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ABSTRACT 

Unmanned Aerial Vehicles (UAVs) are becoming more and more integrated into 

our lives as they are able to fulfill new tasks and become more affordable. Human-UAV 

Interaction (HUI) therefore is an important topic researcher are working on. As a type 

of UAVs, quadcopters are characterized with uncertainties in their flying behavior and 

considered dangerous for humans because of their spinning propellers. Interaction 

through touch is therefore rarely used as interaction method. Hence, in this work Virtual 

Reality (VR) is used to simulate a quadcopter to create a platform for virtual HUI. In 

the development process, Unity was chosen to handle the Virtual Reality application 

and Gazebo running on the Robot Operating System was used to simulate the 

quadcopter. The user interface is provided by the Oculus Quest 2 VR headset. Finally, 

two conducted experiments validated that the system is capable of computing and 

performing new trajectories of the UAV from physical user inputs. Moreover, the 

performance of the system was analyzed, and delays of dedicated system components 

were computed. 
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1. INTRODUCTION 

The emerging role of Unmanned Aerial Vehicles (UAVs) in industry and for non-

commercial use leads to new areas of application. A challenge wherever people 

encounter UAVs is the Human-UAV Interaction (HUI). Safety issues as well as the 

form of interaction must be discussed. In this thesis, no real UAV will be used. With 

Virtual Reality (VR) we have a tool to simulate real-looking scenarios with high 

immersive effect on the user. Computer-generated models in the virtual world allow us 

to interact with UAVs without exposing humans to a risk.  

This work developed a platform for Human-UAV Interaction using a virtual reality 

headset. Thereby, the person’s field of view is simulated, and the position of their hands 

is tracked to allow physical interaction with a safe computer-generated model of a UAV. 

This type of interaction is also referred as Physical Human-UAV Interaction (PHUI).  

Starting with the Justification for and Significance of the Study, previous literature 

on the topic of HUI and PHUI combined with VR or without is presented and reviewed. 

Moreover, this work is brought into context with the existing studies highlighting the 

novel aspects of this approach. The subsequent Methodology chapter introduces into 

the components of the system architecture by giving overviews of their abilities, limita-

tions and how they work. After that, the reader should be able to follow the description 

of the System Architecture from where the developed components are being explained. 

All scripts, packages, and tools used are explained starting with the Unity components, 

followed by the Gazebo components. This section forms the main development work of 

this thesis. In the Simulation Setup, the process of preparing, recording, and conducting 

experiments is explained to understand the basis of the following results. Divided into 
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two sections, the Results chapter first provides an overview on the achieved features of 

this platform and then presents the recorded data in form of curve diagrams. The find-

ings are explained, and any abnormalities analyzed in detail. Finally, the Discussion and 

Future Work chapter completes the thesis with evaluating the limitations and with pro-

posing new approaches to improve the developed platform and for further investigations 

on the topic of PHUI using this system. 
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2. JUSTIFICATION FOR AND SIGNIFICANCE OF THE STUDY 

In recent years, the number of UAVs has increased steadily, attracting the attention 

of companies, customers, and researchers. The market growth of registered commercial 

and hobbyist UAVs from 2016 to 2019 in the U.S. was nearly 67%, with the commercial 

sector showing the most increase according to the Federal Aviation Administration [1, 

2]. With this development, UAVs became more and more versatile. Coming from cam-

era-equipped observation UAVs in highly challenging military applications, they now 

are available for everyone and used as a toy, hobby article or commercial equipment. 

Through continuous research, applications were extended to the capability of navigating 

visually impaired persons [3], being used as a hovering ball in sports [4] or controlling 

a crowd in emergency situations [5]. 

“As drone usage increases, humans will interact with such systems more often, 

therefore, it is important to achieve a natural human-drone interaction.” [6]. A natural 

Human-Drone Interaction (also Human-UAV Interaction, short HUI) can consist of 

multiple control methods. Commonly used controllers have the disadvantage of not be-

ing intuitive since every controller layout is different and only a minority of the popu-

lation is familiar with gamepads and 3D-control through keys. Because of the high level 

of noise emission from the propellers, speech recognition often is not possible for 

UAVs. Gesture controlling as another interaction method requires additional sensor sys-

tems either on the UAV or set up in the environment that track specific parts of the 

human body. Those sensors can be cameras for example, but this type of system is not 

easy to set up and cannot be mounted on every type of UAV. All these limitations in 

mind, interaction through touch seems ideal, because it is easy to use, and no additional 
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hardware is needed. Furthermore, physical interaction with UAVs enables new applica-

tions, such as programming trajectories by simply guiding it by hand, which is a stand-

ard method for collaborative robotic arms (“BitDrones” [7]) Another application could 

include close work scenarios together in the same workspace with physical interaction 

as an additional safety feature. A major field of research about the topic of Physical-

Human-UAV Interaction (PHUI) is haptic feedback for VR. Although the immersive 

effect of current VR-Headsets and simulations already is very high, physical feedback 

going further than vibrating controllers is still in development state. In the following 

examples, UAVs are used to provide haptic feedback to the user in the virtual word.  

In [8], a virtual shopping experience called “HoverHaptics” is created that uses an 

UAV for different modes of haptic of objects. While the person sees the simulated scen-

ery, a safe-to-touch UAV enriches the VR world with positioning of texture material 

corresponding to the object in the virtual world that is attached to the UAV and can be 

touched. Furthermore, the UAV is equipped with real replicates of the virtual objects 

and can put them into the right position according to the simulation. The a.m. paper also 

developed the controller for autonomous positioning in this setup. 

A framework named “Flyables” designed a tactile user interface based on small 

UAVs [9]. Thereby quadcopters equipped with a safe-to-touch cage were used to create 

a spatial user interface. The authors conducted a survey of people interacting with their 

framework while performing three different tasks, finding out at which position the in-

teraction took place in relation to the user and which fingers were used. 

For more general scenarios “TactileDrone” [10] and “VRHapticDrones” [11] de-

veloped systems with quadcopters as touchable objects in VR. While TactileDrone 
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focuses on the implementation of the tactile feedback system and the integration of mo-

tion capture systems into VR applications, the scope of VRHapticDrones goes even fur-

ther and includes two experimental studies. Study 1 determines the effect of haptic feed-

back in VR on the perception of presence of objects, whereas study 2 investigates the 

physical compliance between what is sensed through touch and what is seen in the vir-

tual world. 

Recapitulating that every referred paper that allowed touching UAVs in their stud-

ies had used propeller guards, it has to be stated that touching UAVs such as quadrotors 

is in general considered unsafe to Humans, because of the spinning propellers. To over-

come this problem, propeller guards were designed to provide safe-to-touch UAVs as 

used in the previous examples. A study “Drone Near Me” [12] investigated the likeli-

ness of using touch as an interaction method for UAVs and how comfortable probands 

feel while interacting. The authors found out that for interaction with safe-to-touch 

UAVs, touch is more likely to be chosen than with unsafe-to-touch UAVs. Moreover, 

when safety was ensured, 58% of the participants preferred touch for interaction com-

pared to gestures or speech input. 

Applying the findings of the VR haptic feedback implementations on HUI, a new 

approach for experimental studies on HUI is formed. With Virtual Reality it is possible 

to overcome safety concerns when interacting with UAVs in the development phase of 

new PHUI methods or training scenarios. Not only the appearance and the noise of the 

UAV, but the whole environment can be simply adapted in the virtual world to get a 

safe experience while interacting. Multiple simulations and experiments with PHUI can 

be performed without limitations regarding the flight time of the UAV or spatial 
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requirements for the experiment. Moreover, the recording of interaction events and 

tracking of body trajectories in 3D-space can be achieved with low efforts in the VR-

simulation. VR-experiences also can be used to sensitize people to touch UAVs or to 

teach people how to work with them.  

An overview of the topic of Human-UAV Interaction is given by D. Tezza and M. 

Andujar [6]. This survey addresses a huge range of aspects in the field of HUI. Com-

paring most common UAV models and depicting different interaction methods, over 

1600 research papers on HUI are categorized and their results summarized. Research on 

UAVs as human companions by C. F. Liew and T. Yairi [13] adds social aspects to the 

otherwise technical consideration. While research on companion robots already is ad-

vanced, investigation of companion UAVs still is in its early phase. A first approach of 

PHUI is described by S. Rajappa, H. Bülthoff and P. Stegagno [14]. Implementing a 

residual based estimator, the UAV controller estimates all sensed forces, calculates, and 

performs the desired trajectory. This mathematical model was applied to a touchable 

quadrotor with force estimation sensor ring around the quadrotor. The model was vali-

dated performing hardware-in-the-loop simulations along with experiments in which 

human interaction disturbs a defined state of the UAV.  

The results of the papers mentioned above, using UAVs as haptic feedback to en-

hance VR experiences, can be used as a basis to simulate not tangible objects with the 

help of UAVs but to simulate the UAV itself in VR. Figure 1 summarizes the different 

aspects of the categorized papers presented so far. 
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3. METHODOLOGY 

The system proposed for this thesis includes the setup of two different operating 

systems to connect to each other. On the one side we have a Windows computer on 

which we run the game engine Unity, that is ideal for VR applications. On the other side 

there is a Linux machine with the Robot Operating System (ROS) running on it. ROS 

is a powerful framework to control, simulate and connect robotic platforms. The fol-

lowing chapter introduces the components that were used in this work. 

3.1. UNITY 

Unity is one of the most popular real-time 3-dimensional development platforms to 

create games and immersive experiences across industries [15]. Besides games, this 

graphic engine is used for automotive manufacturing, film animation and cinematics as 

well as architecture, engineering and construction [16]. Unity therefore covers a huge 

variety of applications and supports over 25 different operating systems and (gaming) 

platforms. Projects with Unity can range from mobile applications on smartphones with 

Android or iOS to complex 3D-simulations in manufacturing process chains. It is used 

for commercial but also noncommercial purposes. A free version for educational pur-

poses and small businesses makes Unity even more popular. The engine is available on 

the market since 2004 and thrives on a large online community that constantly releases 

new expansion packages and open-source code. The software was chosen because it is 

ideal for most VR developments and offers many interfaces to other software, especially 

ROS. 

Unity’s user interface (Figure 2) is optimized for 3D applications. Thanks to its 

drag-and-drop interface, it allows beginners to learn the most important functions easily. 



 

9 

 

Simply dragging properties onto selected objects brings them to action. All objects are 

represented in scenes that describe a fixed 3D space, such as a game level. Every scene 

consists of “Game Objects” and their children that form the structure of the content in 

this scene. A Game Object can contain very little but also very much content with thou-

sands of child objects. It could combine individual scripts up to a whole set of visual 

objects of a game or simulations with their effects. Thereby every object has a position, 

orientation, and size in the world coordinates of the scene stored in the “Transform” 

component. Besides this transform, various pre-defined or self-written components can 

be added to every Game Object. Those components can affect the visualization of the 

object, the physics or other behavior for example to create interactive content. As men-

tioned before Game Objects can be assigned to groups so that overall components can 

be added to impact multiple objects at once. 

 

Figure 2: Unity GUI and Simulation Scene Overview. The 3D scene view is located in 
the center, the Hierarchy containing the Game Objects is on the top left and the 
components tos each Game Object can be reviewed in the inspector on the right. 
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Six main areas share the screen in Unity’s standard layout. Each user can customize 

the tabs and position them freely on several monitors to best adapt them to their own 

workflow. In the default view, there is a “Hierarchy” on the left, the Game- and the 

Scene View in the middle and the “Inspector” on the right. Console and File Manager 

share the bottom tab. The hierarchy shows all Game Objects of the scene. These objects 

are visible in the scene view which is used for positioning of all objects relative to each 

other. The difference between scene view and game view is that the scene view is shown 

in the third person, while the game view shows the first-person view, which represents 

the actual game on the device the project is made for. In case of the work in this thesis, 

entering the play mode will start streaming the view of the person wearing the VR-

Headset into the game view window. This mode allows developing and manipulating 

the application in real time without the need for compilation or deploying it on the VR-

Headset in advance. In the development process this is a time saving feature. 

Having access to a large library of predefined objects, so called “Prefabs”, Unity 

makes creating content also faster with its integrated “Asset Store” where all kinds of 

extension packages and prefabs can be found. Besides importing assets directly from 

the store into the project, it is also possible to download content manually from various 

resources. Packages could not only contain complete prefabs, but also components like 

material properties, meshes or additional plugins.  

Every component of a Game Object is the visualization of a script that is running 

in the background. These scripts have access to all kinds of libraries within Unity, so 

they can use many features that affect the Game Object itself or other referenced objects. 

As an example, the position of an object can be accessed and modified with the 
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expression gameObject.transform.position. Thus, it is possible to adapt the code 

of existing scripts to the requirements of the respective project. In addition, self-written 

scripts facilitate a wide range of functionalities to achieve the desired behavior of the 

Game Object.  

3.2. ROS 

“The Robot Operating System (ROS) is a flexible framework for writing robot soft-

ware. It is a collection of tools, libraries, and conventions that aim to simplify the task 

of creating complex and robust robot behavior across a wide variety of robotic plat-

forms.” [17]. The Open-Source Software can communicate with almost every kind of 

actuator or sensor on robots thanks to a wide library of general purpose and specific 

software drivers. Towards that communication, ROS provides commands and GUIs to 

make working with robots easier and clear. At the same time ROS can operate 100% 

without a GUI [18]. Although it only runs natively on Unix-based platforms such as 

Ubuntu or Mac OS X, the programming languages C++, Python and Lisp are supported. 

Using an anonymous Peer-To-Peer connection system, ROS communication is coordi-

nated from one software program called “Master”. Smaller programs called “Nodes” 

register with the Master as publishers and/or subscribers of a certain “Topic”. The nodes 

summarize certain functions and provide sensor data or control the robot drives, for 

example. This publisher and subscriber concept enables nodes to communicate directly 

with each other via “Messages“. Topics bundle messages with the same information 

e.g., position data of one object. Before a node publishes a message to a topic, the master 

has informed the publisher which nodes have subscribed to that topic, so that the 
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publisher can send the message to all the subscribing nodes. The system can be summa-

rized as in Figure 3. 

 

Figure 3: Communication in ROS. Message transfer over topics on the bottom, Node 
subscription system in the top part of the figure [19] 

3.3. GAZEBO 

The 3D multi-robot simulator Gazebo is an essential tool in this Thesis. Its powerful 

physics engine paired with a GUI and multiple available plugins allows fast and realistic 

testing of robot software as well as designing robots and surrounding environments. 

Gazebo supports most robots and can emulate their specific sensors generating camera 

images, contact sensor data or laser range finder data for example [20]. Advanced 3D 

graphics enhance realistic rendering of all textures and shadows to make the simulation 

as close as possible to a real setup. Like ROS, Gazebo is a free, open-source software. 

Its vibrant community supports Gazebo users in solving occurring problems rapidly.  

The GUI of Gazebo (Figure 7) mostly consists of the 3D-Scene window that allows 

moving the camera in space to observe the robot and its environment. On the left side 

there are three tabs from which the “World” tab is the most important one. It contains a 
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list of all objects (called “Models”) in the simulation. When selecting a model from the 

list, properties and their values will be displayed. For example, the position of a model 

is displayed, or its structure, including the dependent links and the respective properties. 

Using these tools, it is easy to gather information about the status of the model, recent 

parameter settings or the model’s structure to determine possible error sources during 

the simulation. Below the 3D-scene window there is a bar which includes a play/pause 

button for the simulation, data about the simulation performance and the current time. 

Some quick tools to manipulate the simulation are available above the 3D-scene win-

dow. 

Gazebo simulations can be used without displaying the GUI (headless mode) if 

there is not enough performance on the computer. As part of the ROS ecosystem, Ga-

zebo offers a lot of command line tools to have a quick access on parameter settings and 

direct outputs. Gazebo and the simulated scene can be launched from one file together 

with the ROS master and all dependent packages. The simulator uses a Simulation De-

scription Format (SDF) to describe objects and environments that is simple, to make 

modifications and creating new objects easy.  

 

3.4. OCULUS QUEST 2 

The Oculus Quest 2 (OQ2) is the fifth Virtual Reality Headset from the company 

Oculus. It is designed as an all-in-one device, which means that it can be used together 

with an external PC but also has a full gaming experience without any external device. 

Oculus Mobile, the Operating System that runs the Quest 2, is based on Android 10 and 

draws its applications from the Oculus Store. It also allows installation from foreign 
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sources through the USB 3 cable for example from Unity in the developer mode of the 

OS. Connected to a PC via Oculus Link, games can be played on the PC’s hardware 

while the video is streamed to the VR headset. 

 

Figure 4: Oculus Quest 2 and left controller 

For controlling the OQ2, some applications require controllers (Figure 4) for each 

hand to be used. In all other apps, as well as the main menu, direct hand tracking without 

additional devices makes navigating and scrolling easy and intuitive with the use of 

gestures. No preliminary calibration or setup is necessary to use hand tracking. The four 

cameras of the OQ2 capture hands and environment precisely (Figure 5). The safety 

system called “Guardian” of the headset asks the user to either define a room scale play-

safe-zone without any objects in the way or to stay in a smaller stationary boundary. 

Once the user approaches the boundary with his hands or head, a net gets visible to show 

the limit of the safe space to avoid hitting surrounding objects. Another safety feature 
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is the see-through mode, where the headset casts video of the real environment instead 

of the VR world. 

 

Figure 5: Oculus Quest 2 hand tracking with 4 fish-eye cameras [21] 

The LCD type display of the Quest 2 has a resolution of 1832x1920 pixels per eye, 

a refresh rate of 90 hz and 90-degrees field-of-view [22]. Stereo microphones, stereo 

speaker inside the head strap as well as 3-Dimensional sound with the use of the head-

phone jack give a surrounding sound and allow good communication options within 

most applications. These specifications allow a high level of immersive experience for 

the user so that this device facilitates the goal of simulating as realistic as possible.  

3.5. SYSTEM ARCHITECTURE 

The architecture of the developed system can be separated into two parts. On the 

one hand there is a Windows operated computer, on the other hand a Linux system was 

used. The following paragraph will give a brief overview of the complete system to 
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understand detailed descriptions of the windows system and the Linux system after-

wards. 

Running on the Linux machine, ROS is capable to execute the previously described 

robot simulation and visualization software Gazebo. On the Windows side we can create 

another 3D-Simulation in Unity. The two simulations will be connected to take ad-

vantages of their capabilities: the faithful dynamic simulation from Gazebo and the VR-

enabled visualization capabilities of Unity. In Gazebo, the UAV can be controlled and 

simulated while data containing position and orientation is published frequently. These 

data will be sent to the Windows computer using a RosBridge WebSocket. The Unity 

simulation also contains an UAV whose position and orientation follows those of the 

UAV in Gazebo through the published data. This setup is necessary to integrate a virtual 

reality headset because VR is not yet supported on Linux. The VR-Headset is connected 

to Unity via an USB link. 3D-Video for the VR-Headset will be rendered in Unity and 

broadcasted to the headset, while the headset is tracking its motion as well as the user’s 

hands. This information from the headset is passed back into Unity. To enable interac-

tion with the UAV, Unity publishes the position and orientation of the hands to ROS, 

so that Gazebo can replicate the hands in its simulation. The controller of the UAV 

evaluates contact forces between the hands and the UAV and induces movement com-

mands to the UAV.  
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Figure 6: System Architecture. Blue arrows show path of the position of the hands, red 
arrows show the return path of the position of the UAV through the system components 

The interface in ROS to connect to a non-ROS software is provided by a package 

called “rosbridge_suite”. The matching plugin for the Unity Editor to read the ROS data 

is provided by a project called “ROS#”. The final platform architecture is shown in 

Figure 6. 

For the Linux machine, external computers, virtual machines, and the Windows 

Subsystem for Linux (WSL) were tested with the simulation software. The fast work-

flow, good access to files and most important the outstanding efficiency in hardware 

consumption resulted in the use of the WSL. Since it can be treated as a windows pro-

gram, clipboard sharing, and window handling allow fast and easy console commanding 

in Linux. 
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3.6. UNITY-RELATED COMPONENTS 

ROS# 

“ROS# is a set of open source software libraries and tools in C# for communicating 

with ROS from .NET applications, in particular Unity.” [23]. Developed by engineers 

and programmers from Siemens, the package enables communication between ROS-

run robots and Windows applications. It provides tools to import the robot’s URDF 

model from ROS into Unity, to visualize the robot’s state and sensor data in Unity, to 

simulate the robot in Unity without ROS, to control the robot via Unity and to train 

neural networks [24]. The communication system between Unity and ROS is based on 

a WebSocket. This WebSocket is launched on ROS from a package called 

RosBridgeClient. In Unity, a script called RosConnector connects to the IP address of 

the WebSocket and manages all subscriber or publisher components of the same Game 

Object. Therefore, every Game Object with communication to ROS needs one RosCon-

nector client. Once the connection to the ROS WebSocket is established, publishing or 

subscribing scripts can send or receive messages of specified topics. Depending on the 

ROS message type, 20 available scripts from the ROS# package can be used. For ex-

ample, components to publish or receive images, velocities, positions. Implementing 

new message types in Unity requires definition in the MessageTypes namespace. Sub-

sequently, components can access the new message type to parse the information into 

or from the ROS type and publish or subscribe to the specific topic, depending on 

whether it is a publishing or subscribing script. Besides communication scripts that con-

nect to topics, ROS# also comes with tools to visualize laser scan arrays or to write 

motor commands in Unity. 
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In case of this work, the message types gazebo/model_state and ga-

zebo/model_states were not provided by the ROS#. Instead, they were imported from a 

ROS package. ROS# therefore comes with a tool that automatically generates message 

types in Unity from a ROS source. In this case the Gazebo 7 package was used to gen-

erate 9 scripts that enable using these message types in other scripts inside Unity.  

Oculus VR components 

In addition to section 3.1 Unity, the following paragraph will give an overview over 

what is needed to connect the Oculus Quest 2 to a Unity simulation.  

Oculus provides a broad toolkit for Unity in the Asset Store called “Oculus Inte-

gration” that is available for free [25]. It contains scripts for rendering video streams via 

Oculus Link, social interaction with other players, audio management, avatar visualiza-

tion and more. Most important for this project are the Prefabs (predefined Game Ob-

jects) that contain different models of the hands. The prefabs were adapted to perform 

as desired. Features are activation of hand tracking, rescaling of the virtual hands with 

the size of the user’s hand, and setting their appearance in the virtual world. Also cap-

sules for every bone of the hand were added to the simulation with this prefab to ensure 

calculation of the physics when interacting with other physical objects. Besides the 

hands, the Oculus Integration Package was used for creating the camera system in Unity 

that is needed for the VR-Headset to operate. This “Oculus VR Player Controller” con-

tains a rig of cameras for each eye to be displayed on the Headset device. Features as 

clipping, which tells the software when to stop rendering images if they are too close to 

the head, are included in this essential prefab. In general, every component that is related 
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to the Oculus system such as the hands, controllers or cameras is centralized under this 

Game Object. 

Another important tool that is needed for Oculus VR development is the Oculus 

XR Plugin that can be installed through the package manager of Unity. While the Oculus 

Integration Asset described before is used for the practical creation of the VR scene, the 

XR Plugin is more a backend tool inside the Unity engine. It handles input of the headset 

on the one hand and outputs stereo video rendering to the device on the other hand. 

Building the actual application from Unity to an android executable file and installing 

it on the device in one instance is also a key functionality. 

To use all these features, which require the hardware of the headset, the Oculus 

Link cable connection is necessary. Additional to running Unity, Oculus Link works 

with a Windows App provided by Oculus. This software accesses the PCs hardware to 

render stereo video for the headset once the link mode is activated inside the Oculus 

Quest. The headset is then powered by the PC and can be used to test the created simu-

lation in Unity. With this said, it is also possible to substitute the cable with a powerful 

Wi-Fi connection. This setup however was not tested. 

 

Special Scripts/Work 

As mentioned before, the message type gazebo/model_state was used to transfer 

positions and orientations of objects between Unity and Gazebo. To subscribe to the 

position of the UAV in Gazebo, a subscribing ROS# script was adapted to the new mes-

sage type. Thus, the messages from the topic are translated into Unity format and affect 
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any Game Object, in this case the UAV in Unity. The same way, a publisher script was 

adapted to form a Unity “Transform” into a continuously published ROS message. 

One special work-around was needed to access the position of the hands in Unity. 

The hand controlling script uses controller for the Oculus Quest as default input method. 

In the case that only hands were found instead of controllers, the Unity prefab switches 

to hand tracking and to the hand input method. Hands are therefore not instantiated at 

the beginning of each simulation, such that there is no matching Game Object for pub-

lication, what would cause errors. The solution is a system of dummy Game Objects 

that only are used to transport the position of the hands and fingertips once they are 

recognized. The objects therefore have components that search continuously for the 

name of the real hand objects inside the hierarchy, that are instantiated later, to adopt 

their positions and orientations. Then, the positions of those dummy objects are pub-

lished to ROS. Since the fully articulated hands consist of multiple bones, only the tip 

of each finger and the wrist of each hand is transferred to ROS to minimize the flow of 

data over the WebSocket. 

To achieve the most immersive experience in this application, another Asset from 

the Unity Store was used to import a realistic model of an UAV [26]. The 3D model has 

spinning propellers and its geometry is close to the UAV model in Gazebo. To match 

collisions and visual model within both simulations, the Unity model was resized man-

ually. Moreover, surround sound effects of a flying drone were added to the Unity model 

to make it more realistic. 
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3.7. GAZEBO-RELATED COMPONENTS 

ROS#/WebSocket 

The WebSocket is part of the rosbridge_suite [27]. It must be launched within the 

rosbridge_server package to set up the IP-address for non-ROS communication ser-

vices. This address changes when the network of the computer changes, so it must be 

updated inside the Unity scripts in this case. Once the WebSocket is running, it connects 

to the ROS master and displays every client in the console that connects from outside 

ROS to any published topic.  

QLAB 

The Gazebo simulation essentially uses the QLAB (Quadrotor LAnding Bench-

marking) package. This collection of files provides a “simulated environment for devel-

oping and testing landing algorithms for unmanned aerial vehicles” [28]. Based on the 

simulator of the Technical University of Munich, only the UAV with its visualization 

and controllers were utilized in this work. The running package provides data of multi-

ple sensors on the UAV which is used in the controller files to coordinate the movements 

of the UAV. Moreover, the controller creates a realistic behavior of the UAV including 

disturbances as wind. 

In order to implement interaction with external objects, especially fingertips in this 

setup, a force-torque sensor was added to the UAV Gazebo model. This sensor is con-

nected to a non-visible collision frame around the model, so that contacts with other 

objects can be detected. To represent the hands in this setup, small spheres for each 

fingertip and large spheres for each wrist were added to the scene. As already men-

tioned, they are linked to the position of the hands inside Unity and to the real hands’ 
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movement respectively. When the spheres touch the collision frame of the UAV, the 

sensor calculates forces in every direction. This force vector is passed to the controller 

of the UAV to react to this intentional disturbance. The data is also published to a 

/ft_sensor topic. Instead of a behavior that tries to hold its position, in this case the UAV 

will take these forces as a command for controlled movement in the direction in which 

the force was applied. The factor of the applied movement was reduced so that the UAV 

will stay in a reachable distance inside the simulated space of the VR-Headset. 

 

Figure 7: UAV and Hands with Fingertips(smaller blue spheres) and Wrists (big red 
and green spheres) simulated in Gazebo 
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3.8. SIMULATION SETUP 

To validate the systems functionality and to benchmark its performance, data were 

gathered during the simulations. Aiming for the delay between the components, coordi-

nates with timestamps were recorded on each system to compare their individual move-

ment. ROS therefore provides a feature called Rosbag. During simulations, ROS stores 

the message data from either all or previously specified topics into a .bag file. This bag 

can be re-played to display all messages to the topics, or it can be exported into other 

file types for example a .txt file. In this case, relevant data were recorded from the 

/set_model_state, /model_states and /ft_sensor topics. Recalling that /set_model_state 

was used for passing coordinates from the hands from Unity to Gazebo, that 

/model_states was used to transmit the UAVs position from Gazebo back to Unity and 

that /ft_sensor tracks the input into the UAV controller (Figure 6: System Architecture).  

Data from Unity were generated inside the debug console. Therefore, output mes-

sages for the console were added in the scripts that contain the positioning data. The 

console output in Unity is stored into a .log file by default and can be accessed easily. 

Subsequently filtering these data was necessary to create another file that only contains 

the data required. Another aspect to make all data comparable was to use the Unix Time 

format in Unity. Since all outputs from ROS use this timestamp format, it also was 

implemented in the Unity output. 

The first analysis showed a linear increasing delay between the published data from 

Gazebo and the movement data inside Unity. Taking into account that the Gazebo sim-

ulation is running with a real time factor of around 0.99 and that the published data 

timestamp is coupled to the simulated time and not the real time, the Gazebo timestamp 
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has to be corrected for the analysis. Subsequently, a ROS node was created to publish a 

new topic containing the real time together with the simulated time. Knowing these 

timestamps, it is possible to calculate the overall delay of the simulation and to correct 

all Gazebo timestamps in the recorded data. 

For the simulation setup, a powerful gaming laptop was provided. Equipped with 

the 6 cores CPU Intel i7-9750H and NVIDIA’s GeForce RTX2060 (Mobile) coming 

with 6GB VRAM,16GB RAM and 2TB SSD, running Virtual Reality applications sim-

ultaneously to the ROS environment with Gazebo, the speed of each software is at a 

sufficient level. Thus, the hardware limits did not generate a bottleneck for the simula-

tions. 

To calculate the total delay between touching the UAV in the VR Headset and see-

ing the resulting movement in VR, three steps were necessary. Starting with the process 

from Unity to Gazebo, positional data from the hands could not be compared directly. 

Since update frequencies of every system component are different, for each time entry 

of the sender the matching data on the receiver side was searched. Hence the dedicated 

timestamps on the Gazebo side could be corrected by means of the published real time 

topic mentioned before. The second step is to then search for the same positional data 

on both resources and compare their timestamps to evaluate potential delays. Moreover, 

the positional data of the UAV gains some delays on its way back from Gazebo to Unity. 

This lag can be computed as described above – first correct the Gazebo timestamps, 

then search for the same positions and subtract both times. In this way, data from X, Y 

and Z axis were recorded and analyzed in order to obtain information on the overall 

system delay during the course of the simulation. 
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In addition to the delay, another parameter was evaluated to measure the perfor-

mance of the system. Since interaction with the UAV is based on contact between hands 

and UAV, forces are computed to control the UAVs movement. Therefore, the forces 

in X, Y and Z direction were traced and as well as all Gazebo data corrected with cor-

responding factors.  
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4. RESULTS 

In the following chapter, the results of the simulations will be presented and dis-

cussed. The setup for the simulations was described in the section 3.8 Simulation Setup. 

Summarizing the previous work, an application for the Oculus Quest 2 was developed 

that is operated by a computer through the game engine Unity. Furthermore, this appli-

cation connects to a Gazebo simulation in real time by the use of a WebSocket. The 

system simulates an UAV that allows interaction through the users’ hands while wear-

ing the VR Headset.  

4.1. FUNCTIONALITY DESCRIPTION 

Describing the functionalities of the developed platform, the following was 

achieved: 

Behavior of the UAV 

The UAV is controlled by a PID control script that imitates the movement behavior 

of real UAVs. Since the thrust of propellers is uniaxial and desired trajectories mostly 

are not, a more complex movement that is based on the orientation of the UAV is re-

quired. In this case, that includes either a change of angle in roll or pitch axis to perform 

a directed movement in X or Y axis in a cartesian coordinate system respectively. This 

implemented behavior feels most natural for user in the VR experience, because it is the 

expected movement. 

Interaction 

As already mentioned in the beginning of this thesis, interaction through the hands 

is the most intuitive way to impact on objects as UAVs. Therefore, the implemented 

UAV model allows interaction via touch. Hands can be directly used inside the VR 
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application to impact the simulated model. The setup that was implemented to model 

the hands throughout all software systems is designed for collision with other objects. 

Subsequently, pushing is the only method to influence the UAV in this system, since 

the collision frame of the models does not allow pulling or grabbing. The pushing pro-

cess can be reviewed in the following Figure 8 and Figure 9. 

 

Figure 8: Pushing Reaction of the UAV; Screencast Footage from the OQ2. 1. UAV and 
right hand next to each other 2. Right hand moving towards UAV 3. Interaction takes 
place, fingertips are pushing UAV to the left 4. Hand is moving away from UAV 5. Hand 
is staying at the same position while UAV is tilting towards left 6. Tilting causes the 
UAV to move away from the Hand 
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Figure 9: Pushing Reaction of the UAV: Screencast Footage from Gazebo. 1. UAV and 
hands next to each other, hand consist of one big sphere for the wrist and five smaller 
blue spheres for the fingertips 2. Right hand moving towards UAV 3. Interaction takes 
place, fingertips are pushing UAV to the left 4. Hand is moving away from UAV 5. Hand 
is staying at the same position while UAV is tilting towards left 6. Tilting causes the 
UAV to move away from the Hand 

Force Sensor 

Regarding the previous paragraphs, this behavior and the type of interaction were 

enabled through a force sensor on the UAV model. Detecting contact forces from the 

hands, the intended trajectory can be calculated and fulfilled in the manner explained 

above. 

VR Experience 

One key aspect of the platform is its high performance regarding the VR represen-

tation. With the aid of several tools from Unity, a real-looking and real-feeling VR en-

vironment was created to achieve the highest possible immersion. In addition, 3D sound 

emission from the UAV supports this objective, as well as other touchable 3D objects 

such as a cube or table. 
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4.2. PERFORMANCE ANALYSIS 

To evaluate the system’s performance, defined parameters were collected during 

simulations. The process is described in Simulation Setup. From these parameters, eas-

ily interpretable graphic images were generated. Recalling that data from the hands col-

lected through the VR headset is passed via Unity to Gazebo, gets processed and sent 

back to Unity, there are three different types of charts to visualize the data. The first 

type shows the delay of the WebSocket connection from Unity to Gazebo. Thereby the 

position of the hands is subject of the calculation. Moreover, this position data is plotted 

to get an overview of how well the position of each component is tracked by the other. 

For the Gazebo position, there are two potential sources to record the data from. There 

is the /set_model_state topic where Unity publishes its coordinates to, and there is the 

topic /model_states which represents the actual position of the hands in the simulation. 

From the data, the delay from /set_model_state to /model_states was estimated to 0.01s. 

However, the /model_states topic was used to obtain the delay of this entire system. The 

overall computing delay from Gazebo was also added to the first chart of each experi-

ment to show that all data was corrected so that there is no correlation to the real time 

factor of Gazebo in the presented data.  

The second diagram type on the other hand contains the calculated delay from Ga-

zebo to Unity. This time, the position of the UAV is used for calculations since the 

hands’ positions are not returned to Unity. As well as in the first chart, positional data 

from both softwares are plotted as they are the calculation source of the delay. 
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Lastly, a third chart relates the position graph of the UAV to the measured forces 

of the force torque sensor of the model. This is to validate the sensors measurements as 

well as the correct implementation into the controller file.  

For each of these three diagram types, there are three figures representing the X, Y 

and Z axis. Furthermore, every diagram only shows data from one experiment to keep 

each plot as simple as possible. Data was recorded from two simulation sessions, where 

the duration from simulation 1 was about 4.4 minutes and simulation 2 lasted about 3.5 

minutes. 

In the following, the results of the data analysis are described and plotted. Begin-

ning with simulation 1, Figure 10 of the first type shows the simulation time in seconds 

on the X axis, the delay in seconds on the left and the position of the UAV in meters on 

the right. The simulation time start is as high as 1160 seconds because Gazebo begins 

every launch with 18 minutes of simulated time. First it is clear that performing the 

Gazebo simulation with a real time factor less than 1 leads to a rising delay in the 

timestamps. Since the real time factor is an indicator of the performance of the Gazebo 

simulation, it oscillates around 0.98 which means that every computing step of the sim-

ulation time needs 2% longer than the real time. In the runtime of the simulation, the 

internal Gazebo delay reached 1.25 s, which had to be corrected only for the analysis of 

the timestamps. The total system delay is not affected from this internal Gazebo delay, 

since all messages are sent and received in real time and are not using the simulation 

time from Gazebo. Furthermore, Figure 10 shows the trajectories of the UAV in X di-

rection, one from Unity and the following in Gazebo. From this, the delay between those 

softwares is plotted. As the average of the delay in X axis is as small as 0.0353 s, both 
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trajectories mostly coincide in this graph. Mentioning the correction, it is also clear that 

the timestamp lag, depending on the computer’s performance, has no influence on the 

determined Gazebo delay.  

The same type of graph for Simulation 2 is given with Figure 11. In this setting, 

the Gazebo simulation ran with a higher real time factor which causes the timestamp 

delay to stay below 0.6 s. This indicates a better performance of Gazebo in simulation 

2 compared to simulation 1. Depending on the computer’s hardware and the type of 

operating system it is running on, Gazebo is part of a powerful setup as mentioned in 

3.8 Simulation Setup. In comparison to virtual machines or standard office computers, 

Gazebo takes advantage of the gaming laptop that was available and the Windows 

Subsystem for Linux that was used for these simulations. The performance difference 

could be caused by temporary overheating, other unclosed programs on the computer 

or randomly emerging reasons. Besides the Gazebo performance, the total delay 

between Unity and Gazebo also shrinked to an average of 0.0172 s in X direction in 

simulation 2.  
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Figure 10: Gazebo Delay Simulation 1 X Axis 

 

Figure 11: Gazebo Delay Simulation 2 X Axis 

After processing the hands’ position in Gazebo, interaction with the UAV is possi-

ble. The resultant trajectory of the UAV is sent back to Unity and is plotted in the fol-

lowing diagrams in addition to the delay of this process. The axes for the following 
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figures remain the same as in the first diagram type however, the delay scale was set 

logarithmic for simulation 1 to make small values in the beginning more visible. During 

these first 120 seconds, the delay stays at a low average of 0.161 s, whereas the overall 

average is 3.364 s. This lag is strongly noticeable when interacting with the UAV in the 

VR world and can be easily identified in Figure 12. Possible reasons for this increasing 

delay could be a queue of messages that are held back by the WebSocket connection 

and are cutting off the queue at some points when the delay decreases for a short period 

of time. 

 

 

Figure 12: Unity Delay Simulation 1 Y Axis 

Evaluating simulation 2, conclusions can be drawn that the first 100 seconds again 

have a good performance with a minimal delay of 0.0854 s. After that, Figure 13 illus-
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for that could be found in windows background services, an unsteady network connec-

tion inside the network driver or throttling down of the CPU after heating up. However, 

as compared in Figure 14, on a different level of values since the highest increase in 

simulation 2 is only 0.62 s, whereas it is around 2.5 s in simulation 1. A conclusion that 

Figure 14 implies is that both simulations have the same order of magnitude in the delay 

during the first 120 seconds. The curves in the second part of each simulation differ, but 

the first section suggests consistently good performance at the start of each simulation. 

It has to be mentioned that the Y axis was selected to conclude these results because the 

plot of the delay was the cleanest of all three axes. Since that is the case for all diagrams 

the text only shows a selection of the recorded data, it also has to be referenced that all 

other figures can be found in the Appendix. Figure 15 therefore shows the relation be-

tween the delay curve of each axis in the same simulation. That being said, all three data 

sets have an almost similar distribution of points that form one single curve, although 

they have unique patterns around it. Especially the calculated delay in Z axis has almost 

vertically growing peaks at some points. One reason for that could be the different tra-

jectory profile in Z axis which characteristic it is to stay at the same height for a longer 

time. These same positions can cause the delay calculation algorithm to output those 

peaks as a noise, even without being the messages actually delayed. 
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Figure 13: Unity Delay Simulation 2 Y Axis 

 

Figure 14: Unity delay comparison between Simulation 1 and 2 for Y Axis positions 
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Figure 15: Unity delay comparison between X, Y and Z Axis Simulation 1. It shows the 
increasing delay after around 120 seconds. 

Summarizing the results of the two simulations, the performance can vary with each 

simulation session. Hence, the delay in the first two minutes period is acceptable for the 

purpose of the application, which is a sufficiently fast response of the UAV to the con-

tacts that are made within the Human-UAV-Interaction. The total delay of the platform 

therefore can be added to 3.4017 s in the first and 0.7732 s in the second simulation. 

Table 1 gives a short summary of all measured delays in the specific section of the 

system. 
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Table 1: Summary of Delays in Simulation 1 and 2 

Measured Direction Simulation 1 Simulation 2 

 
Average Unity to Gazebo 0.0377 s 0.0172 s 

→ Average Gazebo to Unity 3.364 s 0.756 s 

→ Average Gazebo to Unity 

in first 120 seconds 

0.161 s 0.0854 s 

 → Total System Delay in 

first 120 seconds 

0.1987 s 0.1026 s 

 → Total System Delay 3.4017 s 0.7732 s 

 

Finishing the results regarding the delay parameter, the third diagram type will be 

discussed in the following. Another performance index of the simulation in this thesis 

is the relationship between the forces measured by the force sensor on the UAV and the 

trajectory that was ultimately performed. Therefore, the following diagrams show the 

position of the selected axis in meters on the left, the force indicated in newton on the 

right and the simulation time in seconds again on the horizontal axis at the bottom. The 

expected behavior is that each change in position follows to a force peak and the ampli-

tude of movement is proportional to the applied force.  

The data of the first simulation shows that most of the executed movements are 

induced by a preceding force. However, the amplitude of the force in Figure 16 for 

example at time 1165 s stands in the very contrast to the performed motion in the posi-

tive X direction since the force is negligibly small but the motion is not. Generally 

speaking, the measured forces of the sensor are not the only cause of positional changes 

of the UAV.  



 

39 

 

 

Figure 16: Force Trajectory Relation Simulation 1 X Axis 

That phenomenon can be reasoned by taking other forces of the same sensor into 

account. Besides pushing the UAV along the desired direction, a movement can also be 

enforced through lifting or lowering the rim of the UAV so that its thrust is directed 

outwards the current position. It will then also hover into this direction without seeing 

the force into this specific axis. Instead, there is a force that was applied in the Z axis. 

This maneuver is illustrated in Figure 17. With this said, Figure 18 in addition shows 

the forces in Z axis to see the described process. On the other side, motion in Z direction 

cannot be influenced by some disturbance comparable to the just described one. In the 

Z axis diagrams of both simulations (Figure 19 and Figure 20), the direct response of 

the controller to the applied forces is visible. 
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Figure 17: From force sensor unrecognized UAV manipulation. 1. Fingertips apply 
force in z-direction at a point on the UAV that is not the center 2. UAV tilts away from 
the hands 3. Thrust is directed not only in z-direction to the ground but also in the 
direction of the hands so that the UAV will move away from the hand 4. Velocity 
controller stabilizes UAV in new position 

 

Figure 18: Force Trajectory Relation, Simulation 2 X Axis 
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Figure 19: Force Trajectory Relation, Simulation 1 Z Axis 

 

 

Figure 20: Force Trajectory Relation Simulation 2 Z Axis 
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components should be set to the highest possible level to achieve the best resolution at 

a sufficient performance for the VR experience. Especially the first time of each simu-

lation and the performance increase between the first and the second simulation seem 

to offer further improvements. At the same time this improvement was not caused by 

any intended changes on the system so that it can be concluded that a repeatable perfor-

mance is not given. This topic amongst others will be discussed in the next chapter. 
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5. DISCUSSION AND FUTURE WORK 

In conclusion, this thesis showed the development process of a VR platform for 

interaction with Unmanned Aerial Vehicles, conducted two simulations to test the per-

formance of the system and analyzed the recorded data. Besides the positive findings 

from the results, there are some limitations that will be presented in the following chap-

ter as well as an outlook for further works. 

The main limitation is the lack of intuitive interaction methods within the VR sim-

ulation. Since the hands are tracked and visualized in the OQ2 with great detail and 

accuracy, naturally the user tries to grab or pull the UAV towards himself at some time. 

This is not possible in this system architecture, because the model of the hands in Ga-

zebo which controls the UAV is only based on collisions and does not allow grabbing 

into the model or accept other gesture input. Although the hands are fully articulated 

and tracked inside Unity, only the position of the fingertips and the wrists is used for 

the interaction and force sensing unit on the UAV, so that the possible accuracy in col-

lision detection is not fully used.  

As already discussed in the results chapter, the delay between Gazebo and Unity is 

sufficient but still has room for improvement. The WebSocket seem to be an important 

factor when it comes to latency generation, so that there may be some possible param-

eters on this connection to minimize the delay. Another option that must be taken into 

account at this point is the recently launched Unity Robotics Hub. This collection of 

tools is published from Unity and therefore directly is integrated into the game engine 

[29]. Furthermore, the biggest advantage of the Unity solution over ROS# could be the 
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faster connection with a faster serialization type for the ROS messages. Switching this 

platform over to the Unity solution can be subject to further investigation. 

Another apparent limitation of the platform is the lack of research applications. 

Thinking of investigating the Human-UAV-Interaction, experimental scenarios have to 

be developed in which humans are supposed to complete some tasks involving the UAV 

and to record data from it for further evaluation. Those scenarios are not yet developed 

nor implemented in the software. This is an issue for future research to explore.  

Although widely common in VR headsets, the required cable connection limits the 

range of motion and subsequently the form of interaction. While wearing the headset, 

user will have to pay attention to the cable what restricts the grade of immersion. A 

solution already is available with the possibility to run the application on the OQ2 itself 

without the cable connection but a Wi-Fi connection to the ROS simulation instead. 

This setup, however, performs in an unsteady and lagging manner that no single test 

was able to achieve the wanted behavior of the UAV. Future studies could investigate 

the bottleneck causing this issue. 

Future work also could include the idea of haptic feedback while interacting with 

the virtual world. A collaborative robot arm in the real environment can move accord-

ingly to the position of the UAV in the simulation so that it will be possible to touch the 

UAV with the haptic feeling of touching a real object. A robot arm may be added to the 

ROS simulation, that will follow the position of the UAV relative to the person’s posi-

tion. At a later stadium of this attempt, a real robotic arm could be connected to the 

setup to perform experiments. In the Intelligent Control and Robotics Laboratory at the 

University of Rhode Island, the collaborative robot arm Sawyer from Rethink Robotics 
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is available. Regarding Human-Robot-Interaction, safety aspects must be considered 

when working with real robotic arms. A feature that ensures an additional level of safety 

and opens new possible interaction modes is multi-camera-based body tracking. The 

OQ2 already tracks head and hand movements, whereas such camera system is able to 

track the whole body. With full body tracking not only the range of interaction methods 

is extended but also the human behavior during experiments can be examined more in 

depth with this additional information. This work thus offers many approaches for fur-

ther research projects on Virtual Reality and Human-UAV Interaction. 
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7. APPENDIX 

The two simulations accumulated a big amount of data. Since not all figures of the 

simulations were required to point out the results, they can be reviewed here for further 

interest. Each simulation generated three diagrams for the X,Y and Z axis for each of 

the three type of diagrams described in the Results chapter. 

 

Figure 21: Gazebo Delay Simulation 1 Y Axis 
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Figure 22:Gazebo Delay Simulation 1 Z Axis 

 

Figure 23: Unity Delay Simulation 1 X Axis 
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Figure 24: Unity Delay Simulation 1 Z Axis 

 

Figure 25: Force Trajectory Relation Simulation 1 Y Axis 
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Figure 26: Gazebo Delay Simulation 2 Y Axis 

 

Figure 27: Gazebo Delay Simulation 2 Z Axis 
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Figure 28: Unity Delay Simulation 2 X Axis 

 

Figure 29: Unity Delay Simulation 2 Z Axis 
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Figure 30: Force Trajectory Relation Simulation 2 Y Axis 
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