
University of Rhode Island University of Rhode Island 

DigitalCommons@URI DigitalCommons@URI 

Open Access Master's Theses 

2021 

GRAPH PLAYGROUND: A PEDAGOGIC TOOL FOR GRAPH THEORY GRAPH PLAYGROUND: A PEDAGOGIC TOOL FOR GRAPH THEORY 

AND ALGORITHMS AND ALGORITHMS 

Neeraj Adhikari 
University of Rhode Island, neeraj@uri.edu 

Follow this and additional works at: https://digitalcommons.uri.edu/theses 

Recommended Citation Recommended Citation 
Adhikari, Neeraj, "GRAPH PLAYGROUND: A PEDAGOGIC TOOL FOR GRAPH THEORY AND ALGORITHMS" 
(2021). Open Access Master's Theses. Paper 1982. 
https://digitalcommons.uri.edu/theses/1982 

This Thesis is brought to you by the University of Rhode Island. It has been accepted for inclusion in Open Access 
Master's Theses by an authorized administrator of DigitalCommons@URI. For more information, please contact 
digitalcommons-group@uri.edu. For permission to reuse copyrighted content, contact the author directly. 

https://digitalcommons.uri.edu/
https://digitalcommons.uri.edu/theses
https://digitalcommons.uri.edu/theses?utm_source=digitalcommons.uri.edu%2Ftheses%2F1982&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.uri.edu/theses/1982?utm_source=digitalcommons.uri.edu%2Ftheses%2F1982&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons-group@uri.edu


GRAPH PLAYGROUND: A PEDAGOGIC TOOL FOR GRAPH THEORY

AND ALGORITHMS

BY

NEERAJ ADHIKARI

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

IN

COMPUTER SCIENCE

UNIVERSITY OF RHODE ISLAND

2021



MASTER OF SCIENCE THESIS

OF

NEERAJ ADHIKARI

APPROVED:

Thesis Committee:

Major Professor Edmund A. Lamagna

Noah M. Daniels

William B. Kinnersley

Brenton DeBoef

DEAN OF THE GRADUATE SCHOOL

UNIVERSITY OF RHODE ISLAND

2021



ABSTRACT

A system called Graph Playground has been created to enhance the teaching

of introductory graph theory and graph algorithms presented in courses like CSC

340, Applied Combinatorics, and CSC 440, Design and Analysis of Algorithms,

at the University of Rhode Island. The primary goals of the system are to allow

visual creation and manipulation of graphs, and to provide a set of algorithms

that can be applied to graphs with intermediate steps shown as visual decorations

of the graph. The features and capabilities of the system are described, with

demonstrations of the application of algorithms on example graphs. The design

and implementation details of the system are also discussed, along with discussion

of challenges encountered in the implementation and how they were solved. The

system is designed to be easily extensible for new algorithms, and a breakdown of

the steps needed to implement a new algorithm is presented.



ACKNOWLEDGMENTS

I would like to extend my deepest gratitude to my major professor, Dr. Ed-

mund A. Lamagna. His help and expert guidance, from the inception to comple-

tion of both the thesis and the software, has been truly invaluable. It has been a

pleasure to work with him and take his classes at URI.

I am extremely grateful to Dr. Noah Daniels and Dr. Bill Kinnersley for their

immensely useful feedback and comments on the thesis and the software. I would

also like to thank Dr. Mike Barrus for chairing my thesis committee and helping

bring the thesis defense to a successful completion.

Thanks also to my friend Safar Ligal, who contributed the brilliant idea of

using generators to decouple the execution aspects of algorithms from their imple-

mentation.

I would like to express my appreciation to my parents, Kumud Adhikari and

Ranjana Dahal, and my sister, Neha Sharma, for their ever-present love and en-

couragement. Finally, I would like to thank Aasara Khatiwada for her love, her

support during stressful times and for always motivating me to keep working.

iii



TABLE OF CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . iii

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . iv

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

CHAPTER

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 GraphTea . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.2 Graph Online . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.3 Graph Magics . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.4 D3 Graph Theory . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Issues Uncovered . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 User Interface and User Experience . . . . . . . . . . . . 3

1.2.2 Lack of Openness . . . . . . . . . . . . . . . . . . . . . . 4

1.2.3 Limited Features . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Overview of the Document . . . . . . . . . . . . . . . . . . . . . 5

List of References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Features of Graph Playground . . . . . . . . . . . . . . . . . . . 7

2.1 Deployment and Access . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 User Interface Overview . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Creating and Manipulating Graphs . . . . . . . . . . . . . . . . 14

iv



Page

v

2.3.1 Creating Graphs . . . . . . . . . . . . . . . . . . . . . . 14

2.3.2 Moving Vertices and Edges . . . . . . . . . . . . . . . . . 16

2.3.3 Editing Vertex Labels . . . . . . . . . . . . . . . . . . . . 17

2.3.4 Editing Weights for Weighted Graphs . . . . . . . . . . . 17

2.3.5 Deleting Vertices and Edges . . . . . . . . . . . . . . . . 18

2.3.6 Saving and Loading Graphs . . . . . . . . . . . . . . . . 18

2.3.7 Bookmarking and Opening Bookmarked Graphs . . . . . 20

2.3.8 Manipulating Tabs . . . . . . . . . . . . . . . . . . . . . 20

2.3.9 Using Auto-Layout Options . . . . . . . . . . . . . . . . 21

2.4 Using the Tool to Demonstrate Isomorphism . . . . . . . . . . . 23

2.5 Using the Tool to Demonstrate Planarity . . . . . . . . . . . . . 26

2.6 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.6.1 The Algorithm Control Panel . . . . . . . . . . . . . . . 28

2.6.2 Executing Algorithms . . . . . . . . . . . . . . . . . . . . 30

2.6.3 Minimum Spanning Tree Algorithms . . . . . . . . . . . 31

2.6.4 Search Algorithms . . . . . . . . . . . . . . . . . . . . . 33

2.6.5 Shortest Path Algorithms . . . . . . . . . . . . . . . . . 36

2.6.6 Walk-Finding Algorithms . . . . . . . . . . . . . . . . . . 39

2.6.7 Decomposition Algorithms . . . . . . . . . . . . . . . . . 41

2.6.8 Exact TSP Algorithms . . . . . . . . . . . . . . . . . . . 44

2.6.9 TSP Approximation Algorithms . . . . . . . . . . . . . . 46

2.6.10 Network Flow Algorithms . . . . . . . . . . . . . . . . . 55

List of References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56



Page

vi

3 Design and Implementation of Graph Playground . . . . . . . 59

3.1 Overview of Design . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.2.1 Core Graph Interface and Classes . . . . . . . . . . . . . 63

3.2.2 Drawing Classes . . . . . . . . . . . . . . . . . . . . . . . 66

3.2.3 Layout Interface and Classes . . . . . . . . . . . . . . . . 68

3.2.4 Decorator Interface and Classes . . . . . . . . . . . . . . 70

3.2.5 Algorithm Interface and Classes . . . . . . . . . . . . . . 72

3.2.6 UI Handlers and Components . . . . . . . . . . . . . . . 73

3.3 Choice of Tools and Technologies . . . . . . . . . . . . . . . . . 77

3.3.1 Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.3.2 Programming Language . . . . . . . . . . . . . . . . . . 77

3.3.3 Frameworks and Libraries . . . . . . . . . . . . . . . . . 78

3.4 Design and Implementation Problems Encountered . . . . . . . 80

3.4.1 Separation of Rendering and Representation of Graphs . 80

3.4.2 Separation of Algorithm Implementation from Rest of the
System . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.4.3 Placement of Edge and External Vertex Labels . . . . . . 84

3.5 Algorithm API . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.6 Extending the System with a New Algorithm . . . . . . . . . . . 90

3.6.1 Creating an Algorithm Class . . . . . . . . . . . . . . . . 90

3.6.2 Programming the Algorithm . . . . . . . . . . . . . . . . 91

3.6.3 Using the Decorator and Yield . . . . . . . . . . . . . . . 92

3.6.4 Registering the Algorithm with the System . . . . . . . . 95



Page

vii

3.6.5 The Result . . . . . . . . . . . . . . . . . . . . . . . . . . 95

List of References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.1 Review of Goals Achieved . . . . . . . . . . . . . . . . . . . . . 98

4.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101



LIST OF FIGURES

Figure Page

1 A screenshot of the user interface. . . . . . . . . . . . . . . . . . 9

2 The user interface with the various areas labeled. . . . . . . . . 10

3 The left and right sidebars . . . . . . . . . . . . . . . . . . . . . 11

4 The new graph dropdown menu . . . . . . . . . . . . . . . . . . 14

5 The ‘Graph’ dropdown menu in the top bar . . . . . . . . . . . 19

6 Demonstrating isomorphism with the system . . . . . . . . . . . 24

6 Demonstrating isomorphism with the system (continued) . . . . 25

7 Demonstrating planarity of a graph . . . . . . . . . . . . . . . . 27

8 The algorithm control panel, showing Kruskal’s algorithm ready
to execute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

9 The algorithm selection dropdown in the top bar . . . . . . . . 31

10 Kruskal’s algorithm working on a 4-vertex graph . . . . . . . . . 32

11 Prim’s algorithm working on a 4-vertex graph . . . . . . . . . . 34

12 Breadth First Search working on a 4-vertex graph . . . . . . . . 35

13 Depth First Search working on a 4-vertex graph . . . . . . . . . 37

14 Dijkstra’s Algorithm working on a 6-vertex graph . . . . . . . . 38

15 Fleury’s Algorithm finding an Euler Trail . . . . . . . . . . . . . 40

16 Bellman-Held-Karp Algorithm finding a Hamilton Circuit . . . 42

16 Bellman-Held-Karp Algorithm finding a Hamilton Circuit (con-
tinued) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

17 The Hopcroft-Tarjan algorithm finding an articulation point and
two biconnected components . . . . . . . . . . . . . . . . . . . 45

viii



Figure Page

ix

18 Bellman-Held-Karp Algorithm Finding the Optimal TSP Tour . 47

19 TSP Approximation with Nearest-Neighbor Heuristic . . . . . . 48

20 TSP Approximation with Nearest-Insert Heuristic . . . . . . . . 50

21 TSP Approximation with Cheapest-Insert Heuristic . . . . . . . 51

22 TSP Approximation with MST-Based Algorithm . . . . . . . . 52

23 TSP Approximation with Christofides Algorithm . . . . . . . . 54

24 Edmonds-Karp algorithm for computing network flow . . . . . . 56

25 UML Class Diagram of the Graph Interface . . . . . . . . . . . 64

26 UML Class Diagram of the Weighted Interface . . . . . . . . . . 64

27 UML Class Diagram of the GraphDrawing Class, showing only
public methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

28 UML Class Diagram of the Layout abstract class . . . . . . . . 68

29 UML Class Diagram of the Decorator interface . . . . . . . . . 69

30 UML Class Diagrams of the Algorithm Interface and the Algo-
rithmOutput Interface . . . . . . . . . . . . . . . . . . . . . . . 72

31 UML Class Diagram of the AlgorithmRunner class, showing
only public methods . . . . . . . . . . . . . . . . . . . . . . . . 73

32 Edge labels (weights) and external vertex labels on a graph . . . 85

33 The DFS-based component counting algorithm in action . . . . 96



CHAPTER 1

Introduction

This document will describe a new web-based application called Graph Play-

ground (henceforth also called the application or the system) created by the author

to facilitate and enhance the pedagogy of classes in which graph theory or algo-

rithms on graphs are taught. The application provides a way to visually create

graphs, manipulate created graphs by moving or deleting vertices or edges, save

graphs locally and, most importantly, apply a variety of algorithms to graphs along

with step-by-step visualizations.

The inspiration for the selection of the problem came from the author’s expe-

rience with teaching CSC 340, Applied Combinatorics, at the University of Rhode

Island during the Fall 2020 semester. The class was taught online and conventional

methods of demonstrating concepts like the planarity and isomorphism of graphs

were found to be insufficient, especially in view of the support for visualization

and interaction that is possible with modern technologies. Similar problems were

encountered with the demonstration of graph algorithms.

After initial exploration, the author reached the conclusion that no existing

freely available tool met the specific needs of the course. As a result, a basic

browser-based application was created using the Cytoscape.js [1] library. The li-

brary provided support for drawing vertices, edges and labels of a graph, and

exposed vertices and edges as objects in the API. Building on this, the author

implemented creation and editing of graphs, storage of the graphs using the Local-

Storage API[2] found in modern web browsers, redrawing and automatic labeling.

Graph Playground is an expansion of the feature set and capabilities of that initial

tool, but does not build upon it — it was written from scratch.
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1.1 Previous Work

There are a number of tools available that attempt to solve the same problem.

Many of them are open-source and available at no cost. This application attempts

to be a user-friendly and customizable alternative to those tools while including

demonstrations of all the important graph concepts and graph algorithms covered

in a typical CSC 340 or CSC 440 class at URI.

A few of the major tools of this type are listed below, along with a short

introduction to their features and the shortcomings found in them.

1.1.1 GraphTea

GraphTea [3] is a Java-based desktop application that facilitates teaching,

learning and research on graph theory. It was first released in 2014 and it supports

a wide variety of graph algorithms and operations along with creation, storage and

manipulation of graphs. The application is open-source and the source code is

available on GitHub.

1.1.2 Graph Online

Graph Online [4] is a web application that lets users create graphs, either in a

WISYWIG manner or using an adjacency matrix. The application allows the user

to apply any of a collection of common algorithms to the graphs. It was created by

the authors of GraphAnalyzer[5], which is an application that lets users visualize

graphs and graph algorithms. Graph Online is open-source and the source code

published under the MIT License is available on GitHub.

1.1.3 Graph Magics

Graph Magics [6] is a desktop application that supports graph creation, graph

generation and application of 17 different algorithms on graphs. The feature set

2



appears to be comparable to GraphTea.

1.1.4 D3 Graph Theory

D3 Graph Theory [7] is a web application that serves as an interactive intro-

ductory graph theory course. The content is divided into small units and each unit

consists of a web page with a text lesson and an interactive area where the learner

can draw graphs and get feedback and/or visualizations related to the content of

the unit. The user interface is appealing and the interactive parts of the lessons

are intuitive. D3 Graph Theory is open-source and the source code is available on

GitHub under an MIT License.

Despite the existence of similar systems, the application developed by the au-

thor adds value to the space as no comparable tool provides a complete package

with a good user interface, easy availability and a rich feature set. Some of the

issues uncovered in existing systems and the factors differentiating Graph Play-

ground from them are discussed in the next section.

1.2 Issues Uncovered

1.2.1 User Interface and User Experience

An important issue with most existing systems was found to be lack of ease

of use and an intuitive user interface.

For instance, with GraphTea, besides having to download and install its desk-

top application, the user is presented with a complex and clunky user interface.

Even though it offers a large number of features with regard to customizability

and algorithms, having to download and install executables is a hurdle that many

users are unwilling to go through, especially when there are web-based alternatives

that are more convenient to access.

Graph Online is superficially similar to Graph Playground, but presents a

3



frustrating experience when creating graphs: users have to go through a dialog

box with options for edge weight, label, and directedness to create an edge. This

can be fairly time-consuming even for a moderate-sized graph. Users can include

undirected or directed edges and weighted or unweighted edges in the same graph,

which is a source of confusion.

1.2.2 Lack of Openness

Another issue found with at least one application is lack of openness. Graph

Magics is distributed under a proprietary license and is not free of cost. From

the author’s viewpoint, this is a major shortcoming for a pedagogical tool. Graph

Playground is open-source (licensed under GNU GPL[8]) and is available free-of-

cost, and is designed to be extensible by exposing a well-defined API for users who

wish to add their own algorithm implementations.

1.2.3 Limited Features

A third issue found in the existing systems was the lack of certain features

desirable for CSC 340 and CSC 440 coursework.

Graph Online has some notable omissions in its feature set. For instance there

is no support for automatic creation of common graphs like complete graphs, wheel

graphs, etc. The user can apply 17 different algorithms to graphs but algorithms for

exact and approximate solutions to the Traveling Salesman Problem are missing.

D3 Graph Theory serves as a guided course in graph theory. Consequently, it

provides limited control over graph drawing and actions the learner may perform

on the graph. In other words, it is not a general-purpose application for graph

creation, manipulation and graph operations.

4



1.3 Overview of the Document

Chapter 1 discusses previous work, i.e. existing systems that try to achieve a

similar goal and motivates the need for Graph Playground. Additionally it presents

an overview of the document.

Chapter 2 is a complete description of the features of the system, describing

various parts of the user interface, creation and manipulation of graphs, and exe-

cution of algorithms. All algorithms implemented in the system are described with

an example execution shown through images.

Chapter 3 describes the design and implementation of the system. A high-

level overview and a detailed description of the important modules, interfaces

and classes of the system are given. Various design and platform choices are

motivated. Challenges encountered and solutions developed are described. The

chapter ends with a step-by-step breakdown of how to extend the system with the

implementation of a new algorithm.

Chapter 4 is the conclusion, where the work done is reviewed and compared

with the project goals, and possible future work is discussed.

List of References

[1] M. Franz, C. T. Lopes, G. Huck, Y. Dong, O. Sumer, and G. D.
Bader, “Cytoscape.js: a graph theory library for visualisation and analysis,”
Bioinformatics, vol. 32, no. 2, pp. 309–311, 09 2015. [Online]. Available:
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CHAPTER 2

Features of Graph Playground

This chapter will present a detailed overview of how the system is used: from

deploying and accessing the software to creating graphs and running algorithms

on them.

2.1 Deployment and Access

The system is a frontend-only web application, as discussed in detail in Chap-

ter 3. It uses the npm package manager [1] for package management and the

webpack build system [2] for bundling assets together and producing deployable

output. Given that the host system has npm installed, one can simply cd into the

project’s root directory in a terminal and use the command npm install to in-

stall all the dependencies, and then use the command npm start to run the build

script. The build script runs the typescript compiler, the webpack bundler, runs a

local web server to serve the output files and opens the application in the default

browser. The same steps can be adapted to deploy the system to any HTTP web

server, for example to make the system publicly accessible from the Internet. The

system doesn’t require any other capability from the server except that it should

be able to serve files. Since the system is implemented entirely as a frontend ap-

plication, no client-server communication happens after the system is loaded into

a browser.
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2.2 User Interface Overview

The user interface consists of 6 major areas, illustrated in Figure 2. An un-

labeled view of the user interface is given in Figure 1. A short description of each

area follows:

� Top Bar: The top bar contains the name of the system (Graph Playground)

on the left side and two drop-down menus to the right of the title. The drop-

down menus can be clicked to reveal a list of options. The ‘Graph’ drop-down

menu contains options relating to the actions that may be applied on a graph,

like saving the graph, bookmarking the graph, opening a new graph, etc. The

‘Algorithm’ drop-down menu contains a list of algorithms that can be applied

to graphs. The algorithms are described in Section 2.6.

� Left Sidebar: The left sidebar contains two major areas: the toolbar and

the bookmarks bar. The toolbar contains ‘tools’ similar to the tools found in

image editing applications, which can be used to perform different operations

on the graph using a mouse. The use of tools is discussed in Section 2.3. The

bookmarks bar shows a list of graphs that have been ‘bookmarked’ by the

user, i.e. saved locally in the browser. Users can open or delete bookmarked

graphs through the bookmarks bar. Two bookmarked graphs, one named

‘Components Test’ and another named ‘Graph One’ are visible in Figure 1.

An image of the just the left sidebar is in Figure 3 (i).

� Right Sidebar: The right sidebar contains three areas: auto-layout but-

tons, the display customizer and the auto-label scheme selector. The auto-

layout buttons provide four different ways of laying out the vertices of a

graph. Auto-layout options are discussed in more detail in Section 2.3.9.

The display customizer contains two elements: the vertex size slider, which

8
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(i) The left sidebar (ii) The right sidebar

Figure 3: The left and right sidebars

allows users to select the size of the vertices from a fixed range, and a weight

font size selector which allows user to set the font size of edge weights for

weighted graphs. The auto-label selector allows users to select one of three

auto-labeling schemes: numeric (1,2,3...), uppercase alphabetical (A,B,C...)

and lowercase alphabetical (a,b,c...). Auto-labeling schemes are discussed in

Section 2.3.1. An image of the the right sidebar is in Figure 3 (ii).

� Graph Canvas: The graph canvas is the central area of the user interface,

and the area where most user interaction takes place. It is the area where

graphs are displayed and where graphs can be created, manipulated and

edited.

The graph canvas is seen displaying a weighted graph with 4 vertices and all

edge weights equal to 1 in Figure 1.
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The graph canvas additionally contains two user interface areas that are

overlaid on it. Towards the bottom left of the graph canvas is the notification

area, where notification boxes are shown to the user for messages that are

typically generated by algorithms (for instance about the success or failure of

algorithm executions). The notification area is used for messages and alerts

that are lower-priority than messages shown using the browser’s alert dialog

feature. The other area overlaid on top of the graph canvas is the status line,

which is at the bottom center of the canvas. This area is used to display text

indicating the ‘status’ of the algorithm currently running, and can contain

arbitrary text set by the algorithm.

� Tab Bar: The tab bar is the thin strip above the graph canvas that contains

tabs currently open in the system. The system provides users the ability to

multi-task by having more than one graph open, and by quickly being able

to switch between the tabs. Only one tab can be active at a time and the

contents of the active tab is displayed in the graph canvas. At the right end

of the tab bar, there is a small ‘NEW’ drop-down button that can be clicked

to reveal a list of options the user can select to create new tabs with various

different kinds of empty graphs. The ‘NEW’ menu is described further in

Section 2.3.1.

The tab bar in Figure 1 can be seen displaying two open tabs, titled ‘New

Graph’ and ‘Another tab’ respectively. The tab titled ‘New Graph’ is the

currently active one.

� Algorithm Control Area The algorithm control area is the area below the

graph canvas. Initially, the area is empty. When the user selects an algo-

rithm from the menu in the top bar, the algorithm control area is populated

with a control panel that provides a set of buttons and sliders which can be
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used to control the execution of the algorithm on the graph. Executing and

controlling the execution of algorithms is discussed in Section 2.6.

In Figure 1, the algorithm control area can be seen containing the control

panel for Kruskal’s Minimum Spanning Tree algorithm.
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2.3 Creating and Manipulating Graphs

2.3.1 Creating Graphs

New graph types

To create a graph, the user can click on the ‘NEW’ button just above the

top-right corner of the graph canvas, i.e. at the rightmost end of the tab bar. The

new graph menu contains options for 5 different types of empty graphs that can

be created, as shown in Figure 4.

� Undirected unweighted graph

� Undirected weighted graph

� Directed unweighted graph

� Directed weighted graph

� Euclidean graph

Figure 4: The new graph dropdown menu

The first four items in the above list are fairly self-explanatory. They provide

options to create graphs that have either directed or undirected edges, and either

weighted or unweighted edges. Currently, the system does not support creation of

multigraphs and graphs with loop edges. The fifth item in the above list warrants
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some discussion: it is a graph where the edges are implicit and only vertices are

displayed. The ‘edge weights’ are the distances between the corresponding vertices.

Certain algorithms in the system, like the algorithms for solving the Traveling

Salesman Problem, only operate on Euclidean Graphs.

Once a user clicks on one of the new graph menu items, a new tab with the

title ‘New Graph’ and an empty graph is created and activated.

Adding vertices

Once there is a graph active in the graph canvas, the user can start adding

vertices. To add a vertex, it is important that the ‘Add/Move’ tool be selected

from the toolbar, which is located in the left sidebar. After the Add/Move tool is

selected, the user can click on any point inside the graph canvas to add a vertex

there. The added vertex will be labeled by a default label that follows the selected

auto-label scheme. For instance, if the numeric auto-label scheme is selected, the

first vertex added will have a label of ‘1’. The second will have a label of ‘2’, the

third ‘3’ and so on. When the user switches to a different auto-labeling scheme,

the vertices added will follow that scheme, adding a vertex with the ‘earliest’ label

that does not already exist in the graph.

Connecting vertices to create edges

The vertices that are already present can be connected to form edges in the

graph. To connect two previously non-adjacent edges, the user needs to:

(i) Make sure the Add/Move tool is selected in the toolbar

(ii) Click on the source vertex. The vertex will be highlighted in blue to indicate

that the vertex is in ‘edge add’ mode.

(iii) Click on the destination vertex.
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After this the graph should have an edge between the two vertices. Of course,

the distinction between ‘source vertex’ and ‘destination vertex’ only matters for

directed graphs. If the graph is a weighted graph, then a default weight of 1 will

be assigned.

By default, a newly added edge is displayed as a straight line between its

two incident vertices. Curved edges are sometimes desirable, and moving edges to

make them curved is described in Section 2.3.2.

2.3.2 Moving Vertices and Edges

Moving vertices can be simply accomplished by clicking on a vertex and mov-

ing the mouse without releasing the mouse click, (i.e., dragging the mouse). Again,

the ‘Add/Move’ tool needs to be selected in the toolbar for vertex moving to be

possible. When a vertex is moved, all the edges incident to the moved vertex move

with the vertex, as might be expected by the user.

As mentioned in the previous section, edges are by default drawn as straight

lines. However, curved edges can be important in several cases, like when a planar

graph such as K4 needs to be drawn as a plane graph. To move an edge (while

keeping the incident vertices stationary), the user needs to:

(i) Make sure that the Add/Move tool is selected in the toolbar.

(ii) Click on the edge to add a ‘curve point’ on the edge. The curve point will

be displayed as a small white circle that is visible when the mouse pointer is

directly over the edge.

(iii) Drag the curve point using the mouse. The drawing library used by the

system (KonvaJS[3]) creates a spline that runs through the curve point.
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2.3.3 Editing Vertex Labels

As discussed earlier, vertices are automatically labeled according to the se-

lected auto-label scheme, but vertex labels can be edited after a vertex is created.

To edit a vertex label, the user needs to:

(i) Make sure that the Text tool is selected in the toolbar. Selecting the text

tool should change the cursor from the default arrowhead shaped pointer to

a ‘text-edit cursor’ used in most text-editing applications.

(ii) Double-click on the vertex label. Doing this should select the label text and

enable it for editing.

(iii) Input the text for the new label and hit the Enter key.

An important point to note about vertex labels is that while the auto-label

schemes create unique vertex labels by ensuring an already-used vertex label is not

used again for a newly created vertex, the user is free to create multiple vertices

with the same label by editing vertex labels. This could potentially be a source of

confusion, so it is advised that the user exercise care when intentionally creating

duplicate labels.

2.3.4 Editing Weights for Weighted Graphs

In weighted graphs, the edge weight is displayed just beside the mid-point of

the edge. The edge weight can be edited by the user almost exactly like the vertex

labels. Specifically, to edit an edge weight, the user needs to:

(i) Make sure that either the Add/Move tool or the Text tool is selected in the

toolbar. In either case, a ‘text edit cursor’ will be displayed instead of the

normal cursor when the user hovers the mouse on top of the edge weight.
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(ii) Double-click on the edge weight. Doing this should select the weight text

and enable it for editing.

(iii) Input the new weight and hit the Enter key. Since the weight can only take

on numeric values (either integers or floating point values), an error will be

shown if the entered weight does not represent a valid numeric value.

2.3.5 Deleting Vertices and Edges

Vertices and edges in the graph can be deleted by using the Delete tool from

the toolbar. To delete a vertex or an edge, the user needs to:

(i) Make that the Delete tool is selected in the toolbar. The cursor should take

the shape of a cross when it is inside the graph canvas.

(ii) Click on the object to be deleted. For vertices, this means clicking inside

the vertex’s circular area. For edges, the width of the region where the edge

detects clicks is slightly larger than the width of the edge drawn. So the edge

will be deleted if the user clicks at a point sufficiently near the edge’s line.

When a vertex is deleted, all of the edges incident to it are deleted as well.

2.3.6 Saving and Loading Graphs

The ability to save graphs as files and open saved graphs is an integral feature

of the system. Since the system is entirely frontend-based and doesn’t have the

ability to save graphs ‘in the cloud’, saving graphs as files on the local computer is

really the only permanent way to save graphs. Graphs can also be ‘bookmarked’

as described in Section 2.3.7, but bookmarking graphs is a less permanent way to

save them 2.3.7.

To save the graph that is currently active on the canvas, the user needs to

click the ‘Graph’ dropdown menu in the top bar and then click ‘Save’ in the menu
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Figure 5: The ‘Graph’ dropdown menu in the top bar

that drops down. This dropdown menu is shown in Figure 5. Clicking the ‘Save’

button will open a dialog box where the user can enter a file name for the graph

file, which by default is the name of the tab the active graph is in. The system

appends a .json extension to the provided file name, as the graph is stored in the

popular JavaScript Object Notation (JSON)[4] format. When the user clicks on

the ‘Save’ button in the dialog box, the output file is presented as a download in

the browser. From that point browser-specific polices about handling downloads

apply, common ones being saving the file to the user’s Downloads folder or asking

the user for a folder to store the file.

To open a saved graph, the user needs to click the ‘Graph’ dropdown menu in

the top bar and then click ‘Open’ in the menu that drops down. This will cause the

browser to open the default interface for file uploads for web pages, which usually

involves showing a file picker to select a file. Once the user selects a file, the file is

read and, if it is in the correct format, it is interpreted as a graph. A new tab is

created with the title extracted from the file name and the graph is displayed in

the tab.
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2.3.7 Bookmarking and Opening Bookmarked Graphs

The system provides a ‘bookmark’ feature that allows users to save graphs

directly on the browser. Bookmarked graphs are saved in the browser locally using

the Local Storage API[5]. This means that while bookmarking graphs is faster and

more convenient than saving the graph as a file, bookmarks can be lost if the user

clears the browser’s history. Furthermore, graphs bookmarked on one browser are

not available on another browser.

To bookmark the currently active graph, the user needs to click the ‘Graph’

dropdown menu in the top bar and then click ‘Bookmark’ in the menu that drops

down. This will cause the graph to be added as a bookmarked graph, and displayed

as an item in the bookmarks bar in the left sidebar.

The bookmarks bar displays a list of all currently bookmarked graphs. The

name used in the bookmarks bar is the title of the graph’s tab when the user

bookmarked the graph. Tabs and tab titles are discussed further in Section 2.3.8.

The user can click on an item in the bookmarks bar to open the bookmarked graph.

A new tab will be created with the bookmarked graph and the new tab will be

activated. Hovering the mouse on an item in the bookmarks bar will also display a

‘DELETE’ button towards the right of the bookmarked graph’s name, which can

be clicked to delete a bookmark. Once deleted, the bookmarked graph is lost and

cannot be recovered, unless the user has the graph already open in a tab or has

saved the graph elsewhere.

2.3.8 Manipulating Tabs

The system enables multi-tasking with the help of tabs, similar to the tab

interface found in most modern web browsers. Each tab has a graph associated

with it, and the currently open tabs are displayed in the tab bar. The user can

click on any tab to activate that tab, which will cause the associated graph to be
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displayed in the graph canvas. A tab can be closed by clicking on the small cross

button displayed on the right side of the tab.

The tab bar also allows the editing of tab titles. The user can double-click on

the tab’s title to send it into ‘edit mode’, which means that the text of the title

will be highlighted and will accept input from the keyboard. After entering the

new title, the user can hit the Enter key to confirm the title.

The user can also drag and drop the tab to place it in a different position with

respect to other tabs.

2.3.9 Using Auto-Layout Options

The system provides four auto-layout options for graphs. The buttons for

applying the auto-layout options can be found in the right sidebar, as shown in

Figure 3 (ii). Once a button is clicked with a graph active in the graph canvas,

the system will examine the graph to compute vertex positions and assign the

positions to the graph. The four auto-layout options are:

Circular Layout

This auto-layout option lays out the vertices in a circle at equally spaced

points along the circumference. The sequence used for laying out the vertices is

based on the internal identifiers of the vertices, which corresponds to the order

the vertices were created. The vertices are positioned in clockwise fashion starting

from the rightmost end of the circle.

Bipartite Layout

The bipartite layout option places the vertices on two vertical columns. If the

graph is bipartite, the layout will be properly bipartite, i.e. vertices will be placed

in such a way that there are no edges between any two vertices in a column.
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Grid Layout

The grid layout positions the vertices on a rectangular grid, trying to achieve

a square shape when possible.

Force-Based Layout

The force-based continuous layout is an implementation of an algorithm by

Eades [6]. The algorithm was implemented from the description presented in [7].

In general terms, the algorithm works by assigning attractive (spring) forces be-

tween adjacent vertices and repulsive vertices between non-adjacent vertices. The

algorithm iteratively re-computes and applies forces on the vertices, and the up-

dated positions are shown dynamically in the graph canvas. Changing the graph

by adding or removing vertices or edges will cause the positions of the vertices to

change as expected.
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2.4 Using the Tool to Demonstrate Isomorphism

Isomorphism is one of the first topics taught in a course or unit on graph

theory like CSC 340. Demonstrating isomorphism was also one of the primary

motivations for the tool that was the precursor to the system. In this section, a

description of the process that can be used to demonstrate that two graphs are

isomorphic is presented. In this context, ‘demonstrating isomorphism’ should be

interpreted to mean the process of manipulating the drawing of one of two graphs

to make the manipulated graph’s drawing visually identical to the other graph’s,

convincing the viewer—or at least making it easier to verify—that the two graphs

are indeed equivalent.

Since the system only supports displaying one graph at a time, we will demon-

strate isomorphism between two different connected components of a single graph,

considering them to be different graphs for the purposes of the presentation.

Figure 6 displays the steps for an example where two pre-created graphs are

demonstrated to be isomorphic. Figure 6 (i) shows two graphs side-by-side and,

even though the graphs have the same number of vertices and the same number of

edges, it might not be obvious they are isomorphic. In Figure 6 (ii), vertex c of the

right-side graph is dragged to the upper right, to place it at a position analogous

to vertex 2. In Figure 6 (iii), vertex e is dragged towards the bottom right corner,

placing it at a position similar to vertex 4 in the left graph. Then in Figure 6 (iv),

the edge (a, b) is grabbed by its curve point, and the figure includes the depiction

of a ‘grabbing’ mouse pointer. Finally, in Figure 6 (v), the edge (a, b)’s curve point

is moved to make a straight line between vertices a and b, and the two graphs have

an identical depiction, disregarding the vertex names. Thus we have demonstrated

the two graphs are isomorphic.
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(i) Two graphs for which isomorphism is not readily obvious

(ii) Moving vertex c to the top right

Figure 6: Demonstrating isomorphism with the system
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(iii) Moving vertex e to the bottom right

(iv) Grabbing edge a-b by its curve point

(v) Moving edge a-b to make it a straight line

Figure 6: Demonstrating isomorphism with the system (continued)
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2.5 Using the Tool to Demonstrate Planarity

Planarity is another important topic in graph theory, and one that is in-

troduced soon after isomorphism in a course like CSC 340. In this section, a

description of the process that can be used to demonstrate that a graph is planar

is presented. In this context, ‘demonstrating planarity’ is interpreted to mean the

process of manipulating a non-planar depiction of a graph initially containing edge

crossings to obtain a graph depiction with no edge crossings If we don’t add or

remove vertices or edges during the process, the transformation of the drawing into

one without edge crossings should convince the viewer that the graph is planar.

Figure 7 shows the steps for an example where a graph is demonstrated to be

planar. The initial drawing of the graph contains 3 edge crossings and is depicted

in Figure 7 (i). In the next step, we drag vertex 3 towards the left, as shown in

Figure 7 (ii). Now just one edge crossing remains, and we remove the crossing

by first creating a curve point on edge (2, 4) by clicking on the edge, as shown in

Figure 7 (iii), and then dragging the curve point outside the graph as shown in

Figure 7 (iv). Now the graph drawing has no crossings and we have demonstrated

the graph is planar.
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(i) A graph with a non-planar depiction (ii) Moving vertex 3 to the top left

(iii) Clicking on edge 2-4 to add a curve point (iv) Dragging egde 2-4 to remove crossing with
edge 1-5

Figure 7: Demonstrating planarity of a graph

2.6 Algorithms

The central feature of the system is its ability to run algorithms on graphs and

visualize the intermediate steps and the results. This section presents overviews

of the application of all the algorithms implemented in the system, describing the

visualisations produced by the algorithms and the output they generate. Before

delving into the descriptions of the specific algorithms, an overview of the algorithm

control panel is presented in Section 2.6.1, since the algorithm control panel is used
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to control the execution of all algorithms.

2.6.1 The Algorithm Control Panel

Figure 8: The algorithm control panel, showing Kruskal’s algorithm ready to exe-
cute

The algorithm control panel appears just below the graph canvas when the

user clicks on a name of an algorithm from the dropdown menu in the top bar.

The algorithm’s name is displayed on the top left of the algorithm control panel.

An image of the algorithm control panel is shown in Figure 8. The control panel

contains the following controls.

The Play Button

The play button is the leftmost button in the button row of the control panel.

If the execution of the algorithm has not yet started, clicking on the play button

starts the algorithm. If the execution of the algorithm has been paused, clicking

on the play button resumes the execution.

The Pause Button

The pause button is located to the right of the play button on the button row.

Clicking the pause button while the algorithm is executing will pause the execution

of the algorithm. When the algorithm is not executing, the pause button is disabled

and does not respond to clicks.
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The Next Button

The next button is located to the right of the pause button on the button row.

Clicking on the next button while the algorithm is paused will move the execution

of the algorithm forward by one step. When the algorithm is running or stopped,

the next button is disabled and does not respond to clicks.

The Stop Button

The stop button is located fourth from left in the button row and it stops the

execution of the algorithm when clicked. The stop button can be used to stop the

execution of the algorithm when the algorithm is either running or paused. After

an algorithm execution is stopped, clicking play will start it from the beginning.

The Clear Button

The clear button is located fifth from left in the button row. It is enabled only

after the execution of the algorithm has ended, either by itself or after the user

has clicked the stop button. When it is enabled, clicking on it causes any changes

on the graph’s appearance made by the algorithm to be removed and the graph is

restored to its default appearance.

The Output Button

The output button is the rightmost button in the button row in the algorithm

control panel. It is enabled when the algorithm finishes running. For algorithms

that produce an output graph, the output button can be used to open the output

in a new tab or save the output graph as a file. The button is a drop-down button

that exposes the two previously mentioned options for extracting the output of an

algorithm.

If the user clicks on the ‘New Tab’ option from the drop-down, the output
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graph will be opened in a new tab. Clicking on the ‘Save as File’ option causes

the save file dialog to open, which allows the user to save the output graph as a

file, similar to the process described in Section 2.3.6.

The Speed Slider

The speed slider is a horizontal HTML range input [8] that allows users to

drag a circle along the horizontal axis to set the speed the algorithm executes. The

specifics of how the algorithm speed is set and how the ‘stepping’ of the algorithm

is implemented is discussed in Section 3.5. In general terms, setting the slider to its

rightmost position corresponds to a delay of approximately 1 millisecond between

the iteration steps of the algorithm, and setting the slider to its leftmost position

corresponds to a delay of approximately 2 seconds. The range is linear, so setting

it halfway sets a delay of about 1.0005 seconds.

With the algorithm control panel introduced, we can now proceed to a dis-

cussion of how algorithms can be executed on the system.

2.6.2 Executing Algorithms

To execute an algorithm on a graph, the user needs to first select the algorithm

by opening the dropdown menu labeled ‘Algorithms’ in the top bar and clicking

on the name of an algorithm. The dropdown menu is shown in Figure 9. Provided

that a graph is active in the graph canvas, a control panel for the corresponding

algorithm will appear in the algorithm control area below the canvas. Algorithm

control panels attach to specific graphs and a control panel opened for a graph

will not stay in the control area when the user switches to a different tab. If the

just-activated graph has a control panel associated with it, that control panel will

be displayed in the control area.

Once the algorithm control panel is visible, the user simply clicks the ‘Play’
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Figure 9: The algorithm selection dropdown in the top bar

button to start the algorithm. Algorithms that do not take any input (except the

graph itself) will start executing immediately. Algorithms that take one or more

vertices as inputs (for example, Breadth First Search) will ask the user to click

on the starting vertex and then will begin execution. In the demonstrations of

the implemented algorithms that follow, mention of starting the algorithm will be

omitted and only the algorithm’s effects on the graph will be displayed.

2.6.3 Minimum Spanning Tree Algorithms

Kruskal’s Algorithm

Kruskal’s Algorithm [9] is an algorithm for finding the minimum-weight span-

ning tree in an undirected, weighted graph. It is a greedy algorithm that works

by iterating through the edges in ascending order of weight. The algorithm starts

by creating a forest with each vertex of the graph in a separate tree by itself, and

31



(i) Examining edge (c, d) (ii) Add edge (c, d) to tree (iii) Examine edge (d, a)

(iv) Added edge (d, a) to tree (v) Examine edge (c, a). Creates
circuit.

(vi) Examine edge (d, b)

(vii) Add edge (d, b) to tree. MST
complete

Figure 10: Kruskal’s algorithm working on a 4-vertex graph

single tree in the forest—the minimum-weight spanning tree.

A demonstration of the execution of Kruskal’s Algorithm on a small graph

with 4 vertices and 6 edges is presented in Figure 10. Vertices and edges added to
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the spanning tree are set to the SELECTED state, which is displayed by coloring the

vertices and edges teal. In the four-vertex graph shown in the figure, the minimum

spanning tree we obtain contains edges (c, d), (d, b) and (d, a), and the total weight

is 4.

Prim’s Algorithm

Prim’s Algorithm [10] is another procedure for finding the minimum-weight

spanning tree in an undirected, weighted graph. Like Kruskal’s algorithm, it is also

a greedy method. It works by starting with a one-vertex tree and successively adds

vertices until we have a tree containing all of the vertices. An arbitrary vertex can

be selected as the starting point (the user clicks on this in our implementation). At

each step, the procedure adds the least-weight edge (and the corresponding vertex)

joining a vertex already in the tree with one not yet included. When all vertices

have been added, we are left with the minimum spanning tree—if the graph does

not have more than one component.

A demonstration of the execution of Prim’s Algorithm on a small example

graph is presented in Figure 11, which shows the visual decorations the algorithm

makes to the graph. The algorithms starts at an arbitrarily selected vertex (b in

this case) and keeps on adding vertices to the partial tree. This graph varies from

the graph of Figure 10 in its edge weights, and we can see in Figure 11 (vi) that a

minimum spanning tree is highlighted, this time with a total weigh of 3.

2.6.4 Search Algorithms

Breadth First Search

Breadth First Search is a simple and popular algorithm for searching for nodes

in order of increasing depth from the root node of a tree.

In the case of general graphs, Breadth First Search can be applied to create
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(i) Start with vertex b, examine
edge (b, a)

(ii) Add (b, a) to tree (iii) Examine edge (c, a)

(iv) Add edge (c, a) to tree (v) Examine edge (c, d) (vi) Add edge (c, d) to tree. MST
complete.

Figure 11: Prim’s algorithm working on a 4-vertex graph

a Breadth First Search or Spanning Tree of the graph, which is a tree rooted at

a starting vertex and with paths along the tree representing the shortest paths to

other vertices from the starting vertex.

Here, ‘shortest path’ between a pair of vertices refers to the minimum number

of edge traversals required to travel from one vertex to the other. That is, for

weighted graphs, the edge weights are not considered.

Breadth First Search works by using a FIFO queue data structure: a vertex

is removed from the queue to be explored, and all of its children not already in the

tree are inserted into the queue. This ensures that all vertices at a given distance

d from the start vertex are explored before any vertex at distance d + 1.
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A demonstration of the execution of Breadth First Search Algorithm on a

small example graph is presented in Figure 12, along with the visual decorations

the algorithm makes to the graph. In this case the user has selected vertex 4 as

the start vertex, and the algorithm proceeds by adding vertices to the search tree

in order of their distance from the start vertex.

(i) Start with 4, add 1 to queue (ii) Explore 1, add 2 and 3 to queue (iii) Explore 2, add 3 to queue

(iv) Explore 3, add nothing to
queue

(v) BFS exploration complete (vi) The search tree output by BFS

Figure 12: Breadth First Search working on a 4-vertex graph

Depth First Search

Depth First Search is another simple and popular algorithm for searching

the nodes of a graph. Implementation-wise, the only significant difference from

Breadth First Search is that Depth First search uses a LIFO stack data instead of
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a FIFO queue.

Doing so alters the vertex traversal order in such a way that the algorithm

explores as far as possible along a single branch before backtracking and exploring

other branches. The application of Depth First Search creates a Depth First Search

or Spanning Tree of the graph.

A demonstration of the execution of Depth First Search Algorithm on a small

example graph with 4 vertices is presented in Figure 13, along with the visual

decorations the algorithm makes to the graph. In this case the start vertex provided

by the user is vertex 2, and the traversal proceeds as we would expect. When

the algorithm finishes we end up producing a search tree of depth 3, which is

not surprising since depth first search maxes out the depth it can reach before

backtracking to traverse other branches. In this case, there are no other branches

and the tree is a path graph.

2.6.5 Shortest Path Algorithms

Dijkstra’s Algorithm

Dijkstra’s Algorithm [11] is an procedure for finding the shortest path between

vertices in a weighted graph where weights represent the distance between two

vertices. More specifically, Dijkstra’s algorithm finds the distance from a given

starting vertex (called the source) to all other vertices in the graph.

The algorithm keeps track of all vertices that have not been fully explored

and explores the one with the least known distance from the source. ‘Exploring’ a

vertex involves using the distance from source to that vertex (and the edge weights)

to update the currently known shortest distances of its neighbors. Once a vertex

has been explored, it is not explored again and its distance from the source does

not change. The algorithm ends when all vertices have been explored.

A demonstration of Dijkstra’s Shortest Path algorithm running on an example
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(i) Start with 2. Push 3 and 4 to
stack.

(ii) Explore 4. Push 1 to stack. (iii) Explore 1

(iv) Explore 3 (v) DFS exploration complete (vi) Search tree output by DFS

Figure 13: Depth First Search working on a 4-vertex graph

graph with six vertices is shown in Figure 14. The user has selected vertex 1 as

the start vertex. Initially distances to all vertices (which can be seen as external

labels on vertices) except for the source are infinity. At each step, the algorithm

updates the distances as it discovers better paths. In the end we compute the

shortest distance to each vertex and produce a shortest-path search or spanning

tree of the graph.
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(i) All distances except source ∞ (ii) Explore vertex 1, update dis-
tances for 2, 3, 5

(iii) Explore vertex 2, update dis-
tances for 4, 6

(iv) Explore vertex 4, no updates

(v) Explore vertex 4, no updates (vi) Explore vertex 3, no updates

(vii) Explore vertex 6, no updates(viii) Shortest Path Tree output by
Dijkstra’s Algorithm

Figure 14: Dijkstra’s Algorithm working on a 6-vertex graph
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2.6.6 Walk-Finding Algorithms

Fleury’s Algorithm for Euler Trails and Cycles

Fleury’s Algorithm is a straightforward algorithm for finding Euler Cycles or

Trails in graphs. For graphs where all vertices are of even degree, the algorithm

finds an Euler Cycle and for graphs where all but two vertices are of even degree,

the algorithm finds a non-cycle Euler Trail. The algorithm works by starting with

an initial vertex and moving from vertex to vertex, while adding edges to the trail.

Edges added to the trail are removed from the original graph, and edges are only

added to the trail if removing the edge from the graph does not disconnect it (i.e.

the edge is not a bridge), or if no non-bridge edge incident to the current vertex

can be added. When all edges have been added in this way, the result will be an

Euler Cycle (if one exists) or a non-cycle Euler trail.

Figure 15 shows an example where Fleury’s Algorithm is executed on a graph

with four vertices and five edges. The graph has two vertices (3 and 2) which are

of odd degree, so only non-cycle trails can be found in this graph. The algorithm

starts at one of the odd-degree vertices (3) and ends its traversal at the other odd-

degree vertex (2), outputting a graph with the edges marked with their traversal

order along the trail.

Bellman-Held-Karp Algorithm for Hamilton Paths and Circuits

Finding Hamilton Circuits or Paths is a much harder problem than finding

Euler cycles. More precisely, it is an NP-complete problem, so no polynomial-time

algorithm for solving it is known. The algorithm implemented here is a modi-

fied version of Bellman-Held-Karp algorithm [12] [13], also called the Held-Karp

algorithm. The algorithm was initially specified for the Traveling Salesman Prob-

lem, but works with a small modification for the Hamilton Path/Circuit problem

since this problem can be formulated as a special case of the Traveling Salesman
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(i) Start with 3, add edge (3, 1) (ii) Move to 1, add edge (1, 2) (iii) Move to 2, add edge (2, 3)

(iv) Move to 3, add edge (3, 4) (v) Move to 4, add edge (4, 2) (vi) The Euler Trail. Edges la-
balled with traversal order.

Figure 15: Fleury’s Algorithm finding an Euler Trail

Problem.

The procedure has time complexity O(n22n) and space complexity O(n2n).

The method is a dynamic programming algorithm which is based on the observa-

tion that a Hamilton Path ending at a vertex v on (the subgraph induced by) a set

of vertices S on the graph can be built by first building a Hamilton Path on the

set S − {v} ending at vertex w, provided there is an edge between w and v. The

algorithm builds Hamilton Paths for progressively larger subsets, storing Hamilton

Paths ending at each possible vertex for each subset. At the end, the whole graph

is considered and the Hamilton Paths found are used to create a Hamilton Circuit

if one exists.
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Figure 16 shows a selection of steps for the execution of the algorithm on a

four-vertex graph. Even with n = 4, n22n is already comparatively large: 256.

Therefore, the steps where the algorithm is considering vertex subsets of size 2 are

entirely skipped in Figure 16. In Figures 16 (i) to (xiv), we can see the algorithm

considering all subsets of size 3. For each subset of vertices, all possible ending

vertices are considered, and for each ending vertex, all the possible paths ending

at that vertex and running through the other vertices in the subset are considered.

In the figure, subsets being considered are shown with colored edges, with the

end vertex being considered set to the SELECTED state (colored teal) and the other

vertices being set to CONSIDERING (colored orange). The interesting steps in the

algorithm are Figures 16 (vi), (vii), and (xiii), where the algorithm considers the

neighbors of the end vertex but cannot find a path through the remaining vertices.

As soon as we find one 4-vertex path with the extreme vertices adjacent (as in

Figure 16 (xv)), we have found a Hamilton circuit. If no 4-vertex path has the

extremities adjacent, there exists only a non-circuit Hamilton path.

2.6.7 Decomposition Algorithms

Articulation Points and Biconnected Components

An articulation point in a connected graph is a vertex whose removal would

disconnect the graph. A biconnected graph is one in which no articulation points

exist. Graphs that are not biconnected can be decomposed into a set of subgraphs

that are biconnected. An algorithm for finding the biconnected components can

also simultaneously find the articulation points in the graph, and the algorithm

implemented here does this.

The algorithm is due to Hopcroft and Tarjan [14]. The implementation has

been adapted from the one in [15] and works by performing a depth-first traversal

of the graph starting from an arbitrary vertex. The procedure keeps track of two
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(i) Subpath d-c-b (ii) Subpath b-d-c (iii) Subpath b-c-d

(iv) Subpath c-d-a (v) Subpath a-d-c (vi) No subpath c-a-d

(vii) No subpath a-c-
d

(viii) Subpath d-b-a (ix) Subpath d-a-b

(x) Subpath b-a-d (xi) Subpath c-b-a (xii) No subpath c-a-
b

Figure 16: Bellman-Held-Karp Algorithm finding a Hamilton Circuit
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(xiii) No subpath a-c-
b

(xiv) Subpath a-b-c (xv) Subpath d-c-b-a

(xvi) Hamilton path
d-c-b-a-d

(xvii) Output as a di-
rected graph

Figure 16: Bellman-Held-Karp Algorithm finding a Hamilton Circuit (continued)

43



values for each vertex: one called the Depth First Number (the order of the vertex

in the depth-first traversal) and the L-value, which is lowest depth-first number

that can be reached from that vertex using a path of descendants followed by at

most one back edge (an edge which is not a part of the depth-first search tree).

The algorithm identifies articulation points (and biconnected components) as it

backtracks from the depth-first traversal.

Figure 17 shows the steps for an execution of the algorithm on a ‘bow tie’

graph with 5 vertices. The graph has one articulation point, namely the vertex

3, and two biconnected components on either side of it. The depth first traversal

starts at an arbitrarily selected vertex, in this case vertex 1. As the traversal pro-

gresses, vertices are labeled with their depth first number, D. When the algorithm

backtracks, it also assigns the L-value which is shown alongside the D-value in the

graph. The algorithm uses auxiliary states (discussed in Section 3.2.4) to differen-

tiate biconnected components. In this case, the biconnected component consisting

of vertices 3, 4 and 5 is colored red and the one consisting of vertices 1, 2 and 3 is

colored green.

2.6.8 Exact TSP Algorithms

Bellman-Held-Karp Algorithm

The system implements one exact algorithm for the Traveling Salesman Prob-

lem. The algorithm implemented is the Bellman-Held-Karp algorithm [12] [13], a

variation of which is also implemented for the Hamilton Path problem.

Like the one implemented for the Hamilton Path problem, the algorithm has

a time complexity of O(n22n) and a space complexity of O(n2n). The algorithm

is based on dynamic programming and relies on the fact that a sub-path of an

optimal tour is itself optimal.

Unlike all other algorithms we have seen, this (and other TSP algorithms)
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(i) Start depth first traversal at 1 (ii) Label vertices with depth first
number D

(iii) Backtrack, assigning L-values

(iv) D3 ≤ L4, articulation point
found

(v) Backtrack, assigning L-values (vi) D1 ≤ L2, articulation point
found

(vii) Backtrack complete, two bi-
connected components found

Figure 17: The Hopcroft-Tarjan algorithm finding an articulation point and two
biconnected components

operate on Euclidean Graphs. Euclidean graphs are graphs where the edges are

implicit, and each vertex is considered to be adjacent to all the others. The weight

of an edge is the Euclidean distance between the incident vertices.

Figure 18 shows an execution of the algorithm on a 3-vertex Euclidean graph.

The algorithm is almost exactly the same as the Bellman-Held-Karp algorithm for

Hamilton paths, but in this case we store the path costs along with the paths and

look for the cheapest path instead of just any path. Since the example graph only

has 3 vertices, all decoration steps are shown in the figure. Even though the graph
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has exactly three edges and all of them appear in the optimal tour, the figure

illustrates the steps the algorithm takes.

2.6.9 TSP Approximation Algorithms

The system implements five approximation algorithms for the Traveling Sales-

man Problem. Three of them (Nearest Neighbor, Nearest Insert and Cheapest

Insert) work by progressively building a tour by inserting a vertex into the current

tour based on a heuristic. The fourth (MST Based) algorithm works by creating

a minimum spanning tree of the vertices and deriving a tour from the tree. The

Christofides algorithm is an improvement of the MST-based approach.

Nearest Neighbor Heuristic

The nearest neighbor heuristic algorithm starts with an initial vertex and

adds the nearest vertex to the tour. The newly added vertex becomes the current

vertex and the process is repeated until all vertices are added. A circuit is formed

by connecting the first and the last vertices. For an n-vertex graph, the nearest-

neighbor heuristic creates a tour that is at most 1
2
dlg(n)e+ 1

2
times as long as the

optimal tour length. [16]

Figure 19 illustrates the nearest-neighbor heuristic algorithm working on a

5-vertex Euclidean graph. The user has selected vertex a as the start vertex and

from there, at each step, the algorithm adds the vertex closet to the most recently

added vertex to the path. When we have a Hamilton path, the tour is completed

by adding an edge to the starting vertex.

Nearest Insert Heuristic

The nearest insert heuristic algorithm is similar to the nearest neighbor heuris-

tic algorithm, but instead of adding the vertex nearest to the current vertex to the
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(i) Examine path 3-
2

(ii) Examine path 2-
3

(iii) Examine path
3-1

(iv) Examine path
1-3

(v) Examine path 2-
1

(vi) Examine path
1-2

(vii) Examine path
3-2-1

(viii) Examine path
2-3-1

(ix) Examine path
3-1-2

(x) Examine path 1-
3-2

(xi) Examine path
2-1-3

(xii) Examine path
1-2-3

(xiii) Optimal Tour
Found

(xiv) Output as a
directed graph

Figure 18: Bellman-Held-Karp Algorithm Finding the Optimal TSP Tour
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(i) Examine edge a-b (ii) Examine edge a-c (iii) Examine edge a-d

(iv) Examine edge a-e (v) Add edge a-d to path (vi) Examine edge d-b

(vii) Examine edge d-c (viii) Examine edge d-e (ix) Add edge d-b to path

(x) Examine edge b-c (xi) Examine edge b-e (xii) Add edge b-e to path

(xiii) Examine egde e-c (xiv) Add e-c to path and
complete tour

(xv) Output as a directed
graph

Figure 19: TSP Approximation with Nearest-Neighbor Heuristic
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end of the tour, the vertex nearest to the current tour as a whole is inserted into

the tour. The insertion is made between that pair of consecutive vertices in a tour

which minimizes the difference between the length of the new tour and the length

of the previous one. The nearest-insert heuristic produces a tour that is at most

twice as long as the optimal traveling salesman tour. [16]

Figure 20 illustrates the nearest-insert heuristic algorithm working on a 4-

vertex Euclidean graph. The user has selected vertex a as the start vertex. From

there, at each step, the algorithm examines vertices not in the partial tour but

nearest to some vertex in the partial tour, and inserts into the tour the nearest

among them. When we insert the last vertex into the tour, it is complete.

Cheapest Insert Heuristic

The cheapest insert heuristic algorithm is almost identical to the nearest insert

heuristic algorithm, except for one difference: the inserted vertex is not the one

that is nearest to the current tour, but the one that minimizes the length of the

newly created tour. The insertion itself is done identically to the nearest neighbor

heuristic algorithm. Like the nearest-insert heuristic, cheapest-insert also produces

a tour that is at most only two times as long as the optimal one. [16]

Figure 21 illustrates the cheapest-insert heuristic algorithm working on a 5-

vertex Euclidean graph. The user has selected vertex 1 as the start vertex. At each

step, the algorithm evaluates the cost (the length added to the tour) of inserting

each vertex not already in the tour, and inserts the vertex with the minimum cost.

In the first insertion, that vertex is vertex 4. The next one added is 2 because

tours 1-4-3-1 and 1-4-5-1 are both longer than 1-4-2-1. Similarly 5 is inserted next

and 3 is inserted last to complete the tour.
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(i) Start with a, nearest neigh-
bor c

(ii) Insert c to tour (iii) Nearest remaining neigh-
bor of a is b

(iv) Nearest remaining neigh-
bor of c is b

(v) Insert b to tour (vi) Nearest remaining neigh-
bor of a is d

(vii) Nearest remaining neigh-
bor of b is d

(viii) Nearest remaining neigh-
bor of c is d

(ix) Insert d to tour, tour com-
plete

(x) Output as directed graph

Figure 20: TSP Approximation with Nearest-Insert Heuristic

MST-Based Approximation Algorithm

The Minimum Spanning Tree (MST) based approximation algorithm starts by

first creating an MST of the given graph. In our implementation we use Kruskal’s
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(i) Start with 1, examine 1-2 (ii) Examine 1-3 (iii) Examine 1-4

(iv) Examine 1-5 (v) Insert 4 into tour (vi) Examine 1-4-2

(vii) Examine 1-4-3 (viii) Examine 1-4-5 (ix) Insert 2 into tour

(x) Examine 1-4-3-2 (xi) Examine 1-4-5-2 (xii) Insert 5 into tour

(xiii) Examine 1-4-3-5-2 (xiv) Add 3 to tour, tour com-
plete

(xv) Output as directed graph

Figure 21: TSP Approximation with Cheapest-Insert Heuristic

algorithm to create the tree. A trail is built from the MST by traversing the edges

using the right-hand rule (always keep the edge to your right hand side). The trail
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is then converted to a proper Hamilton Circuit by traversing the trail but skipping

already-visited vertices. This approach produces a tour that is at most twice the

length of the optimal TSP tour. [16]

Figure 22 illustrates the steps of the MST-based approximation algorithm.

The figure omits the steps taken by Kruskal’s algorithm to compute the MST.

Once we have the MST, the tour is built by starting at an arbitrary vertex (1 in

this case) and adding vertices to the tour by following the tree. In this way we

add 4 and 3 to the tour. As we travel along the tree, vertices already in the tour

are skipped, so we add 2 next, and then finally move to 1 to complete the tour.

(i) Start with minimum span-
ning tree

(ii) Start building tour, add 1-4 (iii) Add vertex 3 to tour

(iv) Skip visited vertex 4, add
vertex 2 to tour

(v) Complete tour by adding 2-
1

(vi) Output as directed graph

Figure 22: TSP Approximation with MST-Based Algorithm
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Christofides Algorithm

Christofides algorithm is an improvement upon the MST-based approximation

algorithm. After finding the minimum spanning tree, it takes the set of vertices

that have odd degree in the tree, and creates a subgraph of the underlying Eu-

clidean graph containing just those vertices and the edges between them. Then, a

minimum-weight prefect matching on that subgraph is found. The Handshaking

Lemma guarantees that there are an even number of odd-degree vertices in any

graph, so a perfect matching always exists. After the minimum-weight perfect

matching has been found, a multi-graph is formed by adding the edges from the

matching to the minimum spanning tree. The resulting multi-graph will only con-

tain even-degree vertices. An Euler cycle is found on the multi-graph and the cycle

is converted into a Hamilton circuit by traversing it and skipping already-visited

vertices. Christofides algorithm produces a tour that is at most 1.5 times as long

as the optimal TSP tour. [17]

The execution of Christofides Algorithm on a 4-vertex Euclidean graph is

shown in Figure 23. Once again we start with the minimum spanning tree of the

vertices. Then in the next step, a minimum-weight matching between the odd-

degree vertices (of which there are an even number by the Handshaking Lemma)

is found. This is performed internally using the Blossom algorithm. [18] The

minimum-matching edges are then added to the minimum spanning tree, forming

a multigraph. In Figure 23 (ii), we can see the added edge (3, 2). There are

actually two edges between vertices 1 and 4, but since the system lacks support

for displaying multigraphs, only one is shown. An Euler trail is found on the

multigraph using Fluery’s Algorithm. This multigraph is then traversed starting

from an arbitrary vertex (1 in this case) and vertices already in the path are

skipped, creating a complete tour in the end.
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(i) Start with minimum span-
ning tree

(ii) Add minimum-matching
edges (3-2 and 1-4)

(iii) Start building tour with 1,
following Euler Cycle

(iv) Add 4 to tour (v) Add 2 to tour (vi) Add 3 to tour

(vii) Skip visited vertex 4, com-
plete tour

(viii) Output as directed graph

Figure 23: TSP Approximation with Christofides Algorithm
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2.6.10 Network Flow Algorithms

Edmonds-Karp Algorithm

The system implements the Edmonds-Karp Network Flow algorithm, which

is equivalent to the Ford-Fulkerson method implemented using a Breadth First

Search to find augmenting paths. The algorithm requires two inputs: a source

vertex and a sink vertex, and it attempts to find the maximum flow from the

source to the sink.

The algorithm works by finding the shortest-distance augmenting path at

each step. An augmenting path is a path from the source to the sink where the

maximum flow along the path is lower than the minimum capacity along the path.

This means that more flow can be sent along the path. The algorithm reassigns

flow values to the maximum possible flow and goes on to find the next augmenting

path until no augmenting paths can be found.

The output of the graph is a directed weighted graph with flow values of edges

as their respective weights.

We can see the steps of an execution of Edmonds-Karp on a 4-vertex flow

network in Figure 24. The user has selected vertex 1 as the source and vertex 3

as the sink for this example. First, the algorithm finds the augmenting path 1-2-3

and sends a flow of 1 along that path. Then the augmenting path 1-4-3 is found,

and a flow of 1 is sent along that path as well. The final augmenting path found is

1-2-4-3, along which an additional flow of 1 is sent. After this no augmenting path

with any available capacity is found, and the algorithm terminates. The output is

a flow graph with edge weights representing the value of the flow in that edge.
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(i) Augmenting path 1-2-3. Update flow
for 2-3

(ii) Update flow for 1-2

(iii) Augmenting path 1-4-3. Update flow
for 4-3

(iv) Update flow for 1-4

(v) Augmenting path 1-2-4-3. Update
flow for 4-3

(vi) Update flow for 2-4

(vii) Update flow for 1-2 (viii) All flows computed

Figure 24: Edmonds-Karp algorithm for computing network flow

List of References

[1] npm, Inc. “npm - npm.” Accessed: 2021-07-05. [Online]. Available:
https://www.npmjs.com/package/npm

[2] The Webpack Team. “webpack.” Accessed: 2021-07-18. [Online]. Available:

56

https://www.npmjs.com/package/npm


https://webpack.js.org/

[3] A. Lavrenov. “Konvajs.” Accessed: 2021-07-05. [Online]. Available:
https://konvajs.org

[4] F. Pezoa, J. L. Reutter, F. Suarez, M. Ugarte, and D. Vrgoč, “Foundations of
json schema,” in Proceedings of the 25th International Conference on World
Wide Web. International World Wide Web Conferences Steering Committee,
2016, pp. 263–273.

[5] The Web Hypertext Application Technology Working Group. “HTML
Standard web storage.” Accessed: 2021-07-02. July 2021. [Online]. Available:
https://html.spec.whatwg.org/multipage/webstorage.html

[6] P. Eades, “A heuristic for graph drawing,” Congressus Numerantium, vol. 42,
pp. 149–160, 1984.

[7] S. G. Kobourov, “Force-directed drawing algorithms,” in Handbook of Graph
Drawing And Visualization, R. Tamassia, Ed. CRC Press, 2013, ch. 12, pp.
383–408.

[8] The Web Hypertext Application Technology Working Group. “HTML
Standard range state.” July 2021. [Online]. Available: https://html.spec.
whatwg.org/multipage/input.html#range-state-(type=range)

[9] J. B. Kruskal, “On the shortest spanning subtree of a graph and the
traveling salesman problem,” Proceedings of the American Mathematical
Society, vol. 7, no. 1, pp. 48–50, 1956. [Online]. Available: http:
//www.jstor.org/stable/2033241

[10] R. C. Prim, “Shortest connection networks and some generalizations,” The
Bell System Technical Journal, vol. 36, no. 6, pp. 1389–1401, 1957.

[11] E. W. Dijkstra, “A note on two problems in connexion with graphs,”
Numer. Math., vol. 1, no. 1, p. 269–271, Dec. 1959. [Online]. Available:
https://doi.org/10.1007/BF01386390

[12] R. Bellman, “Dynamic programming treatment of the travelling salesman
problem,” J. ACM, vol. 9, no. 1, p. 61–63, Jan. 1962. [Online]. Available:
https://doi.org/10.1145/321105.321111

[13] M. Held and R. M. Karp, “A dynamic programming approach to
sequencing problems,” Journal of the Society for Industrial and Applied
Mathematics, vol. 10, no. 1, pp. 196–210, 1962. [Online]. Available:
https://doi.org/10.1137/0110015

57

https://webpack.js.org/
https://konvajs.org
https://html.spec.whatwg.org/multipage/webstorage.html
https://html.spec.whatwg.org/multipage/input.html#range-state-(type=range)
https://html.spec.whatwg.org/multipage/input.html#range-state-(type=range)
http://www.jstor.org/stable/2033241
http://www.jstor.org/stable/2033241
https://doi.org/10.1007/BF01386390
https://doi.org/10.1145/321105.321111
https://doi.org/10.1137/0110015


[14] J. Hopcroft and R. Tarjan, “Algorithm 447: Efficient algorithms for graph
manipulation,” Commun. ACM, vol. 16, no. 6, p. 372–378, June 1973.
[Online]. Available: https://doi.org/10.1145/362248.362272

[15] E. Horowitz and S. Sahni, Fundamentals of Computer Algorithms, ser.
Computer software engineering series. Pitman, 1978. [Online]. Available:
https://books.google.com/books?id=n8c8PgAACAAJ

[16] D. J. Rosenkrantz, R. E. Stearns, and P. M. Lewis, II, “An analysis of several
heuristics for the traveling salesman problem,” SIAM journal on computing,
vol. 6, no. 3, pp. 563–581, 1977.

[17] N. Christofides, “Worst-case analysis of a new heuristic for the travelling sales-
man problem,” Carnegie-Mellon Univ Pittsburgh Pa Management Sciences
Research Group, Tech. Rep., 1976.

[18] J. Edmonds, “Paths, trees, and flowers,” Canadian Journal of mathematics,
vol. 17, pp. 449–467, 1965.

58

https://doi.org/10.1145/362248.362272
https://books.google.com/books?id=n8c8PgAACAAJ


CHAPTER 3

Design and Implementation of Graph Playground

In this chapter we discuss the design and implementation of Graph Playground

and present a step-by-step example of extending the system by implementing a

new algorithm visualization. Section 3.1 provides an overview of the design of the

software, describing the main organizational parts of the system. Section 3.2 goes

into more detail about the implementation of the system, describing the major

interfaces, the classes that implement them, and user interface handlers. Section

3.3 discusses the tools used to create the system and the technologies, frameworks

and design patterns used. Section 3.4 goes into the problems encountered while

designing and implementing the system and how they were solved. Section 3.5

describes the programming interface that algorithms use to communicate with the

rest of the system and create visualizations. Section 3.6 is a description of the steps

needed to extend the system by implementing a new algorithm, demonstrated with

a real example.
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3.1 Overview of Design

This overview is organized by modules, which are sub-systems that have a

particular objective. Modules consist of a collection of type definitions, interfaces

and classes that implement them. Each of the sub-headings below briefly discusses

a module, and a more detailed description is given in Section 3.2. It should be

noted that since the system is implemented in the TypeScript programming lan-

guage, the words interface, class and type, when used in a context to describe the

implementation, refer to their meanings within the TypeScript language.

Graph Core

At the core of the system are the interfaces and classes representing graphs

themselves, without regard to how they are drawn or shown to the user. The

details of the layout and display of graphs, including positions of the vertices and

edges, the placement of labels, and the decorations made by algorithms are stored

in and manipulated through the drawing classes discussed in Section 3.2.2, the

primary one being GraphDrawing. Using the terminology of the implementation,

we will use the word ‘graph’ to mean the graph data structure without regard

to drawing and layout concerns. We will use ‘graph drawing’ to mean a graph

together with its drawing. We will sometimes use just ‘graph’ to refer to both

when the distinction is irrelevant.

The graph core is centered around the Graph interface, which provided meth-

ods for adding and removing vertices and edges, getting the neighbors of a vertex

and setting labels for vertices. A Weighted interface supplements the Graph inter-

face, providing methods specific to weighted graphs. The classes that implement

these interfaces are discussed in Section 3.2.1.
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Drawing

The drawing module is concerned with producing graph drawings from graphs,

giving users the ability to interact with graph drawings and change the underlying

graph, and allowing algorithms (through decorators) to change how the graph

drawing is displayed.

The drawing module consists of three classes: VertexDrawing to represent

a drawing of a vertex, EdgeDrawing to represent a drawing of an edge, and

GraphDrawing to tie the vertex drawings and edge drawings together, representing

a graph drawing. All three classes also perform event handling to respond to user

interactions and requests by algorithms.

Algorithm

The algorithm module is made of an algorithm interface that all algorithms

implement, an algorithm runner class that deals with how algorithms are run, and

the algorithms themselves. The algorithms included in the system are introduced

in Section 2.6 and implementation details are discussed in Section 3.2.5. As men-

tioned before, it should be noted that the word ‘algorithm’ is used here to mean

not just an algorithm in the usual sense, but an implementation of the algorithm

in Graph Playground in a way that the user can apply it to graphs.

Decorator

The decorator module exists to effectively decouple the implementation of

algorithms from the specifics of graph drawings and the rest of the UI. This is

done both for maintainability of the system and for easy extensibility. The most

important part of the module is the interface called Decorator that algorithms

use, among other things, to set visual states of vertices and edges, set labels for

edges or vertices, and display a textual status. The default implementation of the
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Decorator interface forwards all its requests to the GraphDrawing class.

User Interface

The user interface module is composed of the classes that implement func-

tionality for the user interface components that are visible to the user. These

include the tab bar, the drop down menus, the components within the side bars,

the algorithm control panel and, of course, the graph canvas.

Layouts

The layouts module is made up of the Layout interface which the graph draw-

ing class uses to get positions for laying out the vertices in the graph. There are

several implementations of the layout interface in the system, and four of these

correspond directly to the four auto-layout options visible in the right sidebar.
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3.2 Implementation

In this section we discuss the system’s main interfaces and their implementors

in more detail. The interfaces, types and classes are described at a high level

without going into the details of the code written.

3.2.1 Core Graph Interface and Classes

The Graph Interface

Before discussing the Graph interface itself, it is appropriate to describe how

vertices are represented in the system. The system uses numeric vertex ids to

identify vertices, and edges are specified by the pair of vertex ids to which they

are incident. The numeric vertex ids can be optionally specified by the caller when

adding a vertex to the graph, with the restriction that the vertex ids should be

unique; specifying an already present vertex id is not permitted. If a vertex id is

not specified while adding a vertex, the graph implementation generates a unique

vertex id and returns it to the caller.

Textual items called labels can also be optionally associated with vertices in

the graph, but they play no role in the behavior of the graph itself. Labels are

used by the graph drawing so that users can differentiate between vertices.

The Graph interface specifies a set of methods for working with graphs. The

methods are listed in the UML class diagram shown in Figure 25. It includes

methods like getVertexIds() which returns a set of the numeric ids of all the

vertices in the graph, addVertex() which optionally takes a vertex id and a vertex

label, adds a vertex to the graph and returns the newly added vertex’s id. The

clone() method creates and returns a copy of the graph and the toJSON() method

returns the graph as a JavaScript Object, suitable for writing to a text file. The

‘Bookmark Graph’ and ‘Save Graph’ functionality makes use of this method.

63



Figure 25: UML Class Diagram of the Graph Interface

Figure 26: UML Class Diagram of the Weighted Interface

The Weighted Interface

An additional interface called Weighted includes methods specific to weighted

graphs, including those for getting and setting edge weights and adding a new

weighted edge. The UML class diagram for the interface is shown in Figure 26.

A weighted graph must implement both the Graph interface and the Weighted

interface.

DefaultGraph, UnweightedGraph and WeightedGraph Classes

The three classes that implement the previously discussed interfaces are

DefaultGraph, UnweightedGraph and WeightedGraph. DefaultGraph is an

abstract class and consolidates the functionality common to both weighted

and unweighted graphs. UnweightedGraph and WeightedGraph both extend
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DefaultGraph and weightedness-specific behavior. Moreover, DefaultGraph is

a generic class parameterized by a type variable called EdgeData, which signi-

fies the type of the object storing edge-related information. The DefaultGraph

class itself does not care what information is associated with edges as that is

for the implementing classes to handle. For example, UnweightedGraph does not

store anything extra with the edges, so it extends DefaultGraph<EmptyEdgeData>

where EmptyEdgeData is an empty object type. WeightedGraph implements

DefaultGraph<WeightedEdgeData> where WeightedEdgeData is an object type

with one numeric attribute: the edge weight.

Directedness

The system provides the ability to distinguish between directed and undirected

graphs. The constructors of the WeightedGraph and the UnweightedGraph classes

take a single boolean argument called directed that indicates whether the graph

should be directed. For operations where the directedness of graphs matters, the

implementations of all the methods perform the correct operation according to

whether the graph is directed. For instance, if we have two vertices a and b,

calling addEdge() with the arguments (a, b) creates a directed edge from a to b

for a directed graph. For an undirected graph, the same call creates an undirected

edge and is equivalent to calling the method with the arguments (b, a).

Internal Representation of Adjacency Data

The Graph interface does not specify how the vertices and edges should be

stored, as those are implementation details and not relevant to the Graph in-

terface. The DefaultGraph handles those details, and it uses an adjacency list

representation to store the graph. More accurately, the representation could be

called an adjacency map because lists are not involved and the JavaScript Map ob-
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ject is used, which is internally implemented in the browser as a hash map “other

mechanisms that, on average, provide access times that are sublinear in the number

of elements in the collection.” [1]

Since the data along with edges depends on more specific implementations,

the GraphAdjacencies type is parameterized with the type parameter EdgeData,

just like DefaultGraph. Precisely, the GraphAdjacencies type is defined as

type GraphAdjacencies<EdgeData extends EmptyEdgeData> =

Map<number, Map<number, EdgeData>>;

The key of the outer Map is the starting vertex id, the key of the inner Map is

the ending vertex id, and the value is the data associated with that edge.

The EuclideanGraph Class

The EuclideanGraph class is an implementation of the Graph interface to

support a special graph type in the system: Euclidean graphs. Euclidean graphs,

previously discussed in Section 2.3.1, are graphs for which vertex position is im-

portant and the edges are implicit, in the sense that every vertex is understood

to have an edge to every other vertex, without the need to store them explicitly.

The edges are undirected and weighted, and the weight of an edge is simply the

Euclidean distance between the two vertices to which it is incident. For Euclidean

graphs, a single set of vertex positions is shared between the graph and the graph

drawing, whereas vertex positions are not relevant for other graph types and are

only stored by the graph drawing visually.

3.2.2 Drawing Classes

The task of drawing graphs and handling the user’s interactions with the

graph drawing is handled by the drawing classes discussed here: GraphDrawing,

VertexDrawing, and EdgeDrawing.
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Figure 27: UML Class Diagram of the GraphDrawing Class, showing only public
methods

GraphDrawing

The GraphDrawing class represents a drawing of a graph, including all its

constituent objects (vertices, edges, labels, etc.) and their properties. This class

contains a reference to a Graph of which it is a drawing. Figure 27 shows the UML

class diagram of the class, with only public methods shown. In the figure, we can

see the methods which other parts of the system use to interact with the graph

drawing.
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Figure 28: UML Class Diagram of the Layout abstract class

VertexDrawing

The VertexDrawing class represents the drawing of a vertex, including the

circle that is the main visual component of the vertex and the label inside the

circle. Since the system uses the KonvaJS library for drawing primitive shapes,

the VertexDrawing class extends KonvaJS’s Group class, and contains the corre-

sponding KonvaJS objects for the label and the circle.

EdgeDrawing

The EdgeDrawing class represents the drawing of an edge, of which the main

component is a line (for unweighted graphs) or an arrow (for weighted graphs).

It also contains an optional label that is used, for instance, by weighted graphs

to display the weight. Like VertexDrawing, the EdgeDrawing class also extends

KonvaJS’s Group class, and it contains the corresponding KonvaJS objects for the

label and the line or arrow.

3.2.3 Layout Interface and Classes

To implement the auto-layout options provided to the user as discussed

earlier in Section 2.3.9, an interface called Layout is used. The methods of

the interface are shown in Figure 28. The important method of the interface

is getVertexPositions(), which, given a graph as the argument, returns a

PositionMap, which is essentially an object that maps vertex ids to vertex co-

ordinates. The method updateVertexPositions() is the in-place version of the
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Figure 29: UML Class Diagram of the Decorator interface

method just discussed, i.e. instead of creating and returning an object with the

positions map, it takes a reference to an existing position map as an input and up-

dates that position map. There is another method called isContinuous() which

returns a boolean value indicating whether the layout is a continuous layout, i.e.

whether it continuously updates the vertex positions. Graph Playground only has

one continuous layout: the force based layout discussed in Section 2.3.9. The

classes implementing the layout interface are:

1. CircularLayout: for laying out the vertices in a circle.

2. BipartiteLayout: for laying out bipartite graphs with one independent set

in each column.

3. GridLayout: for laying out vertices as points on a rectangular grid.

4. ForceBasedLayout: for laying vertices using attractive forces between adja-

cent vertices and repulsive forces between non-adjacent vertices.

5. FixedLayout: for representing a fixed, unchanging layout of the vertices.
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3.2.4 Decorator Interface and Classes

The Decorator interface acts as a bridge between the algorithm implementa-

tions in the system and the drawing and UI modules, enforcing separation of con-

cerns and loose coupling between distinct modules. The methods of the Decorator

interface are shown in the UML class diagram shown in Figure 29.

Decoration States

As can be seen, most of the methods of the interface are concerned with

setting ‘Decoration States’ for vertices or edges. ‘Decoration States’, encoded by

the class DecorationState, are a concept used to let algorithm implementations

make visual changes to the graph drawings they are operating on without having

to worry about the details of how such visual changes are done. The algorithm

can set vertices or edges to specific decoration states and the implementation of

the decorator will change how the vertex or edge is drawn. For instance, in the

default decorator in the system, vertices or edges with the DISABLED decoration

state are shown grayed out. The full list of decoration states is

1. DEFAULT, which is used to convey that the vertex or edge is displayed as it

is usually displayed in the absence of decorations. All vertices and edges are

in this state initially.

2. CONSIDERING, meant to convey that the algorithm is considering or examin-

ing this vertex or edge, for example for inclusion in the final output. The

default decorator colors vertices and edges orange to show this state. Edges

are dashed.

3. DISABLED, meant to convey that the algorithm is yet to look at this vertex

or edge, or has excluded it from consideration. The default decorator grays

out vertices and edges to show this state.

70



4. SELECTED is meant to convey that the algorithm has selected this vertex or

edge in some sense, for example for inclusion in the final output or that it

is considering the vertex or edge in a stronger way than vertices or edges

assigned the CONSIDERING state. The default decorator colors vertices and

edges teal-blue to show this state. Edges are drawn with a thicker stroke and

vertex circles are filled.

5. Additionally, ‘auxiliary states’ are states that can be generated on demand

and are distinct from all other states. They are useful if an algorithm needs

more levels of visual distinction. Each auxiliary state has a numeric id and

will be shown using a color distinct from the colors used for other auxiliary

states and normal states.

Edge Labels and Vertex Labels

The decorator interface also provides methods that allow an algorithm to set

and clear labels for edges and vertices. Edge labels are arbitrary pieces of text that

can be associated with edges, and they are shown in the graph drawing beside the

edges. If the graph is a weighted graph, the edge label will prevent the weight

from being displayed. The weight is displayed once again when the edge label is

cleared.

Vertices have two kinds of labels: the ones that are stored in the Graph

implementation itself, (See Section 3.2.1 for more detail. We will call these internal

labels as they are displayed within the vertex circle.) and external labels that can be

set from the decorator. While internal labels are stored with the graph data itself,

external labels are comparatively ephemeral in the sense that they are treated like

decoration states and edge labels: they are not stored when graphs are saved or

bookmarked and are lost when the decorator’s clearAllDecoration() method is
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(i) The Algorithm Interface (ii) The AlgorithmOutput
Interface

Figure 30: UML Class Diagrams of the Algorithm Interface and the AlgorithmOut-
put Interface

called.

External vertex labels are useful when an algorithm needs to display extra

information associated with an edge. The implementation of Dijkstra’s Algorithm

in the system uses external labels to show the distance from the source to a vertex.

3.2.5 Algorithm Interface and Classes

Another important interface in the system is the algorithm interface, and its

methods are displayed in the UML class diagram shown in Figure 30 (i). The

getFullName() method is implemented by algorithms to get the name of the

algorithm to be displayed in the algorithm control panel. The other method in

the interface is the run() method, which is called to execute the algorithm. run()

also takes an input whose type depends on the type parameter of Algorithm.

The type parameter can be void for algorithms that take no input. It should be

noted here that the fact that algorithms take a graph as an input is implicit, and

in implementations of algorithms, passing the graph is achieved through passing

a Decorator object to the constructor of the algorithm class. Algorithms can

retrieve the graph by calling the Decorator.getGraph() method.

The run() method is a generator method and its implementations should

relinquish control from time to time using the yield statement to allow decoration

changes to the graph drawing to be actually visible. The motivation for this
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Figure 31: UML Class Diagram of the AlgorithmRunner class, showing only public
methods

design choice is discussed in more detail in Section 3.4.2 and the interface between

algorithm implementations and the rest of the system is discussed in Section 3.5.

The type of the value that the run() method returns is called

AlgorithmOutput, and its contents are shown in the UML class diagram in Figure

30 (ii). The elements of the interface are discussed in Section 3.5.

A related class is the AlgorithmRunner class, whose UML class diagram is

shown in Figure 31. It provides methods for implementing a stateful approach

to algorithm execution, enabling essentially the core of the functionality of the

algorithm control panel buttons.

3.2.6 UI Handlers and Components

The final module we discuss here is the user interface module, the main parts

of which are discussed under the sub-headings below. We call the visible parts

of the user interface the components, and the code that handles interaction with

them the handlers.

Tools

Tools are implemented using the Tools class which handles user interaction

with the toolbar on the left sidebar and lets the drawing module request the cur-
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rently selected tool, letting it decide how to handle events for each tool. The Tools

class also sets the appropriate cursor for each tool. Currently there are three tools

included: (i) Add/Move Tool (ii) Delete Tool and (iii) Text Tool. The use of these

tools to create and manipulate graphs is discussed in Section 2.3.

Algorithm Control Panel

The algorithm control panel is a UI component that sits below the graph

canvas when an algorithm has been activated for a graph and contains but-

tons and inputs to allow the user to control the execution of the algorithm.

The algorithm control panel is implemented by the AlgorithmControls class.

It extends the browser’s HTMLElement class, and uses a template to instanti-

ate its user interface. Like the Algorithm interface and the AlgorithmRunner

class, AlgorithmControls is parameterized by the type of input the algorithm

takes. There are three implementations for each type of input currently pos-

sible in the system: InputlessControls for algorithms that take no input,

VertexInputControls for algorithms that take one vertex as an input, and

SourceSinkInputControls for vertices that take a source and a sink vertex as

input. Algorithms requiring a different kind of input will require the implementing

the corresponding kind of subclass to run.

Bookmarked Graphs

The bookmarked graphs feature is implemented by the BookmarkedGraphs

class, which handles UI interactions with the list of bookmarked graphs in

the left sidebar and the ‘Bookmark’ button in the top bar dropdown menu.

BookmarkedGraphs uses LocalGraphDrawingStore to store graph drawings in the

browser’s local storage. The LocalGraphDrawingStore class provides methods

for storing and retrieving JSON representations of graph drawings from the local
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storage.

TabBar and GraphTabs

The tab bar is implemented by a TabBar class, which, like

AlgorithmControls, extends HTMLElement. It provides methods for creat-

ing and listening to status updates on a set of tabs, without any regard to what

is being displayed using the tabs. In fact, the tab bar is functionally independent

of the graph canvas. The class GraphTabs ties the graph canvas and the tab bar

together by listening to changes in the tab bar and updating the graph canvas

accordingly. Since the GraphTabs class is the part of the system that places

a graph drawing in the canvas and switches graphs when tabs are switched,

it is the only part of the system that knows which graph drawing is currently

being displayed to the user. As a result, an instance of GraphTabs is passed to

other components that need to get the currently active graph drawing, and the

components call the getActiveGraphDrawing() method of GraphTabs for that

purpose.

Other UI Components

Other notable user interface components are listed below:

1. The auto-layout buttons panel, handled by the AutoLayout class.

2. The graph drawing display customizer which lets users set the size of vertices

and font size of edge weights. It is handled by the DisplayCustomizer class.

3. The auto-label mode selector, which lets users select how they want the

vertices to be labeled. It is handled by the AutoLabelOptions class.

4. The import-export manager, which provides functionality for saving and

opening saved graphs. It is handled by the ImportExport class.
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5. The algorithm menu, which activates the correct algorithm when the user

clicks on the name of an algorithm from the top bar dropdown menu. It is

handled by the AlgorithmMenu class.

76



3.3 Choice of Tools and Technologies

The choices of which tools, technologies and platforms to use to develop the

system were made relatively early in the timeline of the project, based on informed

guesses about the direction the development process would take and the needs that

would appear later in the process. In the sections below we discuss the motivations

for each of the major choices, and describe the strengths and limitations imposed

by the choice.

3.3.1 Platform

Deciding that the system would be developed as a web-based application was

a very straightforward choice, given the design goal that the system should be easy

and fast to access. Creating a desktop application would mean that the user would

have to go through the process of downloading and installing the application, with

steps different for each operating system. On the other hand, only a URL and a

browser is necessary to use a web application, and accessing a URL in a browser

takes only a few moments. The application does not involve any login process for

the same reason, and presents the full user interface to any user who accesses the

system. In fact, there is no need for the user to log in at all, because the system

does not have a server-side component other than . storage of the application

files—there is no data stored in the cloud. The user has the option of storing

graphs in the browser or in their computer.

3.3.2 Programming Language

Using the web as the development platform severely limits the number of

programming languages available for use. Even though many other languages can

be used for front-end web development using extra steps like compatibility layers,

JavaScript is the only high-level language that all modern browsers support for
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scripting in the front-end. However, instead of using plain JavaScript, the decision

was made to use TypeScript as the language for development. TypeScript is a

superset of JavaScript that adds static typing. The TypeScript compiler transpiles

TypeScript to plain JavaScript code before it is run on a browser. The static

typing of TypeScript is an attractive feature because type-checking catches many

errors in the compilation stage which would otherwise appear only at runtime with

dynamically typed languages. As a result, making the decision to use TypeScript

for the development of the system was not very difficult.

3.3.3 Frameworks and Libraries

Since there are a great number of JavaScript/TypeScript frameworks and

libraries for almost every conceivable use case on the web, choosing which ones to

use for canvas drawing and the user interface was a considerable challenge.

There were several options considered for the canvas drawing library. PaperJS

[2], KonvaJS [3] and FabricJS [4] were strong contenders. Among them, KonvaJS

was selected as the library of choice because it was found to be simpler, more

lightweight and easier to use than the alternatives.

Initially ReactJS [5] was considered as a possible choice for the user interface

framework. However, initial attempts to build a prototype user interface with Re-

actJS that incorporated a graph canvas, a tab bar, and sidebar controls that could

change the behavior of the objects in the graph canvas suggested that ReactJS

would not be a good choice for the project. Specifically, ReactJS enforces a design

philosophy that involves creating cohesive modules called components. Compo-

nents contain immutable objects called properties or props that describe the state

of the component. Components can be composed in the sense that larger com-

ponents can contain smaller ones, and properties are passed top-down from the

containing components to the contained components. This design philosophy was

78



found to be at odds with the natural design of the system, where we have a large

amount of complex state data contained within KonvaJS objects. The KonvaJS

objects that store drawing state also represent the drawings themselves, and there

are a lot of complex interactions between between the drawing objects and the rest

of the system. As a result it was decided not to use any user interface framework

in the system.

Even though no user interface framework is employed, a CSS library called

Bootstrap [6] is used to enforce a consistent look-and-feel across the system, espe-

cially for user interface elements like buttons, dialog boxes, etc. The JQuery [7]

JavaScript library is used to make the access and manipulation of HTML elements

easier.
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3.4 Design and Implementation Problems Encountered

During the course of design and development of the system, several problems

and challenges occurred. The sections below discuss the details of each design and

implementation challenge and how they were solved in the system.

3.4.1 Separation of Rendering and Representation of Graphs

An observation made early in the development of the system was that the

choice of the canvas drawing library could be changed later. Excessively close cou-

pling between the state of the graph drawing and the objects of the drawing library

would make the switch difficult. Allowing for change was especially important, as

it was observed that although KonvaJS was easy to use and lightweight, it lacked

some features required by our system. Additionally, the API documentation for

some interfaces were sometimes insufficient or even missing.

A second motivation for separating the state of the graph drawing from the

drawing objects of the graph canvas is the need to serialize and de-serialize the

drawing objects for saving and opening saved graph drawings. A saved graph

graph drawing file should contain only the information required to recreate later

the graph drawing exactly as it looks like when saved, and no more. If we effectively

decouple the representation of the visual state and the drawing of the state, we

can just serialize the ‘drawing state object’ without worrying if we are serializing

more information than is necessary.

Yet another concern that seems to support the separation of these two things

is that algorithms manipulate the appearance of graphs, and in a well-designed

system the algorithms should not know nor care about what library is used to

draw the graph. So with the correct decoupling, the algorithm should just be able

to update the ‘drawing state object’, and the drawing library should automatically

respond by updating the drawing.
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In the end, even though the aforementioned reasons supported a separation

between the representation and rendering of graphs, it was decided that the sep-

aration would be kept for later. There were a couple of reasons. First, the

GraphDrawing class already has a toJSON() method that lets us extract a serializ-

able representation of the graph drawing, containing just the necessary elements.

That function is used for creating file exports of graph drawings. A suitable alter-

native to KonvaJS that provided similar simplicity and ease of use wasn’t found

either. Second, with the Decorator interface being created for interaction between

algorithms and the graph drawing, it was realized that even allowing algorithms to

change the drawing state of the graph drawing was too much coupling, and algo-

rithm implementations should not care about drawing attributes. For this reason,

Decorator provides algorithms a high-level view of what can be done to a graph’s

vertices and edges, as discussed in Section 3.2.4.

3.4.2 Separation of Algorithm Implementation from Rest of the Sys-

tem

Since the system has easy extensibility as a design goal—especially when it

comes to adding new algorithms—loose coupling between algorithm implementa-

tions and the rest of the system is a must. Ideally, someone implementing a new

algorithm should not have to know how the rest of the system is implemented,

including how graphs are drawn. This kind of ‘spatial’ separation is more or less

straightforward to implement, as a clean bridge interface like the Decorator ab-

stracts away the details of the rest of the system and provides a set of high-level

operations that an algorithm can perform.

The other kind of separation necessary, namely ‘temporal’ separation between

the algorithm and the rest of the system, turned out to be much more difficult

to solve. In this case, temporal separation stands for the requirement that an
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algorithm implementation should be able to perform its own operations and deco-

rator calls without worrying about the speed at which it is executing, and without

concern for the kind of environment where it executes. The latter is especially

important: algorithm implementations should not have to worry about who calls

them. On the other hand, the part of the system running the algorithm should be

able to choose whether to execute the algorithm all at once to get the final output,

or run it step-by-step, observing the results. This problem is uniquely challenging

in the browser’s JavaScript environment because everything in a browser runs in

a single thread. If multiple threads were possible, we could simply execute the

algorithm in a separate thread by itself, perhaps with sleep() calls of a variable

length interspersed throughout, to execute the algorithm at an appropriate pace.

Then the algorithm could be implemented any way the implementer likes.

But since everything executes in a single thread in the browser, the main

event loop of the browser executes in the same thread as any code in our system.

If an algorithm takes more than a trivial amount of time to execute, the user will

notice this as the whole user interface freezes, not responding to the user at all.

Since we want the user to be able to pause, resume or stop the algorithm while it is

executing, allowing the user interface freeze is not an option. To solve this problem,

the approach adopted initially was to require algorithms to be implemented with

a step() function, which would do a small amount (for instance, an iteration of

an outermost loop) of work and then return. The step() function would be called

at regular intervals by the rest of the system while the algorithm is executing, but

crucially the intervals between the step() calls would allow the event loop to run,

responding to user interaction. The algorithm could signal that it has no more

steps left to execute with a special return value.

While the aforementioned approach is fine for most algorithms, it enforces an
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artificial restriction on algorithm implementations that is a product of the pecu-

liarities of the platform chosen for the system. Furthermore, some algorithms have

recursive implementations that are cleaner and easier to write and understand than

their iterative counterparts, and using the aforementioned approach effectively pre-

vents such recursive implementations without a fair amount of trickery. Therefore,

alternatives to the approach were sought, and initially it appeared as if there was

no way for an algorithm to be written in isolation as was required. Eventuallky two

potential solutions were found. One was to use Web Workers, which is a relatively

new feature of modern web browsers that allows execution of code in a separate

thread. However, using Web Workers means that code executing in a web worker

can only communicate with the rest of the system using a messaging interface,

so direct function calls to Decorator would have to be bridged by implementing

a special purpose RPC (Remote Procedure Call) layer. Fortunately the another

solution was found that solved the problem without having to write a lot of extra

code. The solution was to use generator functions, which is a feature of many

modern high-level languages including JavaScript. A generator function is simply

a function that has an additional way of relinquishing control back to the caller

besides the usual return statement: the yield statement. Callers of the function

access the result of the generator function as if they were accessing elements from

an iterator, reading values consecutively until there are no more values. When a

generator function yields, control is transferred back to the calling part, but cru-

cially the state of the function (its execution context) is maintained as-is. When

the caller requests the next value from the generator function, execution continues

from just after the yield statement. In our case, we don’t need algorithms to pass

back values when yielding control back, we only need a result when the function

returns.
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The use of generators is reflected in the return type of the run() function

in the Algorithm interface. Specifically, the return type is Generator<void,

AlgorithmOutput, void>, whose type parameters indicate, respectively, that the

yield statement doesn’t pass any value back to the caller, the return statement

passes back a value of type AlgorithmOutput, and that the caller does not need

to pass a value to be received by the yield statement. This is discussed in more

detail in Section 3.5 and an example implementation is provided in Section 3.6.

3.4.3 Placement of Edge and External Vertex Labels

Automatic label placement is a problem that has been studied in depth, es-

pecially in the context of labels for maps but also in the context of graphs [8].

The goal of most labeling algorithms is to place labels in such a way that a set of

criteria are met as much as possible, like labels being close to the items they are

for, and overlap between labels being minimized. Despite the existence of a large

amount of literature and potentially better algorithms, due to time limitations and

the need to focus on other problems, a simple approach was adopted to decide the

automatic placement of edge labels (weights) and external vertex labels.

Edge labels are placed according to an anti-centroid approach, meaning that

they are placed on the side of the edge that is away from the centroid of the vertex

positions. The motivation for this approach is that other edges are likely to be

where other vertices are, and this approach eliminates overlap between the label

and other edges for at least the edges that are on the convex hull of the vertex

set. The centroid of the vertex positions is obtained from GraphDrawing, and the

EdgeDrawing class uses the positions of its two endpoints (the two vertices it is

incident to) to compute a vector that is orthogonal to the line running between

the two vertices, but pointing in a direction away from the side of the centroid.

Then this direction vector is added to either the midpoint of the edge or (if the
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Figure 32: Edge labels (weights) and external vertex labels on a graph

edge has one) the curve point to obtain the position of the edge label.

For external vertex labels, since there can be a handful of edges incident to

a vertex, the goal is to minimize the chance of overlap between vertex labels and

edges. Intuitively, the approach that seems to do this satisfactorily is to place the

vertex label between that pair of edges for which the angle between them is largest.

The label is placed such that the angle it makes with the vertex center bisects the

aforementioned largest angle. In case there is only one edge incident, the label is

placed opposite to that edge. If there are no edges incident, the label is placed in

the direction opposite to the centroid of the vertices in the graph.

As can be seen in Figure 32, the approaches used to place external vertex

labels and edge labels produce satisfactory and somewhat visually pleasing label

positions.
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3.5 Algorithm API

In this section, the Algorithm Application Programming Interface (API) is

described. The Algorithm API is the set of interfaces and operations used by

algorithm implementations, the primary ones being for the purpose of making

visual changes to the graph drawing.

Most parts of the algorithm API have already been discussed, and this section

will restate them in a cohesive manner. As mentioned earlier, algorithm implemen-

tations need to implement the Algorithm interface. The getFullName() method

needs to return a name for the algorithm, and the run() method is the entry point

of the algorithm. Since most algorithms will need to make changes to the graph

drawing, they will need an instance of a Decorator. The constructor of the class

implementing the algorithm should take a single argument of type Decorator,

and no more arguments. The graph itself can be retrieved using the getGraph()

method in the decorator. The Algorithm interface has a type parameter that is

the input type of the run() method, and the type parameter should be appropri-

ately set according to the type of extra input (other than the graph) the algorithm

requires.

Inside the body of the implementation of run(), calls to decorator methods

and yield statements should be placed appropriately according to the behavior

desired. Changes made to the appearance of the graph drawing (decoration states

and labels) will not be visible to the user until the next yield statement, so yield

statements need to be placed as often as visual updates are desired. It should be

understood that a fixed interval of time will elapse between the execution yield

statement and the execution of the next statement, so more yield statements will

make the algorithm appear to run slower. The exact amount of time that will

elapse between suspension of execution on the yield statement and resumption of
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execution depends on the speed set on the algorithm control panel by the user.

The return value of run() should be of type AlgorithmOutput, which is an

object type with three properties, as can be seen in Figure 30 (ii). The graph

property is the output graph that the algorithm generates, for instance the search

tree for depth first search. Algorithms that don’t have an output can set it to null

or undefined. The name property specifies the name to be used for the output

graph, used for things like tab titles and file names. This property is required only

if graph contains a valid graph. The message property specifies the message to

be displayed to the user, and consists of a message level (indicating whether it is

a failure, success, warning or just some information), the message text and the

message title. Messages in the output are optional as well and can be set simply

to null or undefined.

After the implementation of the Algorithm interface is complete, the algo-

rithm needs to be registered with the system to be accessible by users. The reg-

istration is done in the AlgorithmMenu class, which contains a static member

containing a list of all algorithms in the system. A portion of the list of algorithms

is shown below.

1

2 type AlgorithmType <I> = new (d: Decorator) => Algorithm <I>;

3 type ControlsType <I> = new (algClass: AlgorithmType <I>,

4 graphTabs: GraphTabs , graphDrawing: GraphDrawing) => AlgorithmControls;

5

6 interface MenuEntry <I> {

7 controlsClass: ControlsType <I>;

8 algorithmClass: AlgorithmType <I>;

9 menuText: string;

10 }

11

12 export default class AlgorithmMenu {

13

14 static readonly algorithms: MenuEntry <any >[][] = [
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15 [

16 {

17 controlsClass: InputlessControls ,

18 algorithmClass: KruskalMST ,

19 menuText: "Kruskal ’s Minimum Spanning Tree",

20 },

21 {

22 controlsClass: VertexInputControls ,

23 algorithmClass: PrimMST ,

24 menuText: "Prim ’s Minimum Spanning Tree",

25 },

26 ],

27 [

28 {

29 controlsClass: VertexInputControls ,

30 algorithmClass: BreadthFirstSearch ,

31 menuText: "Breadth First Search",

32 },

33 {

34 controlsClass: VertexInputControls ,

35 algorithmClass: DepthFirstSearch ,

36 menuText: "Depth First Search",

37 },

38 ],

39 ...

40 ];

41 ...

42 }

As seen above, an algorithm menu entry (whose type contract is defined by

the MenuEntry interface) consists of (a) controlsClass, whose value should be

the class name of a subclass of AlgorithmControls capable of asking the user for an

input of the type the algorithm requires, (b) algorithmClass, whose value should

be the class name of the algorithm, and (c) menuText, the text to be displayed on

the menu item for this algorithm. MenuItems grouped together in an inner array

will be displayed together, divided from other groups with a horizontal divider in

the menu.
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After the algorithm menu entry is placed in the correct location, the system

should automatically read the entry and populate the menu, thus allowing the user

to execute the algorithm.
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3.6 Extending the System with a New Algorithm

In this section a step-by-step example of implementing a new algorithm for

the system is provided. The demonstration will be of a simple depth-first search

based algorithm to count the number of connected components in an undirected

graph.

3.6.1 Creating an Algorithm Class

Creating a class implementing the Algorithm interface is the first thing that

needs to be done. The following code listing shows a syntactically correct class

implementing the interface, but one that has no functionality of the algorithm itself

implemented. Imports of the symbol names are omitted because import statements

are dependent on the relative locations of the class files, which can change when

the project’s code structure is reorganized.

1

2 export class CountComponents implements Algorithm <void > {

3

4 constructor(private decorator: Decorator) {

5 }

6

7 *run() {

8 return {

9 graph: null ,

10 name: null ,

11 message: null

12 }

13 }

14

15 getFullName () {

16 return "Component Count Algorithm ";

17 }

18 }

The class shown above takes a decorator as an argument and assigns it to a

private member of the same name. It also has a run() function that just returns
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an AlgorithmOutput object with null values. Finally there is a getFullName()

function that returns the name.

3.6.2 Programming the Algorithm

After the previous step, we have a place where we can write the code for the

algorithm. We will first write the code for the algorithm and insert decorator calls

in the next step. The input graph will be obtained through the decorator and the

number of components will be returned in the AlgorithmOutput’s message section

to be displayed to the user.

The following code listing shows a working implementation of the DFS-based

approach to counting the number of connected components. Only the run() func-

tion is shown here, because the rest of the class remains the same.

1 *run(): Generator <void , AlgorithmOutput , void > {

2 const graph = this.decorator.getGraph ();

3 // Create a set of vertices we haven ’t yet visited. Initialize with all

4 // vertices.

5 const unvisited = graph.getVertexIds ();

6 var components = 0; // Variable to count the number of components

7 while (unvisited.size > 0) {

8 // Get one element from the unvisited set

9 const vertex = unvisited.values (). next (). value;

10 // Create an array to serve as a stack for DFS

11 const stack = [vertex ];

12 while (stack.length > 0) {

13 // Pop a vertex from the stack , remove it from unvisited

14 const v = stack.pop();

15 unvisited.delete(v);

16 // Push all of its unvisited neighbors to the stack ,

17 // disregarding edge direction for directed graphs

18 for (const n of graph.getVertexNeighborIds(v, true)) {

19 if (unvisited.has(n)) {

20 stack.push(n);

21 }

22 }
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23 }

24 // We ’re done exploring all vertices in this component

25 components ++;

26 }

27 // Return output with message

28 return {

29 graph: null ,

30 name: null ,

31 message: {

32 level: "success",

33 title: "Execution Complete",

34 text: components.toString () + " components found in the graph."

35 }

36 };

37 }

Comments are placed at appropriate lines in the above listing to describe what

the lines of code are doing. Essentially, all vertices are initially placed in a set called

‘unvisited’ and, as we do a depth first traversal of a component, we remove vertices

from the set. If there are vertices remaining in the set after completing a depth

first traversal, we increment the count of components and do another traversal. In

the end we return an AlgorithmOutput object with a message stating the number

of components.

3.6.3 Using the Decorator and Yield

At this point, the algorithm we just implemented runs on graphs and produces

the correct result, but our implementation does not show any intermediate steps

to the graph and does not make any decorations to the graph drawing. In this

section, we will use the decorator passed to the class constructor and include some

yield statements so the user can see the decoration.

The code for the run() method with decorator calls and yield statements

added is shown in the listing below.
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1 *run(): Generator <void , AlgorithmOutput , void > {

2 const graph = this.decorator.getGraph ();

3

4 // Set all vertices and edges to disabled state

5 for (const vertex of graph.getVertexIds ()) {

6 this.decorator.setVertexState(vertex , DecorationState.DISABLED );

7 }

8 for (const edge of graph.getEdgeList ()) {

9 this.decorator.setEdgeState(edge[0], edge[1], DecorationState.DISABLED );

10 }

11 yield; // Let the decorations be displayed

12

13 // Create a set of vertices we haven ’t yet visited , initially all of them.

14 const unvisited = graph.getVertexIds ();

15 var components = 0; // Variable to count the number of components

16 while (unvisited.size > 0) {

17 // Create a graph from this component for decoration later

18 const thisComponent = new UnweightedGraph(false );

19 // Get one element from the unvisited set

20 const vertex = unvisited.values (). next (). value;

21 // Create an array to serve as a stack for DFS

22 const stack = [vertex ];

23 unvisited.delete(vertex );

24 thisComponent.addVertex(vertex );

25 this.decorator.setVertexState(vertex , DecorationState.SELECTED );

26 this.decorator.setStatusLine (" Exploring component " + (components + 1));

27 yield;

28 while (stack.length > 0) {

29 // Pop a vertex from the stack , remove it from unvisited

30 const v = stack.pop();

31

32 var newPushed = false; // For the yield later

33 // Push all of its unvisited neighbors to the stack ,

34 // disregarding edge direction for directed graphs

35 for (const n of graph.getVertexNeighborIds(v, true)) {

36 if (unvisited.has(n)) {

37 unvisited.delete(n);

38 stack.push(n);

39 thisComponent.addVertex(n);

40 this.decorator.setEdgeState(v, n, DecorationState.SELECTED );
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41 this.decorator.setVertexState(n, DecorationState.SELECTED );

42 newPushed = true;

43 }

44 thisComponent.addEdge(v, n);

45 }

46 if (newPushed) {

47 yield;

48 }

49 }

50 // We ’re done exploring all vertices in this component

51 components ++;

52

53 // Set vertices and edges of this component to an auxiliary state

54 const auxState = DecorationState.getAuxiliaryState(components - 1);

55 for (const v of thisComponent.getVertexIds ()) {

56 this.decorator.setVertexState(v, auxState );

57 }

58 for (const e of thisComponent.getEdgeList ()) {

59 this.decorator.setEdgeState(e[0], e[1], auxState );

60 }

61 this.decorator.setStatusLine(thisComponent.getVertexIds (). size +

62 " vertices found in component " + components );

63 yield;

64 }

65 this.decorator.setStatusLine ("Graph has " + components + " components ");

66 // Return output with message

67 return {

68 graph: null ,

69 name: null ,

70 message: {

71 level: "success",

72 title: "Execution Complete",

73 text: "Graph has " + components + " components"

74 }

75 };

76 }

Lines 4–11, 17–18, 24–27, 32, 39–42, 44, 46–48, 53–63 and 65 contain the code

inserted for decoration and yielding. Initially we set all vertices and edges to the
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DISABLED state. Then, as we visit vertices in the depth first search, we set the

visited vertices and discovered edges to the SELECTED state. When we have visited

all the vertices in a component, we set all the vertices and edges of that component

to an auxiliary state, so that different components are shown in distinct colors and

are distinguishable. We also send status messages to the decorator for displaying

to the user as we explore vertices and as components are found.

3.6.4 Registering the Algorithm with the System

The final step necessary is the registration of the algorithm with the system,

which can be done by inserting a MenuEntry object in the AlgorithmMenu class.

The MenuEntry object interface and the list of menu entries is described in Section

3.5. Here we will just show the MenuEntry object that needs to be inserted.

1 {

2 controlsClass: InputlessControls ,

3 algorithmClass: CountComponents ,

4 menuText: "Component Count",

5 }

Placing this object in an inner array within the static array algorithms in

the AlgorithmMenu class enables the system to read the entry and places an item

named ‘Component Count’ in the algorithms dropdown menu, from which the

procedure can be executed.

3.6.5 The Result

In this section, we show the result of the algorithm implemented in the pre-

vious sections. Step-by-step pictures of the decorations made by the algorithm to

the graph are displayed in Figure 33. As shown, the requested decorations are

performed on the graph as vertices and edges are set to the ‘SELECTED’ state

as we traverse a component, and an auxiliary state is set for the component after
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(i) DFS traversal starting at 1 (ii) DFS continuing to 1 and 2

(iii) Component 1 fully traversed (iv) DFS traversal starting at 4

(v) DFS continuing to 5 (vi) Component 2 fully traversed

(vii) Output message with component count

Figure 33: The DFS-based component counting algorithm in action
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completion of the traversal. The figure also shows the status line with the text

set by our decorator calls, and the output message displayed in the message area

for the final step. As we can see, the algorithm correctly finds that there are 2

components in the graph.

List of References

[1] ECMAScript 2021 Language Specification, Ecma International, 6 2021.
[Online]. Available: https://tc39.es/ecma262/multipage/keyed-collections.
html#sec-map-objects

[2] J. Lehni and J. Puckey, “Paperjs,” accessed: 2021-07-15. [Online]. Available:
https://paperjs.org/

[3] A. Lavrenov. “Konvajs.” Accessed: 2021-07-05. [Online]. Available: https:
//konvajs.org

[4] “Fabric.js,” The FabricJS Team, accessed: 2021-07-15. [Online]. Available:
https://fabricjs.com/

[5] “React - a javascript library for building user interfaces,” Facebook Inc.,
accessed: 2021-07-15. [Online]. Available: https://reactjs.org

[6] “Bootstrap,” The Bootstrap Team, accessed: 2021-07-15. [Online]. Available:
https://getbootstrap.com/

[7] “Jquery,” The OpenJS Foundation, accessed: 2021-07-15. [Online]. Available:
https://jquery.com/

[8] K. G. Kakoulis and I. G. Tollis, “Force-directed drawing algorithms,” in Hand-
book of Graph Drawing And Visualization, R. Tamassia, Ed. CRC Press, 2013,
ch. 15, pp. 489–515.

97

https://tc39.es/ecma262/multipage/keyed-collections.html#sec-map-objects
https://tc39.es/ecma262/multipage/keyed-collections.html#sec-map-objects
https://paperjs.org/
https://konvajs.org
https://konvajs.org
https://fabricjs.com/
https://reactjs.org
https://getbootstrap.com/
https://jquery.com/


CHAPTER 4

Conclusions

4.1 Review of Goals Achieved

The primary design goals of the project were to build a system that (a) allows

users to visually create and manipulate graphs, and (b) provides a set of algorithm

implementations along with visualizations of their steps. The scope of the features

and algorithms was planned to be more or less restricted to the ones necessary for

teaching introductory graph theory and algorithms courses like CSC 340 and CSC

440, respectively, at URI.

The current implementation of the project contains most of the planned fea-

tures and algorithms, and it is capable of supplementing conventional teaching

methods for the following topics:

1. Graph isomorphism

2. Graph planarity

3. Kruskal’s and Prim’s minimal spanning tree algorithms

4. Breadth First Search and Depth First Search

5. Dijkstra’s Shortest Paths Algorithm

6. Fleury’s Euler Circuit Algorithm

7. Bellman-Held-Karp Algorithm for Hamilton Circuits

8. Hopcroft-Tarjan Algorithm for Biconnected Components and Articulation

Points

9. Bellman-Held-Karp Algorithm for the Traveling Salesman Problem
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10. Approximation Algorithms for the Traveling Salesman Problem

(a) Nearest-neighbor heuristic

(b) Nearest-insert heuristic

(c) Cheapest-insert heuristic

(d) Minimum Spanning Tree based algorithm

(e) Christofides Algorithm

11. Edmonds-Karp Network Flow Algorithm

There are some items conspicuously missing from the list above, and a selec-

tion of them are discussed in the next section. However, the system as it exists

now covers or touches on most of the graph-based topics taught in courses like

CSC 340 and CSC 440, and that the undertaking was more or less successful in

reaching its goals.

4.2 Future Work

There is a lot of potential for future work that can be done on the system, as

the list of algorithms and features of the current implementation lacks some items

that would be desirable in a system for graph theory pedagogy. The most notable

among these are:

(i) Features to support manual graph coloring by users

(ii) Features to support multigraph creation

(iii) User-editable external vertex labels

(iv) User-editable edge labels

(v) Algorithms to find minimal graph colorings
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(vi) Algorithms to test isomorphism

(vii) Algorithms to test planarity

Other features and algorithms would enhance the coverage, usability and vi-

sual appeal of the system include:

(i) Layout algorithms for minimum-crossing layout

(ii) Support for altering graph layout through the decorator interface

(iii) Graph operations like complement, dual and line graph

(iv) Topological sorting algorithms

The fact that the source code for the system is open-source and published un-

der the GNU General Public License Version 3 (GPLv3) enhances its extensibility

and the prospect for future work. The algorithm API as described in Section 3.5

has been designed to support extensibility and easy addition of new algorithms.

With future work that builds on the work already done, the system can be made

into a full-featured system for introductory graph theory and graph algorithm

related pedagogy.
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