extensional event marking 

the onset of the Alleghanian orogeny, the alluvial fan sediments of the Rhode 

Island Formation were deposited in a transtensional, non-marine basin within the 

Avalon terrane, and consisted of sandstone, conglomerate and shale, plus 
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subordinate coal. Convergence of the African and North American plates, with 

associated deformational processes, account for the rock's schistose texture. 

NNE-trending, west-verging coaxial and isoclinal folds mark the first 

deformational event which is associated with the dominant foliation in the study 

area, dipping to the east and subparallel to bedding. NNE and NNW-trending, 

east-verging open folds are associated with a subsequent deformational event. 

Amphibolite metamorphic facies are associated with these deformational events, 

with isograds in the study area ranging from garnet in the east to staurolite in the 

west. Subsequent deformational events are associated with sinistral followed by 

dextral shear across the Beaverhead Shear Zone. The shear zone serves as 

the southern boundary of the study area and separates the Pennsylvanian rocks 

in the study area from Cambrian rocks of the Jamestown Formation to the south. 

Relatively little bedrock exposure exists on the island such that outcrop 

measurements in the study area are limited to an exposure on the western 

shoreline (Figure 2). Quartz veins parallel to the dominant foliation (oriented 

approximately N17E, 33E at the western shoreline) are observed in the rock 

outcroppings. Veins can also be observed cutting across the foliation, coincident 

with near-vertical E-W trending fractures described by McMaster et. al. (1980). 

The near-vertical fracture system, oriented approximately N86W, 89N, has non

uniform spacing ranging from approximately 3 cm to 3 meters. Fractures appear 

to be discontinuous, pinching out in the more quartz-rich layers. A fracture 

system nearly orthogonal to the dominant foliation and oriented approximately 

N24E, 48W at the western shoreline suggests a possible conjugate relationship 
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(Figure 3). Other surfaces that comprise potential water-conducting systems can 

be observed in outcrop, including a pair of fracture systems oriented 

approximately N17W, 74Wand N61E, 76N. These systems may be tied to 

sinistral and dextral shear during post-Devonian tectonics as suggested by 

McMaster, et al. (1980). 

Fractures and other surfaces related to stresses experienced by the rock 

are expected to provide for secondary porosity and preferential ground-water 

flow. The nature of the strain responsible for the surfaces, i.e. brittle vs. ductile 

strain, may determine the sequence of fracture formation and fracture aperture. 

Surfaces that formed contemporaneously with metamorphism, e.g. the dominant 

foliation on Conanicut Island, are expected to have a smaller aperture than those 

experiencing brittle strain. These foliation surfaces, however, are more 

pervasive. For purposes of quantitatively describing ground-water flow through 

fractures, the focus has traditionally been on discrete systems. Fracture 

interconnectivity and continuity of permeability, however, would allow for the use 

of continuum methods for describing the flow of ground-water. 

Although the hydrogeology of Conanicut Island is dominated by fracture 

flow, the water table resides in surficial glacial sediments. Till comprises much of 

the sediment overlying bedrock, particularly on ridges and elevated areas, 

averaging 10 feet(± 7 feet) in thickness. Water-table depths in till average 6 feet 

(± 2 feet), indicating an average saturated till thickness of approximately 4 feet 

(Appendix I). The water table mirrors topography closely, suggesting low 
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hydraulic conductivity. JR-1, the municipal production well serving the Town of 

Jamestown, is cased through sediments to a depth of approximately 38 feet. A 

significant amount of ground water is expected to flow through the surficial 

material in the Jamestown Brook area, much of which appears to consist of 

stratified glacial melt-water deposits. JR-1 is pumped at a maximum rate of 

approximately 45 gallons per minute (gpm) for eight hours a day and discharges 

directly to the municipal water-supply system. Potential for a hydraulic 

connection between JR-1 and Jamestown Reservoir exists and is the subject of 

further study. 

Conanicut Island ground water is derived solely from precipitation, 

averaging approximately 3.5 inches per month (Figure 4). Discharge to fresh

water bodies, across the shoreface into Narragansett Bay, well discharge and 

evapotranspiration account for ground-water loss from the system. For 

comparable hydrologic conditions on Block Island, Rhode Island, Veeger and 

Johnston (1996) estimate evapotranspiration to be approximately 50% of 

precipitation. Ground-water system boundaries include the water table, inferred 

no-flow (Neumann) boundaries to the north and south (coincident with inferred 

ground-water divides and streamline boundaries) and the lower boundary 

defining the salt water-fresh water interface. A conceptual cross-sectional 

representation of generalized ground-water flow in the vicinity of JR-1 is shown 

in Figure 5. At the scale of an appropriate REV, fracture orientations discussed 

above are expected to allow for net ground-water flow in any direction, 

characteristic of an equivalent porous medium. 
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Results and Discussion 

Long-term drawdown data exist for two wells in the study area, JR-1 and 

JR-2, a well located approximately 200 feet to the south of JR-1. SR-1, located 

at the northern edge of the south reservoir, is effectively "dry" over its 250 foot 

depth. Two additional production wells were drilled in the vicinity of the Route 

138 overpass along N.Main Road in 1997 and 1998, however aquifer tests are 

pending Rhode Island Department of Environmental Management (RIDEM) 

approval. Figure 6 illustrates time-drawdown data for JR-1 and JR-2 on semi-log 

axes. The linear segments are suggestive of Darcian behavior, which assumes 

continuum conditions. The change in slope after 50 hours of pumping indicates 

that the cone of depression has encountered a less permeable part of the 

aquifer. Maximum drawdown does not extend below the surface of the bedrock, 

suggesting that accelerated drawdown in JR-1 is not likely due to fracture 

dewatering, but to aquifer heterogeneity. Data obtained from nearby observation 

wells also exhibit linear behavior. 

Borehole geophysical data further suggest continuum-like conditions in 

the vicinity of JR-1 (Figure 7). A suite of borehole geophysical tools was applied 

to JR-1 by the United States Geophysical Survey (USGS) in 1996, including a 

acoustic borehole televiewer, heat-pulse flow meter, caliper and resistivity sonde. 

Acoustic images of the borehole interior were used to map fractures intersecting 

the borehole and position the flow meter for measurements. The poles of some 

borehole-intersecting fractures are shown in Figure 3. Orientations of other 
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fractures were not easily measured from televiewer images due to the irregular 

geometry of the fracture images. Furthermore, near-vertical fractures do not 

appear in the televiewer images. 

Ground-water flow into JR-1 has apparent continuity that can be 

described using a logarithmic function of depth, with flow into the well decreasing 

by 2.5 orders of magnitude for every order of magnitude drop in elevation into 

the well. Assuming horizontal ground-water flow, one may also characterize rock 

permeability in this way. The anomalous value for flow at a depth of 

approximately 88 feet underscores the difficulty of working with fractured rock 

and the importance of fracture interconnectivity or isolation for evaluating 

continuity. Caliper results are shown to illustrate that the existence of fractures 

or incompetent rock does not necessarily result in increased ground-water flow 

to the well. 

The flow meter results are supported by the relationship between 

measured transmissivity estimates and well depth (Figure 8). Transmissivity 

estimates, obtained from private wells scattered throughout the study area and 

normalized by well depth, can be seen to decrease relative to well depth. Rock 

at increasing depth is generally contributing less water to these wells. Some 

concern has been expressed regarding the validity of this relationship for the 

evaluation of ground-water availability at depth (Trainer, 1988; Daniel, 1989; 

Loiselle and Evans, 1995). The potential for statistical interdependence of w~I_I 

yield and well depth should be recognized. This interdependence may play a 
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-

role in the apparent inverse correlation between transmissivity and the depth of 

rock yielding water. 

The apparent vertical continuity of flow observed in JR-1 is important for 

this study because it suggests that hydraulic conductivity may have an effectively 

smooth or near-continuous vertical distribution at some scale. This is useful for 

defining a REV; however, the isolated water-bearing fracture responsible for a 

break in the distribution suggests the need to describe flow through individual 

fractures if solute transport is to be accurately predicted. Linear behavior of 

municipal well drawdown over time, expected with Darcian flow, also suggests 

that continuum conditions exist at the drawdown scale. These results are 

important for a finite-difference description of the aquifer because the aquifer's 

hydraulic properties may be quantified and applied to model cells representing 

volumes of rock. Expansion of the investigation of aquifer properties is required 

however, to test the feasibility of a continuum approach beyond JR-1 and JR-2. 

VLF geophysics provide an efficient means for the collection of data over a large 

area. Prior to VLF data collection, USGS quadrangle sheets, a Rhode Island 

state bedrock map (Hermes et al., 1994), aerial photographs and bedrock 

structural data obtained on site were evaluated. VLF measurement transects 

were chosen based on geomorphology (Figure 9). A lineament was identified 

along the western shoreline (Figure 10), potentially associated with a fault 

delineated on the state bedrock map. Another lineament corresponds to the 

valley containing Jamestown Brook. The trend of each of these features is 
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coincident with the trend of the dominant bedrock foliation. A third target for VLF 

investigation was a topographic saddle just north of Windmill Hill. ABEM WADI™ 

instrumentation was used for the collection of VLF data along three transects 

across each lineament using a 24 kHz signal emitted from Washington state and 

two transects parallel to the axis of the ridge defining the topographic saddle 

using a 24.8 kHz signal from Maine. 

Data interpretation is based on output generated by ABEM's SECTOR™ 

and VLFMOD™ inversion software. Current density models, or profiles, shown in 

this report represent subsections of extensive measurement transects where 

remarkable features are identified (Figure 10). Modeling VLF current densities to 

a depth of 100 meters is reasonable. Generally, formation resistivities in excess 

of 1000 n-m were measured in JR-1 during the borehole geophysical 

investigation (Figure 7). This translates to a minimum VLF skin depth, 8, of 100 

meters using 

8 = 503-Jp! u (1) 

where p is the resistivity of competent rock in n-m and u is the frequency in Hz 

(ABEM, 1987). Modeled data in Profile A indicates a strong current density in the 

vicinity of measurement station 70W, i.e. 70 meters west of the base station, OE 

(Figure 11 ). Station 70W is located at the topographic low within a swale 

corresponding to the identified lineament, through which a stream flows to the 

south. The current density signature has an apparent east dip assumed to 

correspond to the dominant foliation, S1 a. There is also a signature suggestive 
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of a west-dipping feature in the vicinity of station 70W, perhaps concordant with 

the fracture system orthogonal to S1a. A much more defined west-dipping 

feature is modeled in the vicinity of station 200E. Figure 11, Profile B, shows 

modeled current density approximately 400 meters south and down strike from 

Profile A. The current density interpretation includes a strong east-dipping and a 

west-dipping feature in the vicinity of measurement station 540W, an area of 

significant ground-water discharge as observed in the field during data collection. 

Note the decreased resistivity at the center of the cross-pattern, suggesting a 

juncture of two fractured zones. This type of signature is repeatedly expressed 

in the filtered VLF data, for example in the vicinity of station 540W, Profile C 

(Figure 11). Manifestations of a potentially continuous fracture zone related to 

the dominant bedrock foliation and the fracture system orthogonal to that 

foliation are interpreted from anomalous VLF measurements along transects 

corresponding to profiles A, B and C. Other current density profiles are found in 

Appendix V. 

Resistivities as low as 30 Q.m (330 µSiem) are inferred by the VLF MOD™ 

model along Transect A (Figure 11 ). This translates to electrical conductivities 

that are higher, on average, than Conanicut Island ground-water measured by 

Veeger, et al. (1997), suggesting the existence of mineralized water coincident 

with the fracture zones and/or high fracture-surface electrical conductance. The 

areas outside those exhibiting strong current densities are expected to have 

resistivities comparable to competent rock due to the low measured signal 
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strength. This has serious implications for the hypothesis being tested. A 

change in resistivity in excess of an order of magnitude may translate into a 

comparable variance in rock permeability. This results in a significant restriction 

on an attempt to model flow using continuum precepts. Uncertainty regarding 

the effect of the identified fracture zones on rock permeability results in a lack of 

confidence in describing the aquifer's hydraulic properties. 

Fracture permeability, k, has been estimated as a function of the rock's 

formation factor ( F = PR ) and fracture aperture, d: 
Ppw 

(2) 

where pR is formation resistivity, Ppw equals pore-water resistivity, coefficient b 

equals 12 for sheet-like pores and fracture aperture, d, is measured in meters 

(Katsube and Hume, 1987). Formation factor has been inversely related to the 

product of individual fracture aperture and fracture density. Estimates of 

permeability from resistivity are therefore dependent not only on the width of the 

conductive zone, but also on individual fracture aperture within the fracture zone. 

Implications are for a minimum permeability variance in excess of an order of 

1000O-m 
magnitude (i.e. ----) in the vicinity of the observed conductive zones along 

30Q-m 

Transect A, without explicitly recognizing the impact of individual fracture 

aperture in these zones. 

Unlike the long-term drawdown and borehole geophysical results, 
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interpretations of VLF data collected over a broad scale reveal what may be 

sharp gradients in bedrock permeability. Furthermore, the hydraulic properties of 

the rock where VLF anomalies occurred are difficult to quantify. VLF 

geophysical results, therefore, bring into question the feasibility of a continuum 

approach for quantitatively describing the aquifer at a scale incorporating the 

identified fracture zones. Required REV's would be small such that variability of 

fracture-zone hydraulic properties could be described, requiring large amounts of 

data. Nevertheless, VLF results reveal aquifer characteristics that can be 

incorporated into a finite-difference model. Such a model serves as a final 

approach for the evaluation of the workability of Darcian principles. 

The computer program MODFLOW (McDonald and Harbaugh, 1988) was 

used to numerically solve for hydraulic head values such that governing 

equations for flow are satisfied for specified parameters and boundary conditions 

under steady-state conditions. For purposes of finite-difference simulation, the 

aquifer is discretized into a rectangular grid consisting of a maximum 32 

columns, 47 rows and ·10 layers, allowing flexibility for shoreface discharge area 

(Figure 12). The horizontal extents of the cones of depression around JR-1 and 

JR-2 were used to establish a grid spacing (Figure 13). Grid spacing is 250 feet 

in the vicinity of JR-1. A lateral discretization of 500 feet is adopted beyond the 

drainage divide delineating the Jamestown Brook watershed. 

A no-flow, or Neumann, boundary is used at the northern extent of the 

modeled area to simulate inferred ground-water divides and streamline 

boundaries. The potential for subsurface recharge across the boundary is 
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ignored. Inactive cells below layers 6, 8, 9 and 10 are used to simulate the no

flow boundary associated with the fresh water-salt water interface at depth. Due 

to the lack of data available for calibration of this boundary, constraints on model 

parameters and the balance of hydraulic potential across the boundary drive the 

location of this boundary. 

The thickness of the top layer (layer 1) is constrained by the gradient of 

the land surface such that, for any particular layer, cell tops do not occur below 

the bottoms of adjacent cells. In order to simulate various distributions of 

hydraulic conductivity as a function of depth, elevations of cells within each layer 

are equidistant from the land surface elevation for each cell column (Appendix 

II). Land-surface elevations are estimated directly from United States Geological 

Survey quadrangle sheets (USGS, 1955; USGS, 1957). Layer thickness 

increases linearly with depth such that more resolution can be obtained for 

shallow layers, where the greatest amount of flow is shown to occur in JR-1. 

The no-flow boundary representing the salt water-fresh water interface at depth, 

is placed at an elevation, z, relative to mean high water, such that equilibrium of 

hydraulic potential across the boundary is reasonably approximated. z is 

approximated by Pf hf, where pf equals fresh-water density, Ps equals salt 
Pf -ps 

water density and hf equals fresh-water head at the boundary. The 

configuration of active cells appears in Appendix II. The impact of changing 

finite-difference model parameters on the interface position is limited to 

evaluating the relationship between hydraulic potential across a stationary no-
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flow boundary. Small adjustments to the vertical distribution of hydraulic 

conductivity have a negligible impact on model generated head. 

The MODFLOW River Package simulates ground-water discharge to 

surface water bodies with head-dependent, or Cauchy, boundary conditions. To 

simulate shoreface discharge, the area factor of conductance is expanded or 

contracted from the shoreline for various discharge area simulations. The 

vertical components of hydraulic conductivity for cells beneath these Cauchy 

boundaries are similarly treated. Specified-head values for shoreface Cauchy 

boundaries are estimated as equivalent fresh-water head based on bathymetric 

and salinity data (Pilson 1996; USGS, 1955; USGS, 1957). 

Aquifer discharge via private and municipal wells is simulated based on 

best available data (Johnston and Baer, 1987; Goslee, 1995 and personal 

communication; RIGIS, 1988). Private wells are assumed to remove 180 gpd 

per housing unit with a 90% return via individual septic disposal systems (ISDS). 

Unit density is estimated by dividing respective cell-top area by estimated area

weighted mid-range lot size. 15 gpm is drawn from cells in column 20, row 21 to 

simulate average daily pumping of JR-1. The vertical distribution of well 

discharge is assumed to be identical to the vertical distribution of hydraulic 

conductivity. An average well depth of 230 feet, obtained from RIDEM driller 

logs, is assumed for private wells. JR-1 is simulated to a depth of 385 feet. 

Recharge for the finite-difference simulation is estimated at 3.5 inches per 

month and is intended to represent conditions during the seasonal periods for 

which water levels are available for model calibration. Average monthly 
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precipitation for the January through April periods in years 1993 through 1996 is 

adjusted down from 3.9 inches per month to account for a lower average annual 

precipitation in 1987, the year most commonly represented in the available 

water-level data. For comparable hydrologic conditions on Block Island, Rhode 

Island, Veeger and Johnston (1996) estimate direct runoff and 

evapotranspiration to be approximately 2% and 50% of precipitation, 

respectively. Base flow measured in May, 1995 by Wingate (1995) provides a 

minimum estimate of effective recharge as a percent of precipitation, R, 

calculated as 

B 
R=-- or35% 

A-P' ' 
(3) 

where B equals the base flow into South Reservoir, A equals the area of the 

South Reservoir drainage basin and Pis the average precipitation for the month 

preceding base flow measurements. Evapotranspiration from the phreatic zone 

and gaining streams is not accounted for and would be expected to account for 

additional recharge. The MODFLOW evapotranspiration package removes 3.5 

inches per month at the land surface with a linear extinction depth of 6 feet. 

Analysis of aquifer properties follows careful consideration of available 

data (Appendix Ill). Transmissivity values used to calibrate the finite-difference 

model may be compared with transmissivity values derived in the field. 

Transmissivity was estimated using long-term drawdown and recovery data from 

municipal wells and specific capacity calculated from driller logs. Specific 

capacity is corrected for evacuated borehole storage. For fractured rock, 
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transmissivity from specific capacity can be expected to be overstated (Huntley 

et al. 1992). Furthermore, due to dewatering, transmissivity estimates from 

specific capacity are dependent on the vertical interval of bedrock one assumes 

the measurement characterizes. Assuming that the interval spanning the 

saturated open borehole interval (during static conditions) is characterized, a 

minimum value can be established. Transmissivity values from drawdown can 

be standardized, i.e. normalized by a weighted standard vertical thickness of 

rock. Weighting is a function of inferred vertical distribution of hydraulic 

conductivity such that transmissivity for the bedrock interval defined by depths d1 

and d2 is expressed as 

(4) 

where TD D equals transmissivity determined from drawdown analysis and D1 I, 2 

and D2 are the depths defining the domain of flow into the well. K(d) is the 

assumed vertical distribution of hydraulic conductivity, K(d)= Cd", such that C is 

a well-specific coefficient defining the magnitude of transmissivity for the well in 

question (approximately equal to 112 for JR-1, with T reported in ft2/min) and u is 

inferred from heat-pulse flow meter results (u = -2.5). Distributions of normalized 

transmissivity from specific capacity for the top 150 feet of bedrock appear in 

Figure 14, assuming 1 % storativity. The illustrated distributions may be 

considered as an upper limit based on assumed storativity. Considering the 

tendency for hydraulic conductivity to assume a lognormal distribution, the linear 
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appearance of the distributions in Figure 14 suggests that the sampling of 

specific capacity is representative of the aquifer. Transmissivity estimates from 

analyses of time-drawdown and recovery data obtained at JR-1 are at the upper 

limit of the transmissivity distribution derived from specific capacity. An attempt 

to describe the spatial distribution of normalized transmissivity is shown in Figure 

15, however incomplete driller logs allow only a limited number of sites to be 

located. The distribution illustrates that hydraulic conductivity varies 

considerably over a few hundred feet. With the exception of inferences made 

from surface geophysical results, spatial trends in the lateral distribution of 

permeability are not apparent and areas of relatively high yield do not 

correspond with fracture zones delineated in Figure 9. 

Equation 4 is also used to calculate transmissivity for finite-difference 

model layers, defined by depths d1 and d2, by treating TD D as a standardized 
I, 2 

transmissivity value, for example, for the top 150 feet of bedrock (with D2-

D 1 =150). The standardized transmissivity is applied uniformly across the aquifer 

and varied until calibration is achieved. The effect of overburden is simulated by 

adding the term K,,db to equation 4 for Layer 1, where Ksed equals the assumed 

hydraulic conductivity of sediment and b equals the saturated sediment 

thickness in layer 1. 

The model free-surface simulating the water table is used to calibrate the 

model against water levels measured during the January through April periods 

between 1977 and 1995 (Appendix I). Water levels were obtained from RIDEM 
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Estimated Transmissivity 
(top 150 ft of bedrock) 

Log T (ft2/min) 
• >-1.0 
• >-1.5 
e > -2.0 
Ci > -2.5 
• < -2.5 
mean: -1.8 

standard dev.: 0.9 

Fracture zones 
( dashed where inferred) 

5000 0 5000 feet 

Figure 15 Spatial variation of transmissivity estimated from specific capacity 
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ISDS percolation test logs. Three criteria are used to evaluate model calibration 

in Layer 1: 

1 

n·m 

MEAN SUM ROOT MEAN SQUARE MEAN ABSOLUTE SUM 

where hu is model-generated head for cell i,j in Layer 1 and hu is estimated field 

head corresponding to cell i,j, against which model calibration is measured. 

Parameters used for flow simulations are shown in Table 1. The sequence of 

parameter variation, together with respective calibration criteria, can be followed 

from left to right in Table 2. Mean sums decrease from left to right across Table 

2 as a specific parameter was changed until root mean square and mean 

absolute sum began to increase. Following the minimization of transmissivity 

while assuming isotropic conditions, anisotropy was adjusted to minimize root 

mean square and mean absolute sum. Further adjustments were made to 

transmissivity to minimize root mean square and mean absolute sum, resulting in 

Run I. Each stress period, or Run, reflects a laterally uniform distribution of 

transmissivity across each layer, expressed as a percentage of the proposed 

A 

"minimum" transmissivity of 10-1-
8 ft2/min (Figure 14). The distribution of hij -hij 

for Run I is shown in Figure 16. 

Hydraulic conductivity values for cells corresponding to fracture zones 

delineated in Figure 9 and Appendix II are increased for Run K by factors 
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Table 1 Finite-difference Model Parameters 

Parameter Description Unit Value 
Bedrock Transmissivity, T Log T for top 150 ft of -1.36 to 

bedrock. ft2/min -1.24 
Distribution of Bedrock Standard deviation of log T 
Transmissivity for top 150 ft of bedrock. ft2/min 0 
Vertical Distribution of K changes by u orders of dimensionless -2.5 
Bedrock Hydraulic magnitude per order of 
Conductivity (K), u magnitude drop in 

elevation. 
Layer thickness' Sequential layer thickness % 31.6 

increase with depth. Layer 
1 is 65 feet thick. 

Anisotropy Ratio of column T to row. dimensionless 1.4 to 2.2 
Fracture zone simulation Factor by which hydraulic dimensionless 

conductivity increased 
250 ft wide cells layer 1, layer 2 2,22 
500 ft wide cells layer 1, layer 2 1.5, 12 

Shoreface Hydraulic Log K for Shoreface (equal ft/min -3.2 to 
Conductivity, K to Layer 1 K) with -3.07 

conductance calculated to 
reflect discharging d (ft) 250 to 
shoreface with width d. 300 

Precipitation (based on Uniform, excluding Route in/mo. 3.5 
January-April, 1993-1996 138, surface water bodies 
data) and shoreface cells. Std. Dev. ±1.75 
Evapotranspiration Max evapotranspiration ft/min 6.7E-6 

from phreatic zone with 6 ft 
linear extinction depth. 

Municipal Production Well JR-1; finite-difference grid ft3/min 2.0 
column 20, row 21. 

Private wells 90% of this amount ft3/min/unit 1.67E-2 
assumed returned via ISDS 

Bay salinity/ water Bay salinity ranges from 28- glee (13°C) 1.022 
density* 31 in the vicinity of 

Conanicut Island. 
Stream Head Elevation above stream feet 0.5 

bottom (land elevation) 
Open water depth minimum feet 4 
Streambed Hydraulic Log K for 6 inch thick ft/min -1.2 
Conductivity streambed. 
Sediment Hydraulic Log K for estimated 22 ft of ft/min -1.2 
Conductivity (distribution saturated stratified 
in Appendix II) sediment overlying the 

bedrock below Jamestown 
Brook. 
Log K for estimated 4 ft of ft/min -4.7 
saturated till overlying the 
bedrock. 

* Pilson (1996), Clesceri et al. (1989). 
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. ~(Rf ) z(i,J) l . 
approaching ~ Ra - l • Li(i,J) j + 1, where R1 Is the assumed formation or 

background resistivity (1000 Q.m), Ra is the the inferred anomalous resistivity 

from the VLFMOD model (120 n-m for Layer 1 and 30 n-m for Layer 2), z(i,J) 

equals the width of the inferred fracture zone across column i or row j (1 Om for 

Layer 1 and 50 m for Layer 2) and Li(i,J) equals cell width perpendicular to the 

strike of the fracture zone. The resulting root mean square decreases, largely 

due to decreases in lhij -hijl in the vicinity of column 8, row 11 and column 25, 

row 14 (Figure 17), however mean absolute sum increases slightly. Similarly, 

lhij -hijl is reduced in the vicinity of the southern boundary, a complicated area 

incorporating no-flow boundaries simulating a drainage divide, the underlying 

interface and Cauchy conditions; model head however is still too high. Model 

generated head for Run K (Figure 18) can be compared directly with the water

table map modified from Veeger et al. (1997) (Figure 19). 

Analysis of finite-difference model sensitivity to parameter variation is 

important due to uncertainty inherent in those parameters. Sensitivity testing 

was limited due to model instability. An increase of 24% in transmissivity from 

log T = -1.34 to -1.24 ft2/min (Runs F and J) results in a mean sum decrease of 

0.68 feet, or 25%. A 25% increase in hydraulic conductivity from log T = -1.37 to 

-1.27 ft2/min (Runs N and K) results in a mean sum decrease of 0.82 feet, or 

34%. In both instances, mean absolute sum and root mean sum decrease by 

marginal amounts. Based on the finite-difference model results, transmissivity 
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- - -- -5000 0 5000 feet 

Contour Interval: 10 feet 

Figure 16 Distribution of hu - hu, Layer 1, Run I 
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Figure 17 Distribution of hij - hij, Layer 1, Run K 
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Contour Interval: 10 feet 

Figure 18 Distribution of model-generated head, Layer 1, Run K 
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Figure 19 

Generalized Ground-Water Map of 
Northern Conanicut Island, Jamestown, RI 

Contour Interval= 20 ft. 

,.20- Elevation of Water Table 

\.. Direciion of 
~ Grot11d-Water Flow 

0 250 500 1000 m 

JAMESTOWN 
RESERVOIR 

Ground-water map (modified from Veeger et al., 1997) 
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estimated from specific capacity appears to be understated. The model is 

relatively sensitive to recharge (Runs K and L) and relatively insensitive to the 

conductance of rock underlying the discharging shoreface (Runs K and M). 

Figure 20 shows the distribution of simulated evapotranspiration for Run 

K. Potential simulated loss to evapotranspiration is limited to 3.5 inches per 

month (100% of recharge) due to model instability at higher levels. Realized loss 

to evapotranspiration of approximately 56% of recharge from the system is 

simulated by the model (Table 3). Discharge across the shoreface accounts for 

Table 3 Water budget for Run K 

Flow to system Flow from system Net Flow to system 
Source/ Sink (gpm) (gpm) (gpm) 
Recharge - - 4,544 
Fresh surface water 432 1,195 -763 
Shoreface Discharge - - -1,211 
Evapotranspiration - - -2,544 
Net consumptive use - - -26 

an additional 27% of recharge. The remaining discharge is attributed to net loss 

to fresh-water bodies and net well pumping, the latter accounting for less than 

1 %. Model K simulates net ground-water discharge of 1.56 cfs into Jamestown 

Brook between the dam at Jamestown Reservoir and South Reservoir. This can 

be compared with an estimated baseflow into South Reservoir of 0.37 cfs, 

measured by Wingate (1995) in May of 1995. Water loss from Jamestown Brook 

and other surface-water bodies to evapotranspiration is, however, unaccounted 

for. 

Simulated flow through the system is generally as described in Figure 5, 

with very little north-south flow (Figure 21 ). Although the model-generated head 
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Figure 20 

- - -- -5000 0 5000 feet 

Contour Interval: 1 0 feet 

Distribution of evapotranspiration as a percent of recharge, Run K, 
Layer1 
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generally mirrors topography, as desired, model parameters result in calibration 

problem areas. Excessive mounding of model generated head, however, occurs 

in areas where little is known about aquifer properties and where laterally 

extensive fracture zones are thought to exist. Current density models of the 

subsurface, developed from VLF measurements, suggest that these fracture 

zones are not uniformly distributed, but linked to extensive bedrock structures 

related to the tectonic history of the area. It appears that distinct bedrock 

fracture zones may influence ground-water flow, however the ability to accurately 

characterize the hydraulic properties of these zones is questionable. Appropriate 

REV's would require a level of detailed description of aquifer properties beyond 

practicality, particularly where fracture zones occur. 

Evaluation of enhanced permeability used to simulate fracture zones is 

obscured by an inability to validate the parameters used to simulate ground

water flow in adjacent areas. Assumptions made about the vertical distribution 

of hydraulic conductivity, aquifer heterogeneity and anisotropy and the 

conductance of melt-water deposits overlying the fracture zone identified in the 

Jamestown Brook area can have an impact on attempts to simulate the effect of 

the fracture-zones on ground-water flow. The conductance of unconsolidated 

sediments in the Jamestown Brook area is not field-tested and is expected 

contribute significantly to ground-water flow. Hydraulic conductivity in this area is 

assumed to be 11 % and 400% greater than surrounding areas overlain by a thin 

veneer of till for Layer 1 and Layer 2, respectively. The effect of increasing 
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hydraulic conductivity by factors ranging from 1.5 to 22 to simulate fracture 

zones would be obscured 

by increases in the assumed conductance of the glacial melt-water deposits. 

The vertical distribution of hydraulic conductivity represented by the model 

assumes horizontal ground-water flow to JR-1 and that JR-1 is generally 

representative of the aquifer. Although the model is relatively insensitive to small 

changes in the vertical distribution of hydraulic conductivity, the assumption that 

hydraulic conductivity decreases with depth is important to the general 

characterization of flow as predominantly shallow and needs to be evaluated 

further. On a smaller scale, anisotropy and heterogeneity afforded by individual 

fractures is also not very well understood. Anisotropy and heterogeneity on 

smaller scales can be expected to have a significant impact on the path of 

solutes. The use of finite-difference model calibration to evaluate model 

parameters is imperfect due to an inability to explain small-scale hydraulic 

characteristics that can have a profound impact on the transport of these solutes. 

Summary 

Time-drawdown analyses and borehole geophysics suggest Darcian 

continuum precepts may be appropriate for describing ground-water flow on 

Conanicut Island. This is implied by linear behavior of drawdown over time in 

Jamestown's municipal wells and an apparent continuous vertical distribution of 

ground-water flow into JR-1 at the borehole scale. Although time-drawdown and 

borehole analyses suggest Darcian behavior and suitability of continuum 
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treatment in the vicinity of the wells investigated, detailed borehole data are 

extremely limited. Surface geophysics and a finite-difference flow model were 

used to expand the investigation beyond this scale. 

Expansion of the scale of observation using surface geophysics and the 

identification of large-scale fracture zones reveals the complicated nature of the 

aquifer's physical properties. VLF results suggest that significant fracture zones 

exist and are laterally extensive, however they do not identify all fracture zones 

nor do they directly evaluate the magnitude and variability of permeability within 

those zones. Despite the development of a representative distribution of 

transmissivity from drawdown analyses, little is known about the spatial scale of 

variability and the effect fracture zones have on the distribution of permeability. 

Representation of large fracture zone permeabilities in the data is expected to 

result in bimodality, provided a large enough sample size were available. This is 

not observed in the field data. 

Consideration was given next to the response of a finite-difference model 

of the aquifer. The finite-difference model calibration is generally within the 

margin of error of the criteria against which it is measured. The value of a finite

difference simulation for the purpose of investigating the suitability of imposing 

continuum conditions on a quantitative description of the aquifer system is 

limited, however. Due to limitations on available data, the model can not be 

validated, i.e. cause and effect relationships can not be adequately 

demonstrated by the model (Konikow and Bredehoeft, 1990). Furthermore, the 
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existence of non-unique numerical solutions to governing flow equations causes 

model calibration to be inadequate for evaluating model parameters. 

Critical to modeling ground-water flow on Conanicut Island is an 

understanding of the spatial variability of bedrock hydraulic conductivity and the 

conductance of overlying sediment. A stochastic assignment of hydraulic 

conductivity values to grid cells was considered, however the resulting spatial 

distribution of hydraulic conductivity values was inconsistent with known bedrock 

structural trends. A strategy of using a uniform, horizontal distribution of 

hydraulic conductivity values decreasing with depth was adopted to reveal areas 

of model inadequacies. The effect of liberalizing hydraulic conductivity to 

simulate fracture zones identified from the VLF results improved model 

calibration, however, calibration problem areas remain, particularly where 

fracture zones were identified and near complicated boundaries. 

Conclusions 

Often the development of a finite-difference model as a description of 

ground-water flow in an aquifer is intended as a first step toward modeling 

transport of chemical species. Modeling of solute transport is based on flow 

simulation output, therefore flow-model inadequacies and resulting errors are 

compounded by the addition of schemes and assumptions used to simulate 

advective and dispersive chemical behavior. For example, porosity 

assumptions, otherwise unnecessary for steady-state flow simulations, must be 

made. Simulation of advective behavior using a particle tracking code is 
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dependent upon flow vectors calculated during flow simulation. For fractured 

rock, adjustments must be made to velocity vectors such that restrictions on 

particle travel direction imposed by fractures are considered. 

It is clear from this study that an effort to simulate solute transport in a 

fractured-rock environment demands a much more comprehensive 

understanding of aquifer anisotropy and heterogeneity on both a broad- and 

small-scale level. A finite-difference flow model, potentially a framework for 

simulating advective transport, appears to describe ground-water flow at 

Conanicut Island reasonably well. Substantial model inadequacies exist 

however, such that it would be difficult to expand the model to describe chemical 

transport in the Conanicut Island system. It is difficult, therefore, to postulate 

that the Conanicut Island system can be described using continuums precepts 

based on available data. The current model configuration must be limited to 

hypothetical analyses. 
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Appendix Ill Analytical Methods 

Long-term drawdown and recovery 

Long-term drawdown data from two municipal production wells, JR-1 and 

JR-2, are used to extract information about aquifer properties. The data 

obtained from JR-2 is not quality data considering the unstable pumping rate, 

however the data can be used, for example, to make inferences about Darcian 

behavior. The Jacob-Cooper graphical method (Cooper and Jacob, 1946) is 

used to estimate hydraulic properties in the Jamestown Reservoir area with 

transmissivity, T, and storativity, S, calculated from 

2.25Tt
0 

S= i , 
r 

where 

Q = pumping rate, 
h0 -h = 
r = 

drawdown per time log cycle, 
radial distance to observation well and 

t0 = time at which fit line intersects the axis at zero drawdown; 

and such that the following assumptions are satisfied: 

1) 

2) 

3) 

4) 

r2S 
- <0.05 
4Tt ' 

0 

The aquifer is confined (i.e. Lih << saturated thickness), 

Darcy's Law applies, 

The aquifer is bound below by an impermeable boundary, 
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5) All geologic structures are horizontal and of infinite horizontal extent; 

flow to the well is horizontal and radial, 

6) The potentiometric surface of the aquifer is horizontal and at steady

state prior to pumping; subsequent changes in surface are due to 

pumping only, 

7) The aquifer is homogeneous and isotropic, 

8) Ground-water has a constant density and viscosity, 

9) There is no source of aquifer recharge during pumping, 

10) Water is released instantaneously from storage, and 

11) Water is pumped at a constant rate. 

Some of these assumptions are reasonable. Other assumptions, e.g. 3) and a 

variation of 7), constitute properties not very well understood and which this 

study attempts to investigate. With respect to assumption 4), it is assumed that 

the well base, in part, defines the interval of rock being characterized. 

Furthermore, assumptions 5) and 10) are complicated by observation wells being 

confined to unconsolidated glacial sediments overlying the bedrock for which 

estimates are desired. It is difficult to ascertain the influence of the sediments on 

estimates of transmissivity and storativity, however the effect on the former is 

assumed to be minimal due to the minor thickness of saturated sediment relative 

to the interval over which transmissivity is assumed to be measured. 

Comparison of storage estimates obtained from drawdown analyses with those 

from recovery analyses are inconclusive. 
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For purposes of recovery analyses, h0 -h may be treated as recovery from 

extrapolated drawdown or residual drawdown and intercept elapsed time, t0 , 

t . 
may be treated as t' 0 or ___Q__, respectively, where t' 0 is elapsed time since 

t' 
0 

recovery commencement (Driscoll, 1986). Extrapolated drawdown is described 

by curve slope at t = 15,000 minutes and commences at t = 24,900 minutes, 

with residual drawdown at 8 feet. Recovery between t = 17,900 and 24,900 

minutes is a result of a rain event and loss of water to the well from the pumping 

apparatus. 

Specific Capacity 

Drawdown, pumping rate and duration data measured at Conanicut Island 

is available from numerous driller logs obtained from Rhode Island Department 

of Environmental Management. Driller logs can be expected to yield reasonably 

good estimates of specific capacity (Paillet and Duncanson, 1994). The data is 

derived from private wells primarily in the study area, with some data obtained to 

the north, in comparable rock. Figure 15 shows a distribution of wells located 

using information provided in well logs, however incomplete reporting results in 

only partial well location. Furthermore, questionable data pertinent for specific 

capacity calculation has been noted in the table below and provides for 

maximum or minimum estimates of transmissivity, as the case may be. 

Theis' method (1963) for estimating transmissivity from specific capacity 

was modified such that the pumping rate factor of specific capacity is reduced to 
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account for borehole storage. Transmissivity is thus calculated as follows, using 

an iterative procedure developed by Bradbury and Rothschild (1985) and 

modified by Michaud (below; 1997): 

2 3(Q- 1rr2 SJ 
• t ) 2.25Tt 

T =-----log 
2 

, where Q = pumping rate, 
4 7Z"S r S 

(7) 

r = radius of the well, 
s = drawdown and 
t = elapsed time since commencement 

of pumping. 

Due to dewatering in the vicinity of the well being pumping, uncertainty 

exists regarding the interval for which specific capacity is being measured and 

for which transmissivity is being calculated (Figure 14). Furthermore, Huntley et 

al. (1992) looked at the relationship between specific capacity and transmissivity 

and discovered that using specific capacity to estimate transmissivity in fractured 

rock can result in overstatement. The theoretical relationship between specific 

capacity and transmissivity for Conanicut Island data, described by equation 7, is 

shown below, with Huntley's data for comparison. This is attributed to non

equilibrium, understatement of storativity, anisotropy and/or understatement of 

effective borehole radius, which is likened to extended effective borehole radius, 

e.g. as a result of single-fracture flow (Gringarten and Witherspoon 1972). An 

opposing effect is overstated drawdown due to turbulent flow and well 

inefficiency (Razack and Huntley, 1991). Calibration criteria suggest 

transmissivity understatement from specific capacity. If specific capacity-derived 
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transmissivity is overstated, as suggested by Huntley et al., perhaps specific 

capacity is not describing permeability from the static water level. 

A PROGRAM TO ESTIMATE AQUIFER TRANSMISSIVITY AND HYDRAULIC 
CONDUCTIVITY FROM SPECIFIC CAPACITY WRITTEN BY K.BRADBURY 

AND E.ROTHSCHILD, SEPTEMBER 1981; MODIFIED BY SCOTT MICHAUD, 
MARCH 1997 W/ BOREHOLE STORAGE ADJUSTMENT AND ENHANCED 

DATA IMPORT: Q-BASIC. 

20 REM A PROGRAM TO ESTIMATE AQUIFER TRANSMISSIVITY 
30 REM AND HYDRAULIC CONDUCTIVITY 
40 REM FROM SPECIFIC CAPACITY 
60 REM WRITTEN BY K.BRADBURY AND E.ROTHSCHILD, SEPTEMBER 1981 
65 REM MODIFIED BY SCOTT MICHAUD, MARCH 1997 W/ 
75 REM BOREHOLE STORAGE ADJUSTMENT AND ENHANCED DATA IMPORTED 
90 REM **************** LIST OF VARIABLES *******************" 
110 REM M(Z,1) = INDENTIFICATION NUMBER OF WELL 
120 REM M(Z,2) = DIAMETER OF WELL (INCHES) 
160 REM M(Z,3) = LENGTH OF TEST (HOURS) 
170 REM M(Z,4) = PUMPING RATE DURING TEST (GALLONS/MINUTE) 
190 REM M(Z,5) = ESTIMATED OR MEASURED STORAGE COEFFICIENT (UNITLESS) 
195 REM M(Z,6) = DRAWDOWN (FEET) 
220 REM T = TRANSMISSIVITY (FEET*FEET/SECOND) 
240 REM ER= CONVERGENCE CRITERIA FORT ESTIMATE (FEET*FEET/SECOND) 
2 50 REM ******************************************************'' 
260 PRINT "HOW MANY WELLS WILL BE ANALYZED?" 
270 INPUT XX 
290 DIM T(XX) 
300 ER= .00000001 
315 W= 0 
320 TGUESS = .00000001 
330 REM ****************************************************** 

340 REM* READ IN RAW DATA IN UNITS GIVEN ON DRILLER LOGS * 
350 REM ****************************************************** 

525 INPUT "ENTER INPUT FILE: "; A$ 
526 OPEN A$ FOR INPUT AS #1 
527 INPUT "ENTER OUTPUT FILE:"; N$ 
528 OPEN N$ FOR OUTPUT AS #2 
530 FOR Z = 1 TO XX 
541 REDIM SHARED M(XX, 7) 
542 INPUT #1, M(Z, 1 ), M(Z, 2), M(Z, 3), M(Z, 4), M(Z, 5), M(Z, 6) 
560 REM ****************************************************** 

570 REM* DO ANALYSIS FOR EACH WELL * 
580 REM ****************************************************** 

600 ITER = 0 
610 REM ****************************************************** 

620 REM* CHANGE TO CONSISTENT UNITS AND CALCULATE DRAWDOWN * 
630 REM ****************************************************** 
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645 R = M(Z, 2) I 24 
655 TIME= M(Z, 3) * 3600 
665 Q = M(Z, 4) / 449 
780 REM ****************************************************** 
790 REM* CALCULATE AQUIFER TRANSMISSIVITY USING THE JACOB EQUATION 
800 REM* USING A CORRECTION FOR PARTIAL PENETRATION AS GIVEN BY 
810 REM* STERNBERG (1973) 
900 REM ****************************************************** 

910 REM* NOW SOLVE FORT USING ITERATIONS 
92 0 REM ****************************************************** 

930 TGUESS = .000001 
940 FOR W = 1 TO 25 
956 F1 =Q/(4*3.1416*M(Z,6)) 
961 F2 = (2.25 * TGUESS *TIME)/ (R * R * M(Z, 5)) 
975 TCALC = F1 * (LOG(F2)) 
980 TEST = ABS(TCALC - TGUESS) 
990 TGUESS = ABS(TCALC) 
1000 IF (TEST<= ER) THEN GOTO 1060 
1020 NEXTW 
1035 IF (W = 25) AND (TEST> ER) THEN GOTO 1050 
1040 GOTO 1060 
1050 ITER = 1: GOTO 1220 
1060 T(Z) = TCALC 
1076 WRITE #2, M(Z, 1 ), T(Z) 
1220 IF ITER = 1 GOTO 1390 
1305 NEXT Z 
1306 CLOSE #1 
1307 CLOSE #2 

* 

1310 PRINT "THE NUMBER OF WELLS IN THIS RECORD IS"; XX 
1320 GOTO 1430 
1390 PRINT"" 
1405 PRINT "WELL NO."; M(Z, 1) 
1410 PRINT "SOLUTION DID NOT CONVERGE WITHIN 25 ITERATIONS" 
1420 GOTO 1305 
1430 END 

Rhode Island Department of Environmental Management 
Driller log data used for specific capacity calculations 

Static water Pumping Pumping Water level Depth of Well depth 
level (ft) rate (gpm) duration, t after time t Bedrock (ft) 

(hours) (ft) Surface (ft) 
16.0 40.0 3 25.0 10 62.3 
25.0 30.0 2 60.0 15 95.0 
13.5 22.0 2 70.0 10 92.0 
20.0 20.0 2 140.0 4 200.0 

8.0 20.0 2 120.0 25 145.0 
8.0 20.0 2 120.0 25 145.0 

20.0 20.0 2 100.0 6 240.0 
36.0 15.0 2 120.0 10 140.0 
30.0 15.0 2 120.0 11 166.0 
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Rhode Island Department of Environmental Management 
Driller log data used for specific capacity calculations 

( continued) 
Static water Pumping Pumping Water level Depth of Well depth Code* 

level (ft) rate (gpm) duration, t after time t Bedrock (ft) 
(hours) (ft) Surface (ft) 

20.0 15.0 2 180.0 12 190.0 
10.0 12.0 3 20.0 12 104.5 
5.0 12.0 3 40.0 8 92.0 
5.0 10.0 4 12.5 8 77.0 

20.0 10.0 2 140.0 4 240.0 
15.0 10.0 2 100.0 8 155.0 
10.0 10.0 1 125.0 4 125.0 
2.5 9.0 3 50.0 8 80.0 

17.0 8.5 2 240.0 8 278.0 
16.0 8.0 3 80.0 5 110.0 
30.0 8.0 2 150.0 6 280.0 
30.0 8.0 2 150.0 6 280.0 
30.0 8.0 2 120.0 10 185.0 
25.0 7.5 4 115.0 10 120.0 
10.0 7.5 4 80.0 10 101.0 
35.0 6.0 4 120.0 18 125.0 

9.0 6.0 3 105.0 7 151.5 
20.0 6.0 2 120.0 10 260.0 
20.0 6.0 2 120.0 10 260.0 
20.0 5.0 4 195.0 8 200.0 
10.0 5.0 5 480.0 3 500.0 
25.0 4.0 5 240.0 18 250.0 
20.0 4.0 4 300.0 20 300.0 

8.0 3.0 5 380.0 6 400.0 
15.0 3.0 2 180.0 8 200.0 
15.0 2.0 5 400.0 10 400.0 
10.0 25.0 5 120.0 10 120.0 Max 
18.0 25.0 5 100.0 12 100.0 Max 
15.0 15.0 5 220.0 7 220.0 Max 
10.0 12.0 5 120.0 6 120.0 Max 
20.0 11.0 5 185.0 6 185.0 Max 
20.0 7.5 5 200.0 6 200.0 Max 
15.0 7.0 5 220.0 5 220.0 Max 
20.0 6.5 5 165.0 5 165.0 Max 
10.0 6.0 5 300.0 10 300.0 Max 
25.0 6.0 5 200.0 6 200.0 Max 
20.0 5.0 5 220.0 12 220.0 Max 
10.0 5.0 5 400.0 19 400.0 Max 
18.0 4.0 5 230.0 10 230.0 Max 
10.0 3.0 5 300.0 7 300.0 Max 
20.0 20.0 0.5 205.0 13 205.0 Max/Min 

6.0 30.0 2 25.0 10 86.5 Min 
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Rhode Island Department of Environmental Management 

Static water 
level (ft) 

*Codes: 

Max 

Min 

TO 

16.0 
17.0 
20.0 
19.0 
20.0 
20.0 
20.0 
15.0 
10.0 
10.0 

Driller log data used for specific capacity calculations 
(continued) 

Pumping Pumping Water level 
rate (gpm) duration, t after time t 

(hours) (ft) 

20.0 3 50.0 
20.0 2 48.0 

4.0 1 205.0 
4.0 4 285.0 
3.0 2 300.0 
2.0 2 200.0 
2.0 2 200.0 
1.5 5 480.0 
1.0 5 400.0 
1.0 5 500.0 

complete well drainage suggested; 

minimum pumping rate noted; 

Depth of Well depth 
Bedrock (ft) 

Surface (ft) 

5 98.0 
12 123.0 
8 205.0 

10 ? 
5 360.0 

15 280.0 
15 280.0 
15 480.0 
8 400.0 
5 500.0 

thrown out; specific capacity not calculated due to inadequate/ insufficient data 
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Appendix IV Specific Yield from Micro-gravity 

A micro-gravity method was considered for estimation of storativity as a 

constraint on transmissivity estimates from specific capacity. Micro-gravity 

techniques can be used to estimate specific yield (Pool and Eychaner, 1995). 

Specific yield, or more strictly storativity, is a parameter necessary for estimation 

of transmissivity from specific capacity (Appendix Ill). The method uses gravity 

change in response to changes in water table elevation to estimate water 

storage change. The domain in which gravity change is influenced is treated 

mathematically as a plate of infinite lateral extent and with thickness equal to the 

change in water table elevation. Specific yield can be calculated as 

~g 
Sy= 12.77b (8) 

where ~g is gravity change in µGal, b is water table elevation change in feet and 

assuming water density is 1 g/cm3
. Pool and Eychaner (1995) show this to be a 

viable method for an alluvial aquifer where specific yield is significant, however 

the method was not used for this study because 

1) Water table changes in excess of 4 feet are required for specific yields 

as high as 5% while using the most resolute gravimeters. This is 

considered unlikely during normal conditions on Conanicut Island. 

Storage estimates derived from analyses of drawdown data from JR-1 

average less than 5% (Appendix Ill). 

2) The residence of the water table in unconsolidated sediments overlying 

bedrock results in estimates that are meaningless in terms of bedrock. 
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Storage estimates are limited to those obtained from drawdown and recovery 

analyses of JR-1data. These estimates are expected to be influenced by 

overburden. 

0---,,----------,.----------------~ 

g2 
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Q) 

:0 
ro 
1-
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ro 
~ 3 
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S= 1% 

I LaCoste & Romberg Model D 
measurement threshold 

S= 10% 

5 ~- .......... --------+---'---~--------...>......----I 

0 2 3 4 5 6 7 
Gravity Response (rricrogal) 

Gravity analysis for estimation of storage. Gravity change in response to 
water table fluctuation can be used to estimate water storage change over a 
domain of infinite lateral extent. Water table changes in excess of 4 feet are 
required for specific yields as high as 5% using the most resolute gravimeters . 
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Appendix V Very Low Frequency Electromagnetics (VLF) 

VLF geophysics has been used to solve a variety of mining and 

environmental problems. Karous and Hjelt (1983) applied VLF filtering 

innovation to data collected in search of ore-bodies. Covel and Robinette (1994) 

applied VLF geophysics to the investigation of ground-water contamination in 

fractured bedrock. Covel et al. (1996) used VLF to site monitoring well 

boreholes in fractured bedrock. 

VLF technology exploits very low frequency electromagnetic signals 

transmitted from submarine communication stations around the world. 

Frequencies range from roughly 15 to 30 kHz. Signal frequency varies by 

transmitter such that the appropriate station can be selected by choosing the 

desired station's frequency at the receiver. Due to the very low frequency of the 

energy emitted, long distance wave travel can be assured such that these 

signals are intercepted on site. The selection of a transmitter must be roughly 

along the strike or trend of the target, i.e. some quasi-planar, subsurface 

electromagnetically conductive feature. This is necessary for acquisition of 

maximum signal strength and dip interpretation. The vertical component of the 

induced magnetic field is measured discretely along a transect perpendicular to 

the strike of the feature and used to model an equivalent current density for the 

subsurface. The equivalent current density, l_j, for a discrete horizontal layer, 

discretized into unit cells with dimensions equal to the selected measurement 

interval, is calculated from 
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II 

H; = LlJKij 
J=-11 

which becomes, by inversion, 

11+} 

11 = IK;b H;+J 
i=•n 

where Hi= vertical component of the measured magnetic field at station i, 

1.J = the current density for cellj, 

Kij = weighting factor for effect of 1.J on Hi, and 

(9) 

(10) 

n = cell occurring n cell lengths from position i in array of cells assumed to 

contribute to measured field Hi (Karous and Hjelt, 1983). 

Measurements made at the head of the valley containing Jamestown 

Brook (Profile D, below) suggest a conjugate fracture set or fault system near 

measurement station 260W. A signature dipping east and suggestive of the 

dominant bedrock foliation appears in the vicinity of station 520W. Correlative 

electromagnetic anomalies appear in the data modeled in Profiles E and F. Due 

to overburden thickness associated with Profile E, the induced electromagnetic 

signals apparently were not strong enough to model using VLFMOD™, however 

anomalies were interpreted using SECTOR TM for comparison with fracture 

orientations measured from the televiewer images (Profile E, below). Note the 

inferred fracture zone just west of JR-1. Another anomaly in the vicinity of 

station 11 OW, Profile F (below) is suggestive of the fracture zone identified in 

Profiles D and E. 
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The strongest anomalies modeled in Profiles A-F are linear along 

respective lineaments. The anomalies observed in Profiles A-C, where bedrock 

is inferred to be rather shallow, occur at local topographic lows corresponding to 

streams and wetland. Relatively thick sediments in the Jamestown Brook area 

appear to camouflage positions of bedrock features such that high current 

densities do not directly correspond to topographic lows. 

The third focus area of the VLF application is the geomorphologic saddle 

at Dutra Farm, just north of Windmill Hill. Modeled current density profiles for 

Transects G & H are shown below, in parallel, separated by a distance of 160 m. 

Features dipping to the north and to the south are inferred to be fracture sets 

potentially related to processes described by McMaster's shear model (1980). 

The trend of these fractures are expected to be NW and SW. Association of the 

anomalies in each of the current density profiles suggests an approximate trend 

of N70E. Perhaps the fracture zone is responsible for preferential bedrock 

erosion resulting in the Dutra Farm saddle and also for the truncation of the ridge 

separating Area I and Area II to the south. A fracture zone trending NW from 

Dutra Farm may manifest itself in irregularities in this ridge further to the north, 

however no VLF data exists for this location. 
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