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ABSTRACT 

Food web models capture shifting species interactions, making them useful tools for 

exploring community responses to perturbations. The inclusion of environmental 

drivers, such as temperature, can improve model predictions as energy demands of an 

organism can be temperature-specific. While Ecopath with Ecosim (EwE) and the 

recent R implementation of this software, Rpath, have included some thermal 

responses in past work, models have yet to include temperature-dependent energetic 

demands and metabolic costs. Our work demonstrates the inclusion of temperature-

dependent bioenergetics into an Rpath food web model using the case study of a 

warming estuary: Narragansett Bay (RI, U.S.). Thermal response parameters from 

literature were used to construct Kitchell curves describing temperature-dependent 

consumption and modified Arrhenius curves describing temperature-dependent 

respiration. Surface water temperature time series from 1994 to 2054 for high and low 

warming scenarios were created from observed temperatures and projections from the 

Coupled Model Intercomparison Project (CMIP6) multi-model ensemble. The 

integration of temperature-dependent fish bioenergetics resulted in lower projected 

biomasses compared to the base version of the model without environmental forcing, 

reflecting the impact of increased energetic demands. The differences in the model-

predicted biomasses highlight the importance of accounting for thermal effects on 

marine species in ecosystem models, which will become increasingly important as 

ocean temperatures continue to rise in Narragansett Bay and worldwide. 
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Abstract 

Food web models capture shifting species interactions, making them useful tools for 

exploring community responses to perturbations. The inclusion of environmental 

drivers, such as temperature, can improve model predictions as energy demands of an 

organism can be temperature-specific. While Ecopath with Ecosim (EwE) and the 

recent R implementation of this software, Rpath, have included some thermal 

responses in past work, models have yet to include temperature-dependent energetic 

demands and metabolic costs. Our work demonstrates the inclusion of temperature-

dependent bioenergetics into an Rpath food web model using the case study of a 

warming estuary: Narragansett Bay (RI, U.S.). Thermal response parameters from 

literature were used to construct Kitchell curves describing temperature-dependent 

consumption and modified Arrhenius curves describing temperature-dependent 

respiration. Surface water temperature time series from 1994 to 2054 for high and low 

warming scenarios were created from observed temperatures and projections from the 

Coupled Model Intercomparison Project (CMIP6) multi-model ensemble. The 

integration of temperature-dependent fish bioenergetics resulted in lower projected 

biomasses compared to the base version of the model without environmental forcing, 

reflecting the impact of increased energetic demands. The differences in the model-

predicted biomasses highlight the importance of accounting for thermal effects on 

marine species in ecosystem models, which will become increasingly important as 

ocean temperatures continue to rise in Narragansett Bay and worldwide. 
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1. Introduction 

Climate change represents a major continuous perturbation to the Northeast 

U.S. Continental Shelf ecosystem, affecting species distribution, migration phenology, 

and physiological processes (Chabot et al., 2016; Kleisner et al., 2017; Langan et al., 

2021; Pershing et al., 2015). Rises in sea temperature have been acutely observed in 

Narragansett Bay, Rhode Island (U.S.), where surface water temperatures have risen 

approximately 1.5°C since 1950 (Fulweiler et al., 2015). Climate-driven models can 

help elucidate how these changes in temperature are affecting ecosystem dynamics 

(Brander, 2015). Food web models, such as those created using the Ecopath with 

Ecosim (EwE) software, are becoming increasingly popular to study how ecosystems 

respond to changes in fisheries harvest, species interactions, and external drivers 

(Buchheister et al., 2017; Colléter et al., 2015; Villasante et al., 2016). While some 

studies have included environmental components (Bentley et al., 2017; Corrales et al., 

2017; Serpetti et al., 2017), there are thermal influences on marine populations, such 

as direct impacts on species bioenergetic demands, that have not yet been incorporated 

into EwE models.  

As ectotherms, fish rely on the environment to regulate their body temperature, 

with ambient temperatures ultimately influencing physiological rates (Jobling, 1994). 

These individual-level metabolic processes and life history rates of organisms can 

scale up to impact ecosystems (Humphries and McCann 2014; Chabot et al. 2016). 

Consequently, bioenergetics and physiological responses are often used as the basis 

for mechanistically-driven models (Jørgensen et al. 2016). The basics of temperature-

dependent bioenergetics have been recognized for decades (Brett, 1971; Jobling, 
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1994), and while species-specific rates are often unknown, it is nonetheless important 

to begin incorporating bioenergetic relationships into multispecies ecosystem models 

for increased realism of how species dynamics are affected by warming waters. 

Understanding community responses to climate change, rather than examining single-

species responses in isolation, will provide more insight as to how environmental 

stressors will affect marine ecosystems (Nagelkerken and Munday 2016).  

As temperatures increase from the cooler portion of a species’ thermal 

tolerance, it can become more energetically expensive for ectotherms to maintain base 

metabolic demands (Chabot et al., 2016; Jobling, 1994). The thermal response of 

metabolism is frequently described with an Arrhenius equation (Eq. (1)) if 

thermodynamic relationships are considered the dominant drivers (Brown et al., 2004; 

Gillooly et al., 2001; Schulte, 2015). The Arrhenius equation, often used in fitting 

laboratory data or in models incorporating metabolic ecology (Blanchard et al., 2012; 

Clarke and Johnston, 1999; Dahlke et al., 2020; Neubauer and Andersen, 2019), 

calculates the rate of reaction (k) as a function of a constant (A), the activation energy 

(Ea), the universal gas constant (R), and the temperature (T) in degrees kelvin.  

𝑘 = 𝐴𝑒−𝐸𝑎 𝑅𝑇⁄  (1) 

Temperature-dependent energetic costs can modify species interactions, 

primarily through the adjustment of consumption rates as predators alter their intake to 

maintain their energy balance (Johansen et al., 2015). In relation to temperature, 

consumption increases as waters warm, reaches a maximum at some optimum 

temperature, and then ingestion sharply decreases as the maximum tolerated 

temperature is approached (Fogarty and Collie, 2020; Jobling, 1994). Increasing 
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consumption with increasing temperatures has been documented for a variety of fishes 

including bluefish (Pomatomus saltatrix), brook trout (Salvelinus fontinalis), and 

anemonefish (Amphiprion melanopus) (Buckel et al., 1995; Nowicki et al., 2012; Olla 

et al., 1985; Ries and Perry, 1995). Increased metabolic demand in warmer waters 

likely accounts for the increasing portion of the curve, while stress responses and 

behavioral shifts are thought to drive the reduced consumption rates frequently seen 

near species’ thermal maxima (Brett, 1971; Jobling, 1997; Johansen et al., 2014; 

Nowicki et al., 2012). The exact shape can vary due to the many factors affecting 

consumption, such as locomotion, hormone regulators, detection, and successful prey 

capture, but numerous experimental studies have documented this general thermal 

response (Jobling, 1997; Volkoff and Rønnestad, 2020). 

Higher energetic demands can adversely affect production, or the surplus 

energy available for optional processes such as growth and reproduction (Jobling, 

1994; Neubauer and Andersen, 2019). Temperature can adjust the efficiency with 

which organisms transform food energy into growth (Lemoine and Burkepile, 2012). 

Given that the foundational bioenergetic relationships apply to many marine species 

operating in their preferred thermal range (Deslauriers et al., 2017; Sibly et al., 2012), 

the integration of temperature-dependent bioenergetics in ecosystem models can 

provide more realistic predictions of how climate change will impact ecosystem 

production (McKenzie et al., 2016). 

The EwE software has been used to model over 400 marine and aquatic 

ecosystems (Colléter et al., 2015). Ecopath creates static, mass-balance food web 

models that give a snapshot of the energy flow of an ecosystem (Polovina, 1984). 
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Ecopath is governed by master equations for consumption and production and requires 

data inputs of biomass (B), production to biomass ratio (P/B), consumption to biomass 

ratio (Q/B), a diet matrix, and fishing information (Christensen and Pauly, 1992). 

Ecosim expands this snapshot to create time-dynamic projections of biomass (Coll et 

al., 2009). Predation is modeled with foraging arena theory in which prey are, at times, 

vulnerable to predation and invulnerable at others (Ahrens et al., 2012; Walters and 

Christensen, 2007). The vulnerabilities, or the parameters specifying the rate of 

exchange between vulnerable and invulnerable states, are estimated with a fitting 

procedure to minimize the sum of squares between projected and observed biomasses 

(Heymans et al., 2016). External forcing functions of changing inputs, such as primary 

production or fishing effort, can also be used to drive the dynamic models into the 

future (Christensen and Walters, 2004).  

Recent enhancements of the EwE software allow for greater use of 

environmental forcing functions, with some researchers incorporating a thermal 

modifier of species consumption (Bentley et al., 2017; Corrales et al., 2018; Serpetti et 

al., 2017) or temperature-dependent recruitment (Bentley et al., 2020). The models 

with temperature-dependent consumption used temperature of occurrence to estimate 

thermal preference, and modified consumption to restrict foraging capacity for each 

species or functional group. However, no EwE model has so far incorporated the other 

major energetic impact of temperature: changing energy demands and metabolic costs. 

One of the master equations of Ecopath specifies that consumption in units of biomass 

consumed is the sum of production, respiration, and unassimilated food (C = P + R + 

U ; Christensen et al. 2005). EwE aggregates metabolic costs into the respiration term 
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which represents the biomass lost to the ecosystem (i.e. energy consumed and 

assimilated by a group but is not transformed into production). Thermal adjustments to 

the respiration term are not in the current EwE software capacity. However, EwE-type 

food web models can now be created and investigated in the flexible R software using 

the ‘Rpath’ package (Lucey et al., 2020). The Rpath package creates an opportunity 

for further exploration of the ecosystem responds to shifting environmental conditions 

and the inclusion of temperature-dependent bioenergetics.  

The goal of this study is to demonstrate how temperature-dependent 

bioenergetics can be incorporated in a food web model using Rpath, the flexible R 

implementation of the Ecopath with Ecosim modeling framework. We apply this 

method to better understand climate change impacts using a rapidly warming 

Narragansett Bay as a case study. We hope to expand the functionality of Rpath and 

illustrate the scales at which temperature-dependent consumption and respiration can 

amplify to alter food web model biomass outputs.  

2. Methods 

2.1 Base model 

Our work built upon a preexisting EwE model of Narragansett Bay (Rhode 

Island, U.S.). Innes-Gold et al. (2020) described a yearly and spatially averaged, 

functional group based food web model of Narragansett Bay. The starting Ecopath 

model was built using averaged 1994-1998 data. The dynamic Ecosim model was 

fitted to observed biomass data from 1994 to 2018. The model has 15 functional 

groups (Supplemental Table A1.1), with 28 species of commercial, recreational, or 

ecological importance assembled into the upper trophic level groups based on diet 
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similarity. The EwE model did not include any explicit environmental forcing. Further 

information on the model can be found in Innes-Gold et al. (2020). 

The Narragansett Bay model was reformatted for compatibility with the R 

package ‘Rpath’ described in Lucey et al. (2020) using R version 3.6.0 (R Core Team, 

2019). The Ecopath model became a static Rpath model, and the dynamic Ecosim 

model became an Rsim model. The Rsim model was projected from 1994 to 2054, and 

the forcing functions of the original Ecosim model (i.e. phytoplankton biomass, 

cultured shellfish biomass, and fishing mortality) were held constant from 2019 to 

2054 at the present-day levels (average of the 2014-2018 values). Further details on 

the Rpath input of the model can be found in Supplement A.1. The Rsim output 

projected through 2054 without temperature forcing was considered the ‘base’ version 

of our model.  

For the model versions with temperature-dependent bioenergetics, thermal 

responses were only included for the fish functional groups (planktivorous fish, 

benthivorous fish, and piscivorous fish). There is greater availability of bioenergetic 

data for the modeled fish species compared to the invertebrate species, and the thermal 

responses of other taxa may be best represented with different functional forms than 

those used for fish. Thermal response parameters were collected for each of the 19 

species (Supplemental Table A1.2) that compose the fish functional groups.  

2.2 Temperature 

Surface water temperatures were taken from the University of Rhode Island 

Graduate School of Oceanography (URI GSO) weekly fish trawl (Collie et al., 2008). 

Before 2007, temperature was measured with a thermometer from water samples 
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collected at the surface and bottom; since 2007 a YSI® (Model 6920 V2) multi-

parameter water quality sonde has been used (URI GSO, 2021). Occasional missing 

temperatures were estimated based on imputations calculated from generalized 

additive models (GAMs) as described in Langan et al. (2021). Only the temperatures 

recorded from the Fox Island station were used in our study, as this mid-Bay station 

was thought to be a more representative average of the temperatures experienced in 

the Bay than the lower Bay Whale Rock station. Surface temperature was examined 

instead of bottom temperature because both benthic and pelagic fish species were 

assessed, and fewer correlations were needed to predict surface water temperature in 

the projections through 2054. Since the food web model was yearly averaged, annual 

average temperatures from 1994 to 2018 were calculated as the average of each 

monthly temperature to account for unequal sampling effort in some months.  

Temperature projections for Narragansett Bay were constructed to discern how 

the Narragansett Bay ecosystem may change in the future when accounting for 

temperature-dependent bioenergetics. First, grid cells’ data which included 

Narragansett Bay from six models of the Coupled Model Intercomparison Project 6th 

phase (CMIP6) multi-model ensemble were accessed. The two warming scenarios 

tested were a low warming scenario from Shared Socioeconomic Pathway 1-2.6 

(SSP1-2.6) and a ‘business as usual’ high warming scenario with SSP5-8.5 (O’Neill et 

al. 2016, Eyring et al. 2016; Supplemental Table A2.1). The air temperature 

projections from the six CMIP6 models were delta corrected and linearly transformed 

to project yearly averaged surface water temperatures following the methods described 

in Bell et al. (2018). To bias correct the projections, delta corrections were applied 
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between the CMIP6 modeled air temperature and observed air temperature as well as 

observed water temperature and projected water temperature. Air temperature data 

from the National Oceanic and Atmospheric Administration (NOAA) National 

Centers for Environmental Information for the TF Green Airport, Providence, RI 

station were used to relate observed air temperature to observed surface water 

temperatures (www.ncdc.noaa.gov; Supplemental Table A2.2). Temperatures were 

projected through 2054 based on data availability. This projection timeframe is long 

enough to see distinct changes in the average Bay temperature, while being short 

enough to provide reasonable projection results, since physiological responses can 

adjust on shorter timescales through acclimation (i.e. physiological adjustment to new, 

sustained conditions) and adaptation, and on longer timescales (i.e. yearly to decadal) 

through range shift, ecological feedbacks, and evolution (Peck, 2011; Sibly et al., 

2012). The final time series for the high and low warming scenarios were created by 

averaging the output of each of the six delta corrected surface temperature projections 

for each year after 2018.  

2.3 Temperature-dependent consumption 

The food consumption thermal response for each of the three fish functional 

groups was described using the Kitchell equation (Hansen et al., 1997; Kitchell et al., 

1977), which is routinely used to characterize temperature-dependent consumption in 

bioenergetic models (Hansson et al., 1996; Harvey, 2009; Luo and Brandt, 1993). The 

Kitchell equation, shown in Eq. (2), uses straightforward input parameters of the 

thermal maximum (Tmax; the temperature above which consumption is zero), 

temperature of optimum consumption (ToptC), and the Q10 of consumption (referring to 

http://www.ncdc.noaa.gov/
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the rate of change for a process as the temperature increases 10°C; Hansen et al. 1997, 

Fogarty & Collie 2020) to estimate the proportion of maximum consumption that 

occurs at a given temperature (rc).    

𝑟𝑐 =  [
 𝑇𝑚𝑎𝑥 −  𝑇

𝑇𝑚𝑎𝑥 − 𝑇𝑜𝑝𝑡𝐶
]

𝑋

∗  𝑒
[𝑋∗(1−

 𝑇𝑚𝑎𝑥 − 𝑇
𝑇𝑚𝑎𝑥 − 𝑇𝑜𝑝𝑡𝐶

)]
 (2) 

𝑤ℎ𝑒𝑟𝑒 𝑋 =  {
[ln(Q10)∗ (𝑇𝑚𝑎𝑥− 𝑇𝑜𝑝𝑡𝐶)]

2

400
} ∗  {1 +  [1 +  (

40

ln(Q10)∗ (𝑇𝑚𝑎𝑥− 𝑇𝑜𝑝𝑡𝐶+2)
)

0.5

]

2

}             

The three thermal parameters (Tmax, ToptC, Q10) for each fish species were 

derived from the literature, and a hierarchy of data sources was used to choose the 

value for each parameter (Supplement A.3). The original Innes-Gold et al. (2020) 

model was parameterized for adult fish; for compatibility, literature values for adults 

were chosen over those for younger life stages. Additionally, experimental studies 

were chosen over values reported from other models. For each species, Tmax was 

chosen as the highest value from temperature of occurrence data in Narragansett Bay, 

stock-wide temperature of occurrence from the website Aquamaps (Kaschner et al., 

2019; www.aquamaps.org), or studies focusing on thermal tolerance. For some 

species, limited information required the assumption of relationships between ToptC, 

Tmax, and a described temperature of maximum growth in order to estimate ToptC in the 

absence of published consumption data. The Q10 is assumed to be 2.3 when no other 

estimate is available (Hansen et al., 1997). Effort was made to choose values from 

studies that were the most representative of the fish in Narragansett Bay, but, 

particularly in the case of ToptC, we were limited by the information available in the 

literature.  
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Consumption thermal response by functional group began with the species-

specific Kitchell input parameters. A biomass weighted average of species from 1994-

1998 (Supplemental Table A3.4) yielded the parameters by functional group, which 

were then inputted to the Kitchell equation. The weighting of the consumption curve, 

therefore, was weighted the same as the other original Ecopath parameters (Innes Gold 

et al., 2020). Modelling bioenergetic responses on a functional group level smoothed 

intra- and inter-species variability in thermal response. The challenge of determining 

an appropriate level of aggregation when integrating physiological responses in 

models has been recognized by others (Cooke et al., 2014), but our method was the 

most consistent with the parameterization of the original EwE model.  

We ran a sensitivity test to examine the effect of input community composition 

on the consumption thermal response curves. Three Kitchell curves per functional 

group, weighted by different species biomasses, were used to create consumption 

modifier time series; 1) the 1994-1998 averaged biomasses as described earlier in the 

methods, 2) the single year’s observed biomass from the time series data that resulted 

in the strongest warm-skewed curve, and 3) biomasses including more southern, 

warm-water species to represent a future curve as new species enter the Bay. Further 

information on the creation of the curves with southern species can be found in 

Supplement Table A4.1.  

The thermal response curves were adjusted to account for the temperature at 

which the Ecopath baseline was established. The standard Kitchell curve ranges 

between 0 and 1. In the EwE framework, Ecosim models build off the Ecopath starting 

conditions. In our case, the Ecopath model represented the average Bay state in 1994-
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1998. The scaling of the curve grounded the thermal response in the starting 

conditions of the initial Ecopath model. We scaled the Kitchell curve so that the 

thermal modifier was 1.0 at the average 1994-1998 temperature of the Bay (TB94; Eq. 

(3)). The scaled Kitchell curve, referred to as the relative consumption curve (RelC), 

had a maximum consumption modifier greater than one at ToptC.  

𝑅𝑒𝑙𝐶 =  𝐾𝑖𝑡𝑐ℎ𝑒𝑙𝑙𝑜𝑟𝑖𝑔 (𝐾𝑖𝑡𝑐ℎ𝑒𝑙𝑙𝑜𝑟𝑖𝑔|𝑇𝐵94
)⁄  (3)  

The base model with temperature-dependent consumption will be referred to as 

the ‘consumption’ version of the model. Temperature-dependent consumption was 

forced differently than previous EwE models because the forcing functions between 

Ecosim and Rsim differ. In this study, the consumption modifiers, as calculated from 

the relative consumption curve and temperature time series, were applied with the 

‘ForcedSearch’ feature (formerly called ForcedPred). This forcing option modifies the 

effective predator biomass which is then inputted into the main consumption 

calculations (Lucey et al. 2020 equations 19 & 20). The calculations of ForcedSearch 

function apply the thermal response before the full consumption calculations, so that 

the foraging arena and interspecies interactions mediate the temperature effect on 

physiological processes, as has been suggested by others (Neubauer and Andersen, 

2019). A time series of consumption modifiers by year then forced the temperature-

dependent model versions using the ‘adjust.forcing’ function on the ForcedSearch 

parameter.  

2.4 Temperature-dependent respiration 

The second bioenergetic response built into Rpath was temperature-dependent 

respiration. Respiration was treated similarly to standard metabolism, though 
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respiration includes other energetic costs including standard dynamic action (SDA), 

the metabolic cost to digest food, or activity costs. Our framing of metabolism as the 

amount of energy used to maintain function was more directly applicable to the EwE 

mass-balance setup and respiration term than other metrics such as aerobic scope. The 

original Innes-Gold et al. (2020) EwE model was a parsimonious model of the 

ecosystem in which species age and size were generally not included. Therefore, our 

functional form for temperature-dependent respiration was simplified because it did 

not include a body mass effect on respiration (Sibly et al., 2012). This simplification 

was appropriate since the fish groups in the base model were not multi-stanza (i.e. 

subdivided into size or age groups), and size structure of the population was not 

modelled.  

Though the literature often describes respiration as an exponential increase of 

base metabolic energy demand with temperature, many experimental studies only 

reported two- to four-fold increases in standard or resting metabolism (Bernreuther et 

al., 2013; Dalla Via et al., 1998; Johansen and Jones, 2011; Sandersfeld et al., 2017; 

Schwieterman et al., 2019; Slesinger et al., 2019; Stewart and Binkowski, 1986). 

Studies investigating the relationship between temperature and metabolic costs have 

included SDA or locomotion, but similar ranges of metabolic increases were reported 

(Fu et al., 2009; Hartman and Brandt, 1995). Therefore, we thought that including 

resting metabolism, SDA, and activity should only increase energetic losses to 

metabolism by a factor of eight to ten-fold over biologically relevant temperatures.  

The modified Arrhenius equation reported in Blanchard et al. (2012) calculated 

with their reported parameters was used as the functional form for the thermal 
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response of fish respiration in relationship to temperature (Eq. (4)). The thermal 

modifier (τ), ranging from zero to ten, is a function of the temperature in degrees 

kelvin, the Boltzmann constant (k; 8.62x10-5 eV K-1), the activation energy (0.63 eV; 

similar to values in other studies such as Gillooly et al. 2001, Brown et al. 2004), and a 

constant (c1=25.55).  

𝜏 =  𝑒𝑐1−(𝐸 𝑘𝑇⁄ ) (4) 

The modified Arrhenius equation is the best fit for constraining the metabolic 

modifier to the range of increases seen in literature for these and similar species. 

However, there are no species-specific parameters. Given that any species-specific 

thermal responses would be clouded in the base model’s aggregation to functional 

groups, we considered the Blanchard et al. (2012) equation to adequately represent a 

generalized (i.e. non-species specific) fish metabolic thermal response. The respiration 

thermal response was scaled using similar methods to the consumption response 

scaling, so that a modifier of τ=1 on the relative respiration curve (RelR; i.e. scaled 

Blanchard curve) was associated with TB94 (Eq. (5)).   

𝑅𝑒𝑙𝑅 =  𝐵𝑙𝑎𝑛𝑐ℎ𝑎𝑟𝑑𝑜𝑟𝑖𝑔 (𝐵𝑙𝑎𝑛𝑐ℎ𝑎𝑟𝑑𝑜𝑟𝑖𝑔|𝑇𝐵94
)⁄  (5)  

Production rate (P/B) is static, and respiration is solved for in the default 

programming of Ecopath. Rsim uses a parameter, ActiveRespFrac, to represent the 

fraction of energy devoted to respiration, which is calculated from the production to 

consumption ratio and unassimilated food (Aydin et al., 2016). The ActiveRespFrac 

parameter is carried through the dynamic Rsim simulations. Unassimilated food is 

assumed to be independent of temperature.  
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The first step in creating the time series used to force temperature-dependent 

respiration was to multiply the relative consumption curves by the Ecopath total 

consumption, equal to Ecopath Q/B multiplied by biomass, to make a curve of total 

consumption by temperature (Eq. (6)).  

𝑇𝑜𝑡𝑎𝑙𝐶𝑜𝑛𝑠𝑇 =  𝑅𝑒𝑙𝐶 ∗ 𝑄 𝐵𝐸𝑐𝑜𝑝𝑎𝑡ℎ ∗  𝐵𝑖𝑜𝑚𝑎𝑠𝑠𝐸𝑐𝑜𝑝𝑎𝑡ℎ⁄  (6)  

The total consumption at TB94 for each of the functional groups was multiplied 

by the base ActiveRespFrac to get the total respiration at TB94. The relative respiration 

curve was multiplied by the ratio of the total respiration at TB94 to the relative 

respiration modifier value at that temperature which produced a total respiration by 

temperature curve (Eq. (7)). 

𝑇𝑜𝑡𝑎𝑙𝑅𝑒𝑠𝑝𝑇 =  𝑅𝑒𝑙𝑅 ∗ (𝑇𝑜𝑡𝑎𝑙𝐶𝑜𝑛𝑠𝑇|𝑇𝐵94
∗  𝐴𝑐𝑡𝑖𝑣𝑒𝑅𝑒𝑠𝑝𝐹𝑟𝑎𝑐𝐵𝑎𝑠𝑒) 𝑅𝑒𝑙𝑅|𝑇𝐵94

⁄  (7) 

Dividing the total respiration by total consumption gave ActiveRespFrac by 

temperature (Eq. (8)).  

𝐴𝑐𝑡𝑖𝑣𝑒𝑅𝑒𝑠𝑝𝐹𝑟𝑎𝑐𝑇 =  𝑇𝑜𝑡𝑎𝑙𝑅𝑒𝑠𝑝𝑇 𝑇𝑜𝑡𝑎𝑙𝐶𝑜𝑛𝑠𝑇⁄  (8)  

In another sensitivity test, we scaled the consumption and respiration curves to 

the temperatures that informed the original parameters estimated in the Ecopath model 

to examine the sensitivity of the curves to the implicit thermal parameterization of the 

Ecopath model and different scaling temperatures. In this sensitivity test, the Kitchell 

curves were scaled to the temperature informing the Ecopath Q/B parameters (TQB) 

instead of the temperature of the Bay (TB94). The Blanchard curve was scaled by the 

temperature of fishing mortality (TF; TF = TB94 as the fisheries catches used to 

calculate fishing mortality were taken from the Bay) and the temperature of natural 
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mortality (TM; mean(TZ, TM)=TPB). The average temperatures of the Ecopath 

parameters for the fish functional groups can be found in Supplemental Table A4.2.  

The bioen branch of Rpath development introduces the ForcedActresp function 

(github.com/NOAA-EDAB/Rpath). This function modifies the total energetic losses to 

respiration (ActiveRespLoss). The respiration modifier at each year (t) was calculated 

so that ActiveRespFrac for each year was what would be expected from the 

temperature time series and the ActiveRespFrac by temperature curves (Eq. (9)).  

𝐹𝑜𝑟𝑐𝑒𝑑𝐴𝑐𝑡𝑟𝑒𝑠𝑝𝑡 = 𝐴𝑐𝑡𝑖𝑣𝑒𝑅𝑒𝑠𝑝𝐹𝑟𝑎𝑐𝑇,𝑡 / 𝐴𝑐𝑡𝑖𝑣𝑒𝑅𝑒𝑠𝑝𝐹𝑟𝑎𝑐𝐵𝑎𝑠𝑒  (9) 

2.5 Comparison of model versions 

Three model versions with two warming scenarios were compared (Table 1). 

The static starting conditions of all model versions was the Rpath translation of the 

1994-1998 average Ecopath model of Innes-Gold et al. (2020). The Rsim translation 

of the Innes-Gold et al. (2020) Ecosim model of Narragansett Bay was the base 

version. Temperature-dependent consumption only was included in the consumption 

version of the model, and both temperature-dependent consumption and respiration 

were included in the respiration version of the model (Figure 1). The consumption and 

respiration versions were forced with observed temperatures from 1994-2018, and two 

warming scenarios, high and low, were used to project the consumption and 

respiration model versions from 2019 to 2054. Versions of the model were compared 

in terms of fit (i.e. sum of squares between Rpath modeled absolute biomass and 

observed biomass), realism of bioenergetic responses to temperature, and future 

projected biomasses.  
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The third and final sensitivity test performed examined the influence of the 

vulnerability parameter, given we expected the vulnerability parameters to have strong 

impacts on resulting biomasses. The Qlink values (i.e. measure of energy transferred 

between a predator and prey) for which the fish were predators and output biomasses 

in the respiration model version with the high warming scenario were compared for 

three sets of vulnerabilities: the original values used in the Innes-Gold et al. (2020) 

model, a 20% change in vulnerabilities whereby each vulnerability was adjusted 20% 

closer to the default of 2, and the EwE default 2.0 for all vulnerabilities.  

3. Results 

3.1 Temperature 

There was strong interannual variability in the observed, averaged surface 

temperatures from 1994-2018; however, there was no apparent warming trend (Figure 

2). The TB94 temperature was 11.7°C. The historical temperatures of the CMIP6 

models were generally comparable to observed temperatures. Each CMIP6 model had 

similar variability to the observed time series which was dampened when averaging 

the climate models together. However, this forward projection with lower variability 

still captured warming trends presented by the multi-model ensemble. The high 

warming scenario, SSP5-8.5, provided an overall increase of nearly 3°C between the 

start of the time series and 2050. The low warming SSP1-2.6 yielded an average 

increase of approximately 2°C by 2050. The greatest difference between the high and 

low warming scenario projections was 1.1°C in 2045.  
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3.2 Consumption response curves 

The thermal response curves for consumption generally reflected the shape as 

suggested by theory (Figure 3A). The curves varied between functional groups with 

piscivorous fish having the steepest increase in consumption below ToptC, while 

benthivorous fish had the steepest decrease near their thermal maximum. The input 

species for these curves generally had broad thermal tolerances, and the average 

temperatures experienced in Narragansett Bay were on the lower end of their tolerance 

ranges (Supplemental Figure B2.1). 

The thermal modifiers of all functional groups increased over 1.0 early in the 

time series, though within each functional group the modifier only varied by 0.2-0.5 

(Figure 3B). The ending consumption modifier was larger in the high warming 

scenario for all fish groups, and piscivorous fish had the largest consumption modifier 

overall (maximum=1.38). The community composition sensitivity test resulted in 

relative consumption curves with different thermal maxima, but the consumption 

modifier time series were similar as the curves overlap at the colder average 

temperatures of the Bay (Supplemental Figure B2.2). The curves created from a single 

year’s observed biomasses were more extreme than the curves created with moderate 

biomasses of new southern species.  

3.3 Respiration response curves  

 The original Blanchard curve had a thermal modifier of 1.0 at 13°C, thus the 

Blanchard curve and the relative respiration curve scaled to TB94 were similar (Figure 

4A). The three ActiveRespFrac curves by temperature varied by functional group due 

to the interplay between the respiration and consumption curves (Figure 4B). The 
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planktivorous fish ActiveRespFrac curve was relatively flat before steeply increasing 

near maximum temperatures. The benthivorous fish curve showed an increasing trend 

as waters warm (from 0.54 to 0.74 from 0°C to 20°C). The piscivorous fish 

ActiveRespFrac decreased to a minimum of energy allocated to metabolism (41%) 

occurring at 18.4°C before sharply increasing. The temperature-dependent production, 

shown by the balance of temperature-dependent consumption and respiration, varied 

in shape by functional group (Supplemental Figures B3.1A-B3.1C). Piscivorous fish 

had the most defined temperature-production curve, in which the temperature of 

maximum potential production was slightly cooler than the temperature of maximum 

consumption. The planktivorous fish production-temperature curve was less 

pronounced, and there was a very minor curve in the energy available for production 

for benthivorous fish. 

ActiveRespFrac forcing varied between the high and low projected warming 

scenarios (Figure 4C). In the base version of the model, piscivorous fish had the 

lowest ActiveRespFrac (0.48), followed by planktivorous fish (0.53), and 

benthivorous fish had the highest (0.61). Both planktivorous fish and benthivorous 

fish ActiveRespFrac only varied by 0.03 throughout the time series. Both groups had 

higher ending metabolic demands compared to the starting conditions of the Rpath 

model. Unlike the other two functional groups, piscivorous fish ActiveRespFrac 

declined during the 60-year projection, as the temperatures experienced by the Bay 

during this period were still on the decreasing portion of their ActiveRespFrac curve.  

Under the second sensitivity test, the scaling temperature chosen for the 

relative consumption and respiration curves varied by functional group. The TQB for 



 

 

21 

piscivorous fish was much higher than TB94, which was reflected in the relative 

consumption curve for that functional group (Supplemental Figure B3.2A). The 

consumption for piscivorous and benthivorous fish remained below the respective 

Ecopath starting points for the entirety of the time series (Supplemental Figure 

B3.2B). For respiration, the TPB was similar to TB94, so that the ActiveRespFrac by 

temperature curves differed slightly (Supplemental Figures B3.3A-B3.3B). The 

ActiveRespFrac time series had similar increasing or decreasing patterns by functional 

group but were scaled differently relative to the initial ActiveRespFrac (Supplemental 

Figure B3.3C). In this test, piscivorous fish had respiration costs higher than their 

baseline in all years.  

3.4 Comparison of model versions 

The inclusion of temperature-dependent fish bioenergetics impacted the 

modelled biomasses (Figure 5). For planktivorous and benthivorous fish, the 

consumption model versions yielded higher ending biomasses than the base model, 

and the respiration model versions yielded lower biomasses in warming water (Figure 

6). Planktivorous fish and benthivorous fish biomasses were 14.55 g/m2 and 9.93 g/m2 

in the high warming respiration version compared to 17.03 g/m2 and 12.46 g/m2 in the 

high warming consumption version. Piscivorous fish biomass was highest in the high 

warming respiration model version (9.25 g/m2) due to their respiration costs 

decreasing as water temperature increased from its current state.  

Piscivorous fish had the greatest percent difference in the 2054 biomass 

estimates between of the five tested model versions and scenarios (28% between the 

high warming respiration version and the base version of the model). The other fish 
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groups varied by 14.6% (planktivorous fish) and 20.3% (benthivorous fish). The 

carnivorous benthos group differed by 20.4% at most, with biomasses approximately 2 

g/m2 lower in the consumption versions than the base version. Although the absolute 

biomasses were small, squid groups differed by 18-27% between model versions, with 

the base model version predicting the highest biomasses. These groups had stronger 

connections to the adjusted fish groups than the other mid and lower trophic level 

groups which had biomass vary between model versions by 1-6%. 

The model version with the best fit (i.e. lowest sum of squares) varied by 

functional group (Supplemental Table B4.1). The consumption version of the model 

gave the best fits for benthivorous fish, planktivorous fish, and carnivorous benthos, 

while the base version without environmental forcing had the lowest sum of squares 

for piscivorous fish and the squid groups.  

When assessing the impact of community composition in the first sensitivity 

test, the introduction of new species shifted the thermal maxima for the functional 

group, but, because of the cooler average Bay temperature compared to the maxima, 

we did not see the difference in the relative consumption curves reflected in the 

biomass projections (Supplemental Figure B4.1). There was limited variation in the 

2054 biomasses projected under the second sensitivity test of different scaling 

temperatures (Supplemental Figure B4.2). The base version of the model generally 

had higher biomasses than those forced with temperature-dependent bioenergetics 

scaled to TQB and TPB. 

In the model versions, many of the vulnerabilities of strong predation 

connections for the fish groups were less than 2.0, which corresponds to bottom-up 
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forcing. In the third sensitivity test of changing vulnerabilities, we made these 

important vulnerabilities more top-down (i.e. closer to 2.0), such that the fish groups 

were able to further increase their consumption (Supplemental Figures B4.3-B3.5). 

Planktivorous fish, in particular, had higher projected biomasses when vulnerabilities 

were more top-down (Supplemental Figure B4.6). The smaller changes in 

vulnerabilities between the fitted and 20% change in vulnerabilities yielded smaller 

changes in biomass (Supplemental Figure B4.7).  

The ActiveRespLoss is the parameter adjusted with the new respiration forcing 

of ForcedActresp. ActiveRespLoss is a function of total consumption, the fraction of 

energy devoted to respiration, and the forced respiration modifier. All model versions 

had an ending ActiveRespLoss higher than that of the static Ecopath model (Table 2). 

There were noticeable, but not strong, differences in the 2054 respiration losses, 

reflecting the variability of the ending respiration modifier and biomasses between 

model versions. 

Ecosim-type models forced into the future can reach an equilibrium state if not 

forced by varying external drivers Therefore, the total energy inputs and outputs had 

nearly equilibrated by 2054 in all model versions (Supplemental Table B4.2). Given 

that fish groups represent just a portion of the biomass of the ecosystem, certain 

ecosystem metrics, such as catch, were more strongly influenced by changing fish 

bioenergetics than others. The respiration model versions had the highest total 

ecosystem respiration and the lowest overall production.  



 

 

24 

4. Discussion 

We have expanded existing software to make a bioenergetics-based, 

temperature-dependent food web model and have shown that this new functionality 

introduced into the flexible Rpath package can impact biomass projections. Climate 

change elicits complex responses from organisms and ecosystems (Roessig et al., 

2004), and our work adds a critical modelling component of temperature-dependent 

energetic losses. Our methodology can be used in combination with other tools to 

explore, more completely, the impacts of warming water on marine food webs.  

4.1 Temperature 

The effects of rising temperatures are increasingly being incorporated into 

fisheries and ecosystem models (Barange et al., 2018). Our temperature time series 

indicated that Narragansett Bay is likely to warm over the next few decades, similar in 

scale to what has been projected for other Atlantic U.S. estuaries (Muhling et al., 

2018). The deterministic nature of the EwE and Rpath models allowed us to force 

using the average temperature trends, even though we would expect more inter-annual 

variability in the realized temperature. Seasonal patterns have historically varied with 

the winter period experiencing the greatest warming trend (Fulweiler et al., 2015), but 

the annual averaging of temperature was required to match the setup of the Innes-Gold 

et al. (2020) model. Future research could explore the spatial and temporal variability 

of temperature, as small-scale rates of temperature change have been shown to have 

physiological impacts (Peck et al., 2009).  
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4.2 Consumption thermal response 

The average thermal response for a functional group can shift as community 

composition changes, potentially mirroring the changing temperature conditions 

(Flanagan et al., 2019). Warming waters can restructure marine communities as 

species move to remain within their preferred thermal habitat (Burrows et al., 2019; 

Hale et al., 2017; Nicolas et al., 2011). Our sensitivity test on changing community 

composition showed that large interannual variability in relative species abundance 

can have as strong an impact on the consumption thermal response as the introduction 

of new species with warmer tolerances if those new species begin at relatively small 

biomasses. However, we would expect the warm-water species to become more 

dominant over time as the environment becomes more favorable for them. Such a shift 

in species has been seen in Narragansett Bay over the last few decades (Collie et al., 

2008; Oviatt et al., 2003). Changes in community structure could be explored further 

in future models that split warm and cold-water species into distinct functional groups.  

4.3 Respiration thermal response  

The Blanchard et al. (2012) parameterization of the Arrhenius equation yielded 

a reasonable description of changing metabolic costs for the fishes in our ecosystem. 

Ideally, we would have had species-specific responses, but since there were few 

respiration data available for the species in our ecosystem, we would have used 

assumed values regardless. Some studies report a temperature that corresponds to a 

maximum resting metabolism beyond which metabolic demand decreases 

(Bernreuther et al., 2013; MacIsaac et al., 1997; Schulte, 2015), but this decrease is 

not always seen (Giacomin et al., 2017; McKenzie et al., 2016; Stewart and 
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Binkowski, 1986). Other environmental drivers, such as pH, can alter the pattern of 

metabolic response to temperature (Schwieterman et al., 2019). Future work could 

assess output sensitivity to the respiration functional form chosen, and ecosystems 

with more metabolic studies of their component species may be amenable to responses 

fitted to real data.  

Our ActiveRespFrac values in the base version of the model (0.48-0.61) appear 

reasonable, though studies are limited, and the fraction of energy devoted to 

respiration is not a frequently reported metric. Studies of other fishes have reported 

estimates varying from 26% to 70%, with more generalized studies estimating that 

respiratory costs constitute approximately half the energy budget (41-66%; Anacleto 

et al., 2018; Dabrowski, 1985; Priede, 1985; Sun et al., 2006). We strongly 

recommend ground truthing ActiveRespFrac values in the balancing step when 

building future EwE and Rpath models to be used to examine thermal drivers and 

bioenergetic questions. Previous work has also found that temperature altered growth 

rates as a result of the balance between energy inputs and outputs (Cotton et al., 2003; 

Gaylord et al., 2003; Present and Conover, 1992). The production curves varied 

between the fish groups, and the aggregation of multiple fish species with differing 

data quality into a single functional group response was likely responsible for any 

deviations in curve shape from theory. 

Ecopath models are implicitly parameterized for ambient temperatures, and 

when the temperature changes, so will the vital parameters. The initial piscivorous fish 

life history parameters (i.e. Q/B and natural mortality) from Fishbase were generally 

estimated from warmer temperature environments which can result in higher 
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consumption and metabolism (Froese and Pauly, 2019). Creating Ecopath models can 

necessitate borrowing parameter values from similar species and geographic regions, 

but users should consider inconsistencies in environmental conditions if they hope to 

include temperature impacts in their modeled ecosystem. 

4.4 Comparison of model versions 

Biomass projections between the model versions were noticeably different, 

though these differences were small due to the consistent forcing of phytoplankton and 

fishing mortality stabilizing the outputs. The fish biomass projections were similar for 

1994-2018 and diverged beyond 2018 as the temperature increased. The consumption 

versions had the highest biomasses for benthivorous and planktivorous fish reflecting 

the increased energy intake and assuming that all of the energy was available for 

production. The respiration model versions had the lowest benthivorous and 

planktivorous fish biomasses, a result consistent with increased energetic demands of 

warmer waters (Chabot et al., 2016).  

Ignoring the shifting bioenergetic balance when modelling fish biomasses in 

response to climate change may yield optimistic forecasts for fisheries. Changing 

productivity of fish populations can potentially lead to lower sustainable fisheries 

yields (Free et al., 2019), and different management approaches may need to be 

considered when examining a warming ecosystem (Serpetti et al., 2017). As top 

predators, piscivorous fish likely had the smallest biomass differences between the 

respiration and consumption model versions because they were both externally forced 

with changing energetic demands, and their prey (i.e. the other fish groups) were also 

affected. In the respiration model versions, the respiration costs for piscivorous fish 
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were decreasing, and the group might have had higher biomasses if their prey fish had 

not declined due to their own increasing metabolic costs. Trophic amplification of 

environmental impacts has been shown in other models of warming systems, where 

predators showed greater declines than forced declines in primary producers because 

the intermediate groups were also affected (Kwiatkowski et al., 2019; Lotze et al., 

2019). Even limiting variable forcing to the fish groups had trickle-down effects on 

other groups of the ecosystem. While the changes in the biomass of other functional 

groups were more minor than the fish groups, they were still noticeable which 

highlights the importance for bioenergetic considerations when projecting food web 

impacts to climate change.  

The vulnerabilities estimated for our fish groups were generally bottom-up, so 

the predation mortality that these fish groups can exert on their prey was limited even 

as fish biomass increases (Christensen and Walters, 2004). Our third sensitivity tests 

illustrated the influence of vulnerability parameters on Ecosim and Rsim biomass 

projections, which has been described by others (Heymans et al., 2016; SEDAR, 

2020). Because higher (i.e more top-down) vulnerabilities led to higher consumption 

and biomasses, top-down ecosystems may be more strongly affected by changing 

predator bioenergetics.  

We chose to not refit the model versions (i.e. re-estimate vulnerabilities) after 

including the temperature drivers to isolate the impacts of changing bioenergetics. 

Therefore, while biomass projections differed, we did not necessarily achieve a better 

model fit with the inclusion of temperature-dependent fish bioenergetics. A model 

with vulnerabilities estimated by fitting procedures after adding the thermal responses 
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may better match observed biomass as has been seen in other EwE models (Bentley et 

al., 2020, 2017). However, our focus was on developing new metabolic functionality 

in Rpath and understanding the scale at which temperature-dependent fish 

bioenergetics can impact predicted biomasses rather than using bioenergetic theory to 

explain observed trends. 

4.5 Considerations for future models  

This model required a vast amount of data, but data for basic bioenergetic 

parameters do not always exist, particularly as studies may be biased toward species of 

economic importance or those able to thrive in laboratory conditions (Peck et al., 

2014). Physiological studies seem to emphasize the nuance of fish response to 

temperature. While advanced bioenergetic models may be able to capture this nuance, 

generalized ecosystem modelling efforts could benefit from availability of 

bioenergetic data captured in standard thermal response parameters or generalized 

species responses. Increased ability to assess parameter uncertainty could be achieved 

by combining this work with the Bayesian EcoSense routine (Aydin et al., 2007), or 

utilizing correlation analysis (Bentley et al., 2020).    

We modeled simple bioenergetic responses to temperature based on 

established bioenergetic principles. In reality, the factors influencing consumption and 

metabolism are much more complex. Thermal responses can differ between 

individuals as well as populations, and responses can be altered by the presence of 

simultaneous stressors (Farrell, 2016; Kroeker et al., 2013; Present and Conover, 

1992). A more detailed base model may address the stage-specific thermal tolerances 

and the role of body size in metabolic performance (Hare et al., 2010; Luo and Brandt, 
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1993; Sibly et al., 2012), but this would require additional size- or age-specific 

bioenergetic data for each species. We did not include acclimation effects, though the 

previous thermal exposure of organisms can affect their response to temperature, nor 

the rate of temperature change, which can alter an organism’s response (Morgan et al., 

2018; Otto et al., 1976; Pinsky et al., 2020). Our work also excludes the feedbacks 

between temperature, reproduction, and recruitment processes (Conover and Kynard, 

1981; James, 2020; Johnston et al., 1998; Pankhurst and Munday, 2011), which may 

be included in future models with increased use of multi-stanza groups. Finally, 

individual organism behavioral responses such as behavioral thermoregulation or 

changes in risk taking behavior were not included (Nagelkerken and Munday, 2016; 

Neubauer and Andersen, 2019).  

Our work could be expanded in the future to include thermal responses 

experienced by other non-fish functional groups. Climate change has been shown to 

influence community composition, abundance, and timing of plankton blooms 

(Lawrence and Menden-Deuer, 2012; Smith et al., 2010; Sullivan et al., 2001), which 

could have significant feedbacks on Narragansett Bay energy flow (Monaco and 

Ulanowicz, 1997). Reduced primary production due to climate change could result in 

reduced fisheries catch if lower level production can no longer support high predator 

abundance (Brown et al., 2010; Cheung et al., 2011; Johansen et al., 2015). Fishing 

and other human activities are also considered significant drivers of ecosystem 

indicators (Link et al., 2010). More confidence and precision in future biomass 

estimates could be achieved through the inclusion of the thermal responses of the 

lower trophic level groups and additional varying top-down and bottom-up dynamics.  
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4.6 Conclusion 

EwE has most often been used to address fisheries harvest questions (Pauly et 

al., 2000); our work builds on previous applications of environmentally driven food 

web models used to explore climate change impacts. In our Narragansett Bay case 

study, we have demonstrated that the inclusion of temperature-dependent bioenergetic 

drivers into existing Rpath and Rsim models can alter projections of biomass and 

energy flow. Ecosystem health and sustainability goals can be better achieved by 

integrating principles of conservation physiology into multispecies models to gain 

improved resolution on how ecosystems will respond to environmental pressures 

(McKenzie et al., 2016). Productivity of Narragansett Bay, or similar ecosystems, may 

be compromised in a warmer future if fish or other ectotherms devote greater amounts 

of energy towards meeting metabolic demands. Our novel methodology is intended to 

serve as an example to address such questions in other warming marine ecosystems 

(Pershing et al., 2015) or lake environments (Adrian et al., 2009) in which there may 

limited ability for fish to seek alternate temperatures. The new functionality for 

temperature-dependent respiration in the Rpath package can be combined with other 

thermally-driven model components to provide the most comprehensive predictions of 

how a food web will respond to climate change.  
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7. Tables 

Table 1: Naming convention and descriptions of the base and temperature-dependent 

versions of the Rpath implementation of the Narragansett Bay food web model.   
Model 

Version 
Description Scenarios Run 

Base Rsim translation of Innes-Gold et al. (2020) 

Ecosim model. Model version used the same 

fishing and biomass forcing as the Ecosim model. 

No environmental forcing was included in the 

1994-2054 projection.  

N/A 

Consumption 

(Cons) 

Built on the base version of model run with 

temperature-dependent consumption only. 

Consumption modifiers applied using the 

ForcedSearch function. Observed temperatures 

used for the 1994-2018 projections.  

Two runs from 2019-

2054: 

High warming & 

Low Warming 

Respiration 

(Resp) 

Built on the consumption version of the model run 

with temperature-dependent respiration. 

Respiration modifiers applied using the new 

ForcedActresp function. Observed temperatures 

used for the 1994-2018 projections. 

Two runs from 2019-

2054: 

High warming & 

Low Warming 
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Table 2: Biomass, the fraction of energy towards respiration (ActiveRespFrac), and 

the energy lost to respiration (ActiveRespLoss) for all model versions including the 

static Rpath starting point for the dynamic versions. High is the high warming 

temperature forcing scenario, and Low is low warming scenario. In the respiration 

versions, the ActiveRespFrac is shown with the forced respiration modifier in 

parentheses. For the dynamic models, the value shown is the 2054 projection. 

Functional 

group 
Variable Base 

Cons 

High 

Cons 

Low 

Resp 

High 

Resp 

Low 
Rpath 

Plank-

tivorous 

Fish  

Annual_Biomass 15.28 17.03 16.53 14.55 14.71 12.3 

ActiveRespFrac 0.53 0.53 0.53 

0.53 

(1.042) 

0.53 

(1.035) 0.53 

ActiveRespLoss 76.30 81.12 80.13 81.44 80.69 71.14 

Benth-

ivorous 

Fish 

Annual_Biomass 10.28 12.46 11.90 9.93 10.08 9.22 

ActiveRespFrac 0.61 0.61 0.61 

0.61 

(1.035) 

0.61 

(1.030) 0.61 

ActiveRespLoss 31.51 36.14 35.27 34.39 34.10 25.31 

Pisc-

ivorous 

Fish 

Annual_Biomass 6.63 8.25 7.78 9.25 8.57 2.08 

ActiveRespFrac 0.48 0.48 0.48 

0.48 

(0.924) 

0.48 

(0.932) 0.48 

ActiveRespLoss 8.42 10.20 9.81 9.45 9.18 4.61 
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8. Figures 

 
 

Figure 1: Conceptual diagram for the inclusion of temperature-dependent 

bioenergetics into an Rpath with Rsim model. Adjust.forcing is the function used to 

modify the specified parameter in the temperature-dependent model versions. This 

work introduces the ability to adjust ForcedActresp.  

. 
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Figure 2: Temperature time series inputs for the temperature-dependent model 

versions. The black line with points between 1994 and 2018 is the observed yearly 

average surface temperature of the GSO Fox Island fish trawl station. The colored 

lines are the six CMIP6 models. Solid lines are the high warming scenario and the 

dashed are the low warming scenarios. The projected Bay surface temperatures for 

high warming (solid black line) and low warming (dashed black line) are the means of 

the six CMIP6 models. A table showing the values of the final temperature time series 

can be found in Supplemental Table B1.1.  
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Figure 3: A) The relative consumption curves by functional group in response to 

temperature. Vertical grey dashed lines have been added to show TB94, the 2018 

observed average temperature, and the 2054 average temperature as projected under 

the high warming scenario. B) The consumption modifier time series applied to 

ForcedSearch in the temperature-dependent versions of the model. Beyond 2018, the 

solid line is the modifier in response to the high warming scenario and the dashed lines 

reflect the low warming scenario. The default ForcedSearch of the base model is 1.0, 

shown by a black line.  
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Figure 4: A) The relative respiration curves (black) compared to the original 

Blanchard curve (grey). B) ActiveRespFrac (i.e. Rpath parameter value representing 

fraction of energy devoted to respiratory costs) by temperature for each functional 

group, as calculated from total respiration divided by total consumption. Vertical grey 

dashed lines have been added to show TB94, the 2018 observed average temperature, 

and the 2054 average temperature as projected under the high warming scenario. C) 

ActiveRespFrac as a time series. The horizontal dark lines show the static 

ActiveRespFrac of the base version of the model. The solid pale lines after 2018 show 

the ActiveRespFrac in the high warming scenario and the dashed lines are for the low 

warming scenario.  
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Figure 5: Rsim relative biomass outputs compared to the Rpath starting biomasses for 

the three model versions and two warming scenarios. The cultured shellfish group is 

not included in these plots. The forced biomass of the cultured shellfish group 

increases by orders of magnitude, so the relative biomass scaling for that group does 

not align with the others. 
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Figure 6: Biomass trajectories (lines) for the fish functional groups (FG) compared to 

the observed time series (points) used by Innes-Gold et al. (2020) to fit the original 

Ecosim model. Colors represent the model version and line type indicates the warming 

scenario. Solid lines beyond 2018 show both the base model version without 

temperature-dependence and the consumption and respiration model versions run with 

the high warming scenario. Dashed lines show the low warming scenario. 
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SUPPORTING INFORMATION 

Appendix A. Supplementary Methods 

Supplement 1: Base model inputs 

The input parameters between Ecopath and Rpath were nearly the same. To 

best match outputs between the Rpath and Ecopath software, the Rpath stanza function 

was adjusted so that Von Bertalanffy maximum age was 0.9 * Weight infinity (Winf), 

as opposed to 0.99 * Winf. Additionally, for the Rsim dynamics, detritus P/B needs to 

be entered instead of biomass. However, Rsim detritus projection did not match those 

of Ecosim, so the P/B value of 741 was chosen based on the sum of squares best fit 

between the Rsim predicted detrital biomass and the Ecosim modeled biomass. The 

detritus B_BaseRef, or reference biomass, parameter of Rsim was changed to 3.866 to 

match the EwE initial biomass. The forcing functions of fishing mortality, 

phytoplankton biomass, and cultured shellfish biomass remained the same as those 

used by Innes-Gold et al. (2020). The static, Ecosim-estimated fishing mortality of 

suspension feeding benthos was also included in the Rsim forcing. The original 

Ecosim model was fitted with biomass time series for the upper trophic level groups; 

the Rsim model was not refitted and used the same input parameters (i.e. 

vulnerabilities) as Ecosim. The Rsim dynamic simulations were integrated with the 

Adams-Bashforth (AB) method.  
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Supplemental Table A1.1: Functional group codes and names as in the Rpath model 

versions.  

Functional Group FG Code 

Outside 0 

Phytoplankton 1 

Benthic Algae 2 

Zooplankton 3 

Gelatinous Zooplankton 4 

Deposit Feeding Benthos 5 

Suspension Feeding 

Benthos 

6 

Cultured Shellfish 7 

Carnivorous Benthos 8 

Small Squid 9 

Large Squid 10 

Planktivorous Fish 11 

Benthivorous Fish 12 

Piscivorous Fish 13 

Seabirds 14 

Detritus 15 
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Supplemental Table A1.2. The fish functional groups consist of species deemed to be 

of commercial, recreational, or ecological importance in Narragansett Bay. Species 

were taken from Innes-Gold et al. (2020).  

 

Functional Group Species Included 

(Common) 

Scientific Name 

Planktivorous Fish Atlantic menhaden Brevoortia tyannus 

 Atlantic moonfish Selene setapinnis 

 Alewife Alosa pseudoharengus 

 Bay anchovy Anchoa mitchilli 

 Atlantic silverside Menidia menidia 

 Atlantic herring Clupea harengus 

 Butterfish Peprilus triacanthus 

 Blueback herring Alosa aestivalis 

Benthivorous Fish Winter flounder Pleuronectes americanus 

 Tautog Tautoga onitis 

 Scup Stenotomus chrysops 

 Black sea bass Centropristis striata 

 Little skate Laucoraja erinacea 

 Striped searobin Prionotus evolans 

Piscivorous Fish Summer flounder Paralichthys dentatus 

 Atlantic striped bass Morone saxatilis 

 Bluefish Pomatomus saltatrix 

 Weakfish Cynoscion regalis 

 Spiny dogfish Squalus acanthias 
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Supplement 2: Temperature 

The six CMIP6 models for both the high and low warming scenarios were 

chosen based on the available CMIP6 updates to CMIP5 models used by Bell et al. 

(2018) (Supplemental Table A2.1).  

Supplemental Table A2.1: Model details of the chosen Coupled Model 

Intercomparison Project Phase 6 (CMIP6) models used to create the high and low 

warming scenarios for Narragansett Bay. The model files are given as the .nc files 

taken from the CMIP6 data search site https://esgf-node.llnl.gov/projects/cmip6/.  

CMIP6 Model Institution Experiment Citation 

BCC 

Medium-Resolution 

Climate System 

Model Version 2 

Beijing Climate Center, 

Beijing 100081, China (BCC) 

Historical 

SSP1–2.6 

SSP5–8.5 

Wu et al. 

(2018) 

Xin et al. 

(2019a) 

Xin et al. 

(2019b) 

 

tas_Amon_BCC-CSM2-MR_historical_r1i1p1f1_gn_185001-

201412.nc 

tas_Amon_BCC-CSM2-MR_ssp126_r1i1p1f1_gn_201501-210012.nc 

tas_Amon_BCC-CSM2-MR_ssp585_r1i1p1f1_gn_201501-210012.nc 
 

CAN 

Canadian Earth 

System Model 

Version 5 

Canadian Centre for Climate 

Modelling and Analysis, 

Environment and Climate 

Change Canada, Victoria, BC 

V8P 5C2, Canada (CCCma) 

Historical 

SSP1–2.6 

SSP5–8.5 

Swart et al. 

(2019b) 

Swart et al. 

(2019c) 

Swart et al. 

(2019a) 

 

tas_Amon_CanESM5_historical_r1i1p1f1_gn_185001-201412.nc 

tas_Amon_CanESM5_ssp126_r1i1p1f1_gn_201501-210012.nc 

tas_Amon_CanESM5_ssp585_r1i1p1f1_gn_201501-210012.nc 
 

Continued on next page.  

  

https://esgf-node.llnl.gov/projects/cmip6/
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Supplemental Table A2.1 continued 

CMIP6 Model Institution Experiment Citation 

FGOALS 

Flexible Global 

Ocean–Atmosphere–

Land System Model: 

Grid-Point Version 3 

Chinese Academy of 

Sciences, Beijing 100029, 

China (CAS) 

 

Historical 

SSP1–2.6 

SSP5–8.5 

Li (2019a) 

Li (2019b) 

Li (2019c) 

 

tas_Amon_FGOALS-g3_historical_r1i1p1f1_gn_199001-199912.nc 

tas_Amon_FGOALS-g3_historical_r1i1p1f1_gn_200001-200912.nc 

tas_Amon_FGOALS-g3_historical_r1i1p1f1_gn_201001-201612.nc 

tas_Amon_FGOALS-g3_ssp126_r1i1p1f1_gn_201501-201912.nc 

tas_Amon_FGOALS-g3_ssp126_r1i1p1f1_gn_202001-202912.nc 

tas_Amon_FGOALS-g3_ssp126_r1i1p1f1_gn_203001-203912.nc 

tas_Amon_FGOALS-g3_ssp126_r1i1p1f1_gn_204001-204912.nc 

tas_Amon_FGOALS-g3_ssp126_r1i1p1f1_gn_205001-205912.nc 

tas_Amon_FGOALS-g3_ssp585_r1i1p1f1_gn_201501-201912.nc 

tas_Amon_FGOALS-g3_ssp585_r1i1p1f1_gn_202001-202912.nc 

tas_Amon_FGOALS-g3_ssp585_r1i1p1f1_gn_203001-203912.nc 

tas_Amon_FGOALS-g3_ssp585_r1i1p1f1_gn_204001-204912.nc 

tas_Amon_FGOALS-g3_ssp585_r1i1p1f1_gn_205001-205912.nc 
 

GFDL 

Earth System Model 

Version 4 

National Oceanic and 

Atmospheric Administration, 

Geophysical Fluid Dynamics 

Laboratory, Princeton, NJ 

08540, USA (NOAA-GFDL) 

Historical 

SSP1–2.6 

SSP5–8.5 

Krasting et 

al. (2018) 

John et al. 

(2018a) 

John et al. 

(2018b) 

tas_Amon_GFDL-ESM4_historical_r1i1p1f1_gr1_195001-201412.nc 

tas_Amon_GFDL-ESM4_ssp126_r1i1p1f1_gr1_201501-210012.nc 

tas_Amon_GFDL-ESM4_ssp585_r1i1p1f1_gr1_201501-210012.nc 
 

Continued on next page. 

  



 

57 

 

Supplemental Table A2.1 continued 

CMIP6 Model Institution Experiment Citation 

MIROC 

Model for 

Interdisciplinary 

Research on Climate 

Version 6 

Japan Agency for Marine-

Earth Science and 

Technology, Kanagawa 236-

0001, Japan (JAMSTEC); 

Atmosphere and Ocean 

Research Institute, The 

University of Tokyo, Chiba 

277-8564, Japan (AORI); 

National Institute for 

Environmental Studies, 

Ibaraki 305-8506, Japan 

(NIES); RIKEN Center for 

Computational Science, 

Hyogo 650-0047, Japan (R-

CCS) 

Historical 

SSP1–2.6 

SSP5–8.5 

Tatebe & 

Watanabe 

(2018) 

Shiogama et 

al. (2019a) 

Shiogama et 

al. (2019b) 

 

tas_Amon_MIROC6_historical_r1i1p1f1_gn_195001-201412.nc 

tas_Amon_MIROC6_ssp126_r1i1p1f1_gn_201501-210012.nc 

tas_Amon_MIROC6_ssp585_r1i1p1f1_gn_201501-210012.nc 
 

MRI 

Earth System Model 

Version 2.0 

Meteorological Research 

Institute, Tsukuba, Ibaraki 

305-0052, Japan (MRI) 

Historical 

SSP1–2.6 

SSP5–8.5 

Yukimoto et 

al. (2019a) 

Yukimoto et 

al. (2019b) 

Yukimoto et 

al. (2019c) 

 

tas_Amon_MRI-ESM2-0_historical_r1i1p1f1_gn_185001-201412.nc 

tas_Amon_MRI-ESM2-0_ssp126_r1i1p1f1_gn_201501-210012.nc 

tas_Amon_MRI-ESM2-0_ssp585_r1i1p1f1_gn_201501-210012.nc 
 

 

CMIP Model Citations 

John, Jasmin G; Blanton, Chris; McHugh, Colleen; Radhakrishnan, Aparna; Rand, 

Kristopher; Vahlenkamp, Hans; Wilson, Chandin; Zadeh, Niki T.; Gauthier, Paul 

PG; Dunne, John P.; Dussin, Raphael; Horowitz, Larry W.; Lin, Pu; Malyshev, 
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Supplemental Table A2.2: Correlation parameters between yearly averaged observed 

air temperature from TF Green station and sea surface temperature at the URI GSO 

fish trawl Fox Island station for 1960-2018. The slope was highly significant.  
Coefficient Estimate Standard Error P-value 

Intercept 1.7190 1.3651 0.2 

Slope 0.9242 0.1281 <0.001 *** 

 

  

http://doi.org/10.22033/ESGF/CMIP6.6929


 

61 

 

Supplement 3: Thermal response parameters 

Parameters needed to create the Kitchell curves were chosen through a 

standardized methodology, which differed by parameter. This protocol ensured that 

the parameters chosen best represented the fish in the model, and that the parameters 

were as comparable to each other as possible. Literature was searched with 

GoogleScholar, and search terms included a combination of the common and scientific 

name with one or more of the following terms: temperature, consumption, 

metabolism, respiration, Q10, thermal, tolerance, Ctmax. Adults were distinguished from 

juvenile life stages by how the author described their samples in the study. Fish 

referred to as ‘adults’ were considered adults. Fishbase (Froese and Pauly, 2019) 

length at first maturity was used to make a determination in absence of other data.  

Maximum temperature 

The maximum temperature was rounded to a whole degree using the ceiling 

function to ensure the rounded maximum temperature encompassed the reported 

temperature.  

Three main data sources were considered, and the highest value for each 

species were chosen as the final maximum temperature. The three data sources were 

1) the temperature recorded during the GSO fish trawl for tows in which the species 

was caught, 2) the website Aquamaps, which gathers temperature of occurrence data 

from multiple established surveys (Kaschner et al. 2019), and 3) values from 

experimental literature in which temperature tolerances for adults of the species were 

examined. Thermal data from Essential Fish Habitat (EFH) reports for species were 

found to already be accounted for by the Aquamaps site or experimental studies, so 

EFH documents were not considered one of the main three data sources. Studies from 
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geographically dissimilar stocks (i.e. Gulf of Mexico) were not included, as the 

temperatures of those individuals may not be representative of the fishes coming to 

Narragansett Bay.  

Supplemental Table A3.1: Source data for the species thermal maximum Tmax (°C) 

parameter.  

Species Tmax value Source 

Atlantic menhaden 30 Wyllie et al. (1976) 

Atlantic moonfish 33 Aquamaps 

Alewife 33 Otto et al. (1976)  

Bay anchovy 33 Luo & Brandt (1993) 

Atlantic silverside 31 Hoff & Westman (1966)  

Atlantic herring 26 Aquamaps 

Butterfish 27 GSO 

Blueback herring 27 Aquamaps 

Winter flounder 26 GSO 

Tautog 29 Olla et al. (1978)  

Scup 30 Aquamaps 

Black sea bass 30 Slesinger et al. (2019)  

Little skate 26 Aquamaps 

Striped searobin 27 GSO 

Summer flounder 28 Aquamaps 

Atlantic striped bass 28 Nelson et al. (2010)  

Bluefish 32 Aquamaps 

Weakfish 27 Aquamaps 

Spiny dogfish 29 Aquamaps 
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Temperature of maximum consumption 

The temperature of maximum consumption was rounded to the nearest whole 

degree. We created a hierarchy of options and the value of the parameter from the 

highest ranked source was chosen. If there were two studies at the same level, such as 

two experimental studies on adults, then the average of the values was taken. In order 

from highest to lowest: 

  

1. Study for adults describing the temperature of maximum consumption; if a 

range was given due to acclimation temperatures, the average was taken. 

2. A temperature of maximum consumption in a published adult model. 

3. Study for subadults (juveniles or post-larval stages) describing temperature of 

maximum consumption. 

4. A temperature of maximum consumption in a published subadult model. 

5. The average of a published temperature of optimum growth and the maximum 

temperature, as theory states that the temperature of maximum consumption is 

greater than the temperature of optimum growth (ToptGrowth; Jobling, 1994).  

6. In the absence of other data, the temperature of maximum consumption is 

assumed to be 90% of the maximum temperature. This is based on the typical 

shape of the Kitchell curve as it is described as a skewed curve with a steep 

drop off. That shape can only be achieved with a temperature of maximum 

consumption near the maximum temperature.   
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Supplemental Table A3.2: Source data for the species temperature of maximum 

consumption ToptC (°C) parameter.  

Species Decision Category 
Parameter 

Estimate 
Source 

Atlantic menhaden Subadult Experiment 28 Rippetoe (1993) 

Atlantic moonfish Assumed 90% Tmax 30  

Alewife Adult Model 17 
Stewart & Binkowski 

(1986) 

Bay anchovy Adult Model 28 
Luo & Brandt (1993), 

Rose et al. (1999) 

Atlantic silverside Average of ToptGrowth & Tmax 28 
Murray & Baumann 

(2018) 

Atlantic herring Adult model 16 Rudstam (1988) 

Butterfish Assumed 90% Tmax 24  

Blueback herring Assumed 90% Tmax 25  

Winter flounder Subadult Model 16 Rose et al. (1996) 

Tautog Adult Experiment 28 Olla et al. (1978) 

Scup Assumed 90% Tmax 27  

Black sea bass Average of ToptGrowth & Tmax 26 Berlinsky et al. (2000) 

Little skate Assumed 90% Tmax 23  

Striped searobin Assumed 90% Tmax 24  

Summer flounder Average of ToptGrowth & Tmax 23 
Malloy & Targett 

(1991) 

Atlantic striped 

bass 
Subadult Experiment 23 

Hartman & Brandt 

(1995) 

Bluefish Subadult Experiment 28 

Buckel et al. (1995); 

Hartman and Brandt 

(1995) 

Weakfish Subadult Experiment 26 

Lankford Jr & Targett 

(1994), Hartman & 

Brandt (1995) 

Spiny dogfish Subadult Model 19 Harvey (2009) 
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Q10 consumption 

The Q10 value for consumption is rounded to one decimal place. We created a 

hierarchy of options and the value of the parameter from the highest ranked source 

was chosen. If there were two studies at the same level, such as two experimental 

studies on adults, then the average of the values was taken. If multiple Q10 values were 

reported, such as for different individuals or temperature ranges, the average was 

taken. The Q10 could be calculated using Eq. (A3.1), where V1 and V2 are the 

consumption rates measured at temperatures the T1 and T2, respectively.  

𝐐𝟏𝟎 = (𝐕𝟏 𝐕𝟐⁄ )
𝟏𝟎

[𝐓𝟐−𝐓𝟏] (𝑨𝟑. 𝟏) 

In order from highest to lowest: 

1. A Q10 reported by a consumption study for adults. 

2. A Q10 from a published adult bioenergetics model.  

3. A Q10 calculated from a temperature-dependent consumption study on adults. 

Note: If calculating from the Thorton & Lessem method of bioenergetic 

models, the KA value was calculated with the K1 and K2 and θ1 and θ2. The 

environmental T1 was chosen as θ1 + 2°C and θ2 + 2°C for T2. The Q10 was 

calculated from the KA values.  

4. A Q10 reported by a consumption study for subadults. 

5. A Q10 from a published subadult bioenergetics model.  

6. A Q10 calculated from a temperature-dependent consumption study on 

subadults. Note: Calculated method will be the same as used for adults. 

7. In the absence of other data, a default of 2.3, which is the recommended 

default in the Fish Bioenergetics software (Hansen et al., 1997). 
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Supplemental Table A3.3: Source data for the species Q10 of consumption parameter.  

Species 
Decision 

Category 

Parameter 

Estimate 
Source 

Atlantic 

menhaden 

Subadult Model 2.1 Rippetoe (1993) 

Atlantic 

moonfish 

Default 2.3  

Alewife Adult Calculated 2.4 Stewart & Binkowski (1986) 

Bay anchovy Adult Model 2.2 Luo & Brandt (1993) 

Atlantic 

silverside 

Adult Calculated 2.0 Billerbeck et al. (2000) 

Atlantic herring Adult Calculated 2.3 Rudstam (1988) 

Butterfish Default 2.3  

Blueback herring Default 2.3  

Winter flounder Adult Calculated 1.8 Worobec (1984) 

Tautog Default 2.3  

Scup Default 2.3  

Black sea bass Default 2.3  

Little skate Default 2.3  

Striped searobin Default 2.3  

Summer flounder Subadult 

Calculated 

3.1* Malloy & Targett (1991) 

Atlantic striped 

bass 

Adult Model 2.3 Brandt (1993) 

Bluefish Subadult Model 2.6 Hartman & Brandt (1995) 

Weakfish Subadult Model 2.9 Hartman & Brandt (1995) 

Spiny dogfish Subadult Model 2.5 Harvey (2009) 

*Subadult study from Malloy & Targett gave an average Q10 of 7.1, well above what 

is recorded for other species. The consumption curve created with that high Q10 did 

not match the shape as specified in bioenergetic theory. The Q10 value was lowered by 

choosing only the estimates of feeding from 6°C to 10°C. 
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Species-specific biomass time series were used to create a weighted average of 

the thermal response curves by functional groups (Supplemental Table A3.4). The 

time series were the same as those used in Innes-Gold et al (2020).  

Supplemental Table A3.4: 1994-1998 averages of species-specific biomasses were 

used to weight the thermal parameters. Data were taken from the GSO and DEM 

trawls, with more detail found in Innes-Gold et al. (2020). Biomasses in g/m2 have 

been rounded to four decimal points.  

Species 
1994-1998 Averaged  

Biomass Category 

Atlantic menhaden 0.7334 

Atlantic moonfish 0.0189 

Alewife 0.1753 

Bay anchovy 1.2785 

Atlantic silverside 0.7437 

Atlantic herring 7.3930 

Butterfish 0.9619 

Blueback herring 0.1942 

Winter flounder 0.8141 

Tautog 0.0966 

Scup 0.5536 

Black sea bass 0.0110 

Little skate 6.0877 

Striped searobin 0.1245 

Summer flounder 0.5532 

Atlantic striped bass 0.0241 

Bluefish 0.1232 

Weakfish 0.0977 

Spiny dogfish 0.2424 
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Supplement 4: Sensitivity tests 

Supplemental Table A4.1: Southern species used to assess sensitivity of the 

consumption curve to changing community composition. Species were chosen as those 

that have been caught in Narragansett Bay in the last 15 years according to the GSO 

trawl data and are currently found in the Chesapeake Bay (Buchheister et al., 2013; 

Jung and Houde, 2003). Functional group was assigned after consulting the diet as 

reported in Bowman et al. (2000). All have warmer thermal maxima than the species 

of the original model. Maximum temperature was taken as the extreme value of the 

temperature of catch from the GSO fish trawl and the website Aquamaps (accessed 

March 2021). The temperature of optimum consumption was assumed to be 90% of 

the maximum temperature, and Q10 was assumed to be 2.3. The biomass values were 

chosen as the median biomass of the original species that made up the functional 

group, so the species was represented similarly the others of the functional group.  

 

Species Scientific Name 
Functional 

Group 
Tmax ToptC 

Biomass 

(g/m2) 

Spot 
Leiostomus 

xanthurus 

Benthivorous 

Fish 
31 27.9 0.3390 

Spotted Hake Urophycis regia 
Piscivorous 

Fish 
30 27.0 0.1232 

Striped 

Anchovy 
Anchoa hepsetus 

Planktivorous 

Fish 
33 29.7 0.7384 

Harvestfish Peprilus paru 
Planktivorous 

Fish 
33 29.7 0.7384 

Inshore 

Lizardfish 
Synodus foetens 

Piscivorous 

Fish 
33 29.7 0.1232 

Gulf Stream 

Flounder 

Citharichthyes 

arctifrons 

Benthivorous 

Fish 
31 27.9 0.3390 

Clearnose Skate Raja eglanteria 
Piscivorous 

Fish 
30 27.0 0.1232 

Smooth Dogfish Mustelus canis 
Benthivorous 

Fish 
33 29.7 0.3390 

Northern 

Kingfish 

Menticirrhus 

saxatilis 

Benthivorous 

Fish 
31 27.9 0.3390 

 

The second sensitivity test examines scaling by different temperatures. For this 

test, TQB, or the temperature that informed the Ecopath Q/B parameter, was the 

species-specific biomass weighted average of the individual temperature that informed 

each species’ original Q/B input. The relative consumption was scaled according to 

Eq. (3), except the Kitchell modifier was evaluated at the TQB of each functional group 

instead of TB94. The respiration thermal response was scaled similarly to what was 
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done for the consumption response, so that a modifier of 1.0 on the scaled respiration 

curve (i.e. Blanchard curve) was associated with the temperature that informed the 

Ecopath P/B parameter (TPB). In EwE, the P/B parameter is estimated as total 

mortality (Z) which is the sum of natural mortality (M) and fishing mortality (F) 

(Christensen et al., 2008). The natural mortality input literature generally reported 

temperatures, and the temperature of fishing mortality was assumed to be the 1994-

1998 yearly averaged temperature of Narragansett Bay as the F values were 

calculating from Bay catches. In cases for which temperature of natural mortality was 

not reported, it was assumed to be the average of the 5th and 95th percentiles for 

temperature reported in Aquamaps (Kaschner et al., 2019). The temperature of natural 

mortality (TM) and fishing mortalities (TF) were averaged to determine TPB. The 

relative respiration was calculated according to Eq. (5) except that the original 

Blanchard modifier was evaluated at the mean of TM and TF instead of TB94. 

The temperature of Ecopath (TEco) for each functional group was considered to 

be the average TQB and TPB, described earlier. Total respiration was set so that, at TEco, 

total consumption divided by total respiration was equal to the original 

ActiveRespFrac of the base model version. Total respiration was calculated according 

to Eq. (7) except that the total consumption and relative biomass curves were 

evaluated at TEco instead of TB94. All temperatures by functional group are listed in 

Supplemental Table A4.2.  
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Supplemental Table A4.2. Temperatures by functional group used in the second 

sensitivity test. Note that TF is calculated the same as TB94. 

Functional Group TQB TM TF TPB TEco TB94 
Benthivorous Fish 14.53 14.92 11.7 13.12 13.8 11.7 

Planktivorous Fish 13.19 12.13 11.7 11.94 12.6 11.7 

Piscivorous Fish 19.32 18.75 11.7 15.25 17.3 11.7 
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Appendix B: Supplementary Results 

Supplement 1: Temperature 

Table B1.1: Surface water temperature (°C) time series used to force the temperature-

dependent versions of the model. Temperatures from 1994-2018 were observed from 

Narragansett Bay. High and low warming scenario temperatures for 2019-2054 were 

projected using the CMIP6 models.  

Year 
Observed 

Temp. 

Low 

Warming  

SSP1-2.6 

High 

Warming  

SSP5-8.5 

Year 

Low 

Warming  

SSP1-2.6 

High 

Warming  

SSP5-8.5 

1994 11.8   2025 12.7 12.9 

1995 12   2026 12.8 12.9 

1996 11   2027 13.3 12.9 

1997 11.6   2028 13.2 12.6 

1998 12.4   2029 12.9 12.8 

1999 12.7   2030 13.4 12.8 

2000 11.6   2031 13.4 12.7 

2001 12   2032 13.2 13.2 

2002 12.1   2033 13.5 13.1 

2003 11.2   2034 13.1 13.1 

2004 11.4   2035 13.5 13.4 

2005 11.8   2036 13.1 13.2 

2006 12.7   2037 13.1 13.6 

2007 11.9   2038 13.5 13.6 

2008 12.1   2039 13.4 13.5 

2009 11.6   2040 13.6 13.8 

2010 11.6   2041 13.5 13.5 

2011 12.4   2042 13.1 13.5 

2012 13.8   2043 13.5 13.8 

2013 12.2   2044 13.1 13.7 

2014 11.8   2045 13.1 14.2 

2015 12   2046 13.2 14.2 

2016 12.7   2047 13.2 14.1 

2017 12.2   2048 13.8 14.2 

2018 12.4   2049 13.4 14.3 

2019  13.1 12.6 2050 13.7 14.3 

2020  12.8 12.7 2051 13.7 14.2 

2021  13 12.6 2052 13.2 14.1 

2022  12.9 13 2053 13.7 14.2 

2023  12.9 12.7 2054 13.7 14 

2024  12.7 12.6    
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Supplement 2: Consumption thermal response curves 

 

 

 
Supplemental Figure B2.1 Relative consumption curves created from the species-

specific parameters instead of averaged into a functional group response. Bold lines 

show the functional group average thermal response. 

 

  



 

76 

 

 

 
Figure B2.2: A) Relative consumption curves to assess sensitivity of curve to changing 

species inputs. Solid lines are the consumption curves used in the model versions. The 

dotted line shows the Kitchell curve for each functional group created using a single 

year’s observed biomasses that resulted in the warmest skewed curve (2018 for 

benthivorous fish, 2002 for planktivorous fish, 2013 for piscivorous fish). The open 

squares are the curves created with the additional traditionally southern species to 

represent a potential future community composition of the fish groups. B) 

ForcedSearch consumption modifiers from the three curve options for the high 

warming scenario.  
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Supplement 3: Respiration thermal response curves 

 

 
Supplemental Figure B3.1: The total consumption, total respiration, fraction of energy 

devoted for respiration, and energy available for production for the three fish groups 

(A-C). The dashed line is the total consumption minus unassimilated food. The grey 

lines are the ActiveRespFrac curves by temperature as calculated by total respiration 

divided by total consumption. 
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Supplemental Figure B3.2: Relative consumption curve (A) and consumption modifier 

(B) to assess the sensitivity of the curves to the scaling temperature. Solid lines are the 

curves and time series used in the model versions. The dashed lines are those scaled to 

TQB. Only the modifiers for the high warming scenario are shown.  
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Supplemental Figure B3.3: Relative respiration curve (A), ActiveRespFrac by 

temperature (B), and respiration modifier (C) to assess the sensitivity of the curves to 

the scaling temperature. Solid lines are the curves and time series used in the model 

versions. The dashed lines are those scaled to TPB. Only the modifiers for the high 

warming scenario are shown.  
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Supplement 4: Model comparison 

 

 
Supplemental Figure B4.1: Fish biomasses run under the different relative 

consumption curve sensitivity tests. The solid lines are the high warming consumption 

model version, the dotted lines are the years with the most warm-skewed curve using 

observed biomasses, and the open squares are the consumption curves made with 

additional southern species. The differences in biomass were nearly indistinguishable. 
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Supplemental Figure B4.2: Fish biomass projections from the second sensitivity test in 

which relative consumption and respiration curves were scaled to TQB and TPB. Color 

represents the base model and the temperature-dependent models run with the high 

warming scenario. Points show the input biomass time series of the original Innes-

Gold et al. (2020) model.  

 

Supplemental Table B4.1: Absolute biomass sum of squares from 1994-2018 between 

the observed biomasses and those projected by the different model versions.  
Functional Group Base Consumption Respiration 

Piscivorous Fish 308.5 318.8 328.0 

Benthivorous Fish 861.5 797.6 859.9 

Planktivorous Fish 1704.8 1696.0 1763.0 

Carnivorous Benthos 2858.8 2690.2 2733.8 

Large Squid 8.6 9.2 9.1 

Small Squid 15.3 15.8 15.8 
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Supplemental Figure B4.3: Rpath Annual Qlink output for the high warming 

respiration model version testing the impact of different vulnerability values. Q 

represents consumption, or the energy passing between the predator and prey. The 

shapes denote different predator prey interactions. The legend gives predator code – 

prey code. The Rpath functional group codes are given in Supplemental Table A1.1. 

Only interactions where planktivorous fish are the predator are shown. Fitted 

vulnerabilities for the strong interactions were 1.01 for 11-3 and 1.0473 for 11-5. 
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Supplemental Figure B4.4: Rpath Annual Qlink output for the high warming 

respiration model version testing the impact of different vulnerability values. Q 

represents consumption, or the energy passing between the predator and prey. The 

shapes denote different predator prey interactions. The legend gives predator code – 

prey code (Supplemental Table A1.1). Only interactions where benthivorous fish are 

the predator are shown. The fitted vulnerability for the strong interaction was 1.4582 

for 12-5.  
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Supplemental Figure B4.5: Rpath Annual Qlink output for the high warming 

respiration model version testing the impact of different vulnerability values. Q 

represents consumption, or the energy passing between the predator and prey. The 

shapes denote different predator prey interactions. The legend gives predator code – 

prey code (Supplemental Table A1.1). Only interactions where piscivorous fish are the 

predator are shown. Fitted vulnerabilities for the strong interactions were 1.5325 for 

13-11, 1.001 for 13-12, 1000 for 13-15, and 1.0 for 13-10.  
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Supplemental Figure B4.6: Fish biomass output from the high warming respiration 

version of the model run with different vulnerability values.  

 

 

 
Supplemental Figure B4.7: Biomass output of select functional groups from the high 

warming respiration version of the model run with different vulnerability values.  
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Supplemental Table B4.2: Ecosystem level outputs from the 2054 projections of the 

different model versions. Production is the sum of catch, predation mortality, and 

natural mortality. The Rpath parameter representing that metric is shown in 

parentheses. The ‘outside’ group of Rpath, representing energy exiting the modeled 

system, was excluded from these calculations. Units are g/m2.  

Parameter Base 
Cons 

High 

Cons 

Low 

Resp 

High 

Resp 

Low 

Consumption 

(FoodGain) 

11470.60 11478.38 11476.16 11471.66 11471.21 

Respiration 

(ActiveRespLoss) 

2231.29 2231.10 2231.03 2232.16 2232.08 

Predation 

(FoodLoss) 

5613.33 5619.15 5617.39 5613.01 5612.85 

Fisheries Harvest 

(annual_Catch) 

19.52 20.69 20.34 20.14 19.98 

Natural Mortality, 

non-predation 

(MzeroLoss) 

4371.22 4374.46 4373.41 4374.20 4373.34 

Ecosystem 

Production 
10004.07 10014.30 10011.14 10007.35 10006.17 
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