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APPROVED:

Thesis Committee:

Major Professor David G. Taggart

Helio Matos

George Tsiatas

Brenton DeBoef

DEAN OF THE GRADUATE SCHOOL

UNIVERSITY OF RHODE ISLAND

2021



ABSTRACT

A rising demand for lightweight structures and the advance of additive man-

ufacturing led to an increased importance of topology optimization tools and re-

search. One developed scheme is the “Prescribed Material Redistribution” (PMR)

method, which heuristically solves minimum compliance problems under a single

volume constraint. This method has not yet been fully evaluated and benchmarked.

In this research, the current standalone PMR code is enhanced by using the

commercial finite element software Abaqus to improve performance as well as ease

of use. The novel code is then validated for 2D and 3D cases. Subsequently, a

benchmark is conducted to compare the PMR approach with the “Solid Isotropic

Material with Penalization” (SIMP) and “Rational Approximation of Material

Properties” (RAMP) formulations commercially implemented in Simulia’s Tosca

Structure. The benchmark framework and 6 sample cases are defined based on

a literature review. The schemes’ efficiency and solution quality are investigated

quantitatively and visually-qualitatively in a parametric study on 306 test cases.

The analysis includes checkerboarding, mesh distortion, mesh density, and different

element formulations.

Hypotheses on the effects of individual parameters are checked, and reasonable

settings for the methods are derived from the findings. The benchmark findings

indicate that the novel PMR code is less efficient than the commercial SIMP and

RAMP implementations and the initial academic PMR version. The ease of use

and the functionality is, however, significantly enhanced. The PMR and the SIMP

method generated visually better results than the RAMP scheme. Based on these

findings, the commercial viability of the PMR method is discussed in reference to

recent topology optimization literature.
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CHAPTER 1

Introduction

This chapter illustrates the motivation for this study and subsequently defines

the research goals and questions. Furthermore, the methodological approach that

is used to answer these questions is explained.

1.1 Motivation

Saving weight has almost always been an important objective of the mechani-

cal design process. Global warming and increased requirements on the performance

of mechanical structures, however, have recently boosted the demands for extreme

light weight structures. Light weight machines are often more fuel-efficient or have

a greater power to weight ratio and, thus, comply with these new needs. Weight

can either be saved by using new advanced materials or by optimizing the design.

This design variation can be an optimization in shape, size, or topology.

Topology optimization (TO) has recently become more relevant due to the

popularity and the improvements of additive manufacturing techniques [5]. Ad-

ditive manufacturing provides the ability to produce the often complex structures

generated by the TO schemes [6]. Hence, the fast growing additive manufacturing

field makes topology optimization more practically applicable [7]. The relevance

of topology optimization research is reflected in the number of recent publications,

e.g., on TO with neural networks in 2021 [8] or on TO of composite materials in

2018 [9].

Novel topology optimization methods have been developed as the general

trend advanced. Each of these methods has advantages and disadvantages that

are continuously addressed and overcome by further improvements to the existing

schemes or the development of new TO approaches. Taggart, Dewhurst, Dobrot,
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and Gill [3] developed the Prescribed Material Redistribution (PMR) method for

minimum compliance problems under a single volume constraint in 2008. Un-

like some dedicated and more general mathematical optimization approaches, the

PMR code solves these problems with a rather heuristic approach by imposing

beta function-like density distributions to each design cycle.

The most recent, academic version of the PMR code is a standalone code that

integrates the finite element analysis into the TO process. The advantages and dis-

advantages of the PMR algorithm have never been fully evaluated. It is, however,

perceived that the standalone implementation is slow and non-intuitive. As a re-

sult, this study aims to increase the performance and the ease of use of the scheme.

Since commercial TO optimization software has focused on certain methods [10],

different approaches need to be compared to the existing standards. Hence, a

benchmark with academic and commercial software is conducted to evaluate the

potential commercial viability of the enhanced PMR scheme.

1.2 Goals of the Research

There are two major goals of this research. The first goal is to translate the

current MATLAB version of the Prescribed Material Redistribution (PMR) al-

gorithm into the programming language Python and enhance it. The MATLAB

algorithm lacks performance as well ease of use, particularly in the model creation,

the process of solving the finite element equations, and the post-processing. A po-

tential optimization of these drawbacks is achieved by using Python in combination

with the commercial finite element software Abaqus.

The second goal of this research is to benchmark the PMR method, both

quantitatively and qualitatively. Thus, the heuristic PMR approach is compared

to available commercial software based on the well-investigated topology optimiza-

tion schemes SIMP and RAMP. By interpreting the benchmark results, the goal

2



of this comparison is to answer the following questions. What influence has the

variation of model parameters on the results of the different optimization schemes?

What are the advantages and disadvantages of the PMR method and the enhanced

implementation in reference to older code versions and the other two methods?

What are the implications of the benchmark results on future research and poten-

tial commercial implementation of the PMR approach?

Figure 1: Flowchart of the Structure and the Methodological Approach

1.3 Methodology

The methodological approach of the research is divided into 5 steps. First,

the MATLAB version of the PMR algorithm is translated into Python. Second,

3



Abaqus is then integrated into this code through the Abaqus Python interface and

is utilized for a potential increase in performance and ease of use. Third, bench-

mark criteria and benchmark sample cases are derived from the literature and the

particular benchmark settings for this research are defined. Fourth, the bench-

mark data is collected and evaluated based on the settings previously specified.

Finally, the benchmark results are interpreted and discussed to answer the posted

research questions. The structure of this thesis and the methodological approach

is illustrated in Figure 1.

4



CHAPTER 2

Literature Review and Theoretical Foundations

The theoretical background of this research is explained in this chapter. First,

both the basic principles of finite element analysis and topology optimization (TO)

are summarized. Thereafter, selected TO schemes including the Prescribed Ma-

terial Redistribution method are introduced in more detail. Finally, other TO

benchmark studies and cases, the availability of TO software, and recent discus-

sions within the TO research community are reviewed.

2.1 Finite Element Analysis

Finite Element Analysis (FEA) is a widespread and popular tool used in a

variety of engineering disciplines. There are numerous publications and text books

on the theory of FEA (e.g. [11, 12, 13, 14]). The comprehensive book by Bathe

[12] will be used in this section as a reference for the fundamental theory and

the corresponding equations. The reader is referred to any of these books for an

extensive introduction because only a limited number of topics relevant to TO are

discussed in this section.

The fundamental idea of finite element analysis is the approximation of a given

real world design problem by a numerical solution. The continuous design domain

is therefor split into discrete finite elements. A mathematical model describes the

assembly of these coupled elements. This approach can be used to solve various

physical problems such as fluid flow or heat transfer. In this research however, the

focus is only on structural mechanics and static analysis in particular.

The finite element in the mechanical analysis generally consist of a set of nodes

which can move in one-, two-, or three-dimensional space. The two-dimensional

finite element meshes often contain either quadrilateral or triangular elements, the

5



three-dimensional models are constructed of hexahedral or tetrahedral elements.

Figure 2 illustrates a simple rectangular 2D element. Boundary and loading con-

ditions are imposed on the mesh of elements and the resulting system of equations

is solved subsequently. The displacement of any point within the element is then

interpolated using the nodal displacement values.

1

2

3

4

r

s
x x

x x

Figure 2: 4-node 2D Isoparamteric Continuum Element with 2x2 Integration

The interpolation or shape functions are commonly either linear or quadratic

functions. In most two-dimensional analysis the quadrilateral elements have either

four or eight nodes if linear or quadratic interpolation is used, and triangular

elements have three or six nodes, respectively. There are, however, other element

formulations with different number of nodes. The following equations are the

interpolation functions for the 4-node 2D isoparametric continuum element:

h1 =
1

4
(1− r)(1 + s) (1)

h2 =
1

4
(1− r)(1− s) (2)

h3 =
1

4
(1 + r)(1 + s) (3)

h4 =
1

4
(1 + r)(1− s) (4)

The parameters r and s are the local coordinates within the isoparametric ele-

ment and their values are in the interval from -1 to 1. The equations for quadratic

6



interpolation as well as the three-dimensional versions of these functions are given

in [12]. These functions can be used to refine the analysis. Logan [11] describes two

methods of refinement, the h- and the p-method. A designer can either use more

and smaller elements in the FE mesh (h-method) or use higher-order polynomials

for the interpolation function (p-method) to get more accurate results.

Finding a solution for the mechanical finite element equations requires solving

multiple integrals. These integrals are often numerically solved utilizing Gauss

quadrature. The Gauss integration approximates the exact solution of an integral

of a function f(x) by the weighted sum of values along f :

ˆ 1

−1

f(x)dx ≈
n∑
i=1

αif(xi) (5)

The optimal sampling weights αi and the integration points xi are well-known

and can be found in tables in the literature (e.g. [11, 12]). The integration order n

is a measurement for the accuracy of the approximation. Higher order integration

is more exact. Equation 5 is valid for the one-dimensional case. However, the

formula can be extended to two- or three-dimensional problems. Thus, for a two-

dimensional element for example a 1x1, 2x2, 3x3, or higher Gauss integration

could be used. Bathe [12] defines the term full integration as “the order that gives

the exact matrices” and reduced integration as a lower order integration. For a

linear four node quadrilateral element the full integration is of order 2x2 and for

a quadratic eight node quadrilateral element this order is 3x3. Figure 2 shows the

integration points for a 2x2 full integration marked as ’x’. The integration point

for a reduced integration would lay in the center of the four-node element.

There are many software tools available to perform FEA for research and com-

mercial purposes. The commercial tools Abaqus, ANSYS, COMSOL Multiphysics,

LS-DYNA, and Nastran are among the most popular ones. In this particular study

7



Abaqus CAE [15] was used because of the availability of the research license. It

can be assumed that a comparable study can be performed with any of these tools

if the software offers a similar coding interface. The previously mentioned element

types have specific internal names within Abaqus [16]. The four-node quadrilat-

eral element in plane stress conditions is referred to as CPS4 and CPS4R (reduced

integration) and the eight-node quadrilateral element is called CPS8 and CPS8R.

The three- and six-node triangular elements are CPS3 and CPS6M.

2.2 Topology Optimization Schemes

Structural topology optimization (TO), as defined by Bulman, Sienz, and

Hinton [17], is a means used by engineers to design a first practicable, structural

topology in a reference domain for a certain given design problem. The goal of

this optimization is the systematic and iterative redistribution of material inside

the design domain. This process yields a structural topology which is defined as

being optimal in some way. This tool is particularly important for the solution

of complex problems. For easy problems, however, an experienced engineer or

designer might be able to predict such an optimal topology [5]. Figure 3 illustrates

a simple 2D design problem and an optimized solution (PMR algorithm) for a

maximum stiffness/minimum compliance problem.

The fundamentals of today’s structural topology optimization were established

in a paper by Michell in 1904 [18]. Michell derived analytical solutions for mini-

mum weight truss structure problems. Based on Michell’s work, the first topology

optimization schemes were developed. More recently, TO has experienced a rise

of popularity because these original methods have become more sophisticated and

new approaches have been developed [19]. An overview over the field’s recent

developments can be found, for example, in [19] and [20]. Simultaneously, the

capacity of TO has been extended to other engineering disciplines and advanced

8



Figure 3: The Half Michell Arch Problem and an Optimized Solution

TO methods can, for example, deal with heat transfer, acoustics, fluid flows, or

aeroelasticity problems [19]. Such problems including several physical phenomena

are referred to as multi physics [21]. In this research only static, linear elastic-

ity analysis with the objective of minimizing compliance under a single volume

constraint will be investigated.

The general form of the minimum compliance problem with a single volume

constraint can be formulated as follows:

min c = UTKU

s.t. K(ρ)U = Fˆ
Ω

ρ(x)dx = Vf

ρ(x) ∈ {0, 1}

or ρ(x) ∈ [0, 1]

(6)

The objective of this optimization model is to minimize the strain energy c,

which is calculated from the displacement vector U and the global stiffness matrix

K. The system is constrained by the load-displacement relationship “KU = F”,

the volume fraction Vf constraint, and a binary or continuous definition of the
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relative density ρ, which is the design variable. That is, material is allocated

inside the domain Ω in a way that the overall structure has a minimum compliance

or a maximum stiffness respectively. Simultaneously, the structure fills an exact

fraction Vf of the design domain’s total volume.

The optimized topologies computed by TO schemes are often very complex

structures. Some of these structures cannot be physically manufactured using

traditional processes. Additive manufacturing, however, allows for the potential

realization of structures with particularly high complexity [6]. Smaller limits for

shape and complexity in additive manufacturing make these structures manufac-

turable. As a result, additive manufacturing as a growing field brings TO closer

to application [7] and causes TO to gain more importance. However, the ini-

tially achieved solutions are not necessarily manufacturable [7] and often require

manual interpretation [5]. Thus, there is a need for implementing manufacturing

constraints, like build direction and distortion minimization, into TO software [5].

Manual changes to this initial design, like adding fillets, or further analysis are

usually necessary for any (traditional) manufacturing technology.

The wide variety of topology optimization approaches available requires cate-

gorization of the different methods. Multiple studies that categorize TO schemes

can be found in the literature. Bulman et al. [17] define three types of meth-

ods: h-methods, e-methods, and h/e-methods. Homogenization-type methods (h-

methods) assume a homogeneous (artificial) material inside the domain that is it-

eratively redistributed. Evolutionary methods (e-methods) delete and add chunks

of material (elements in a FEA) from and to the structure during the optimization

process. The h/e-methods are hybrid methods combining approaches from both

categories. Sigmund and Maute [22] differentiate between continuous methods,

discrete methods, and Lagrangian and combined shape and topology approaches.
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The discrete methods include the evolutionary schemes and the continuous meth-

ods include the density approaches, topological derivatives approaches, level set ap-

proaches, and the phase field approaches. The categorization used in this research

follows a study by Deaton and Grandhi in 2014 [19]. Deaton and Grandhi divide

the available TO schemes into 4 groups: 1) density-based methods including for

example the popular SIMP and RAMP schemes, 2) hard-kill (evolutionary) meth-

ods, 3) boundary variation methods including level set and phase field approaches,

and 4) a new biologically inspired method based on cellular division rules. Many

of these methods are FE-based, which means that one or multiple finite elements

can represent one discrete element in the topology optimization scheme [10]. In

the following sections some of the most popular scheme are introduced in more

detail.

2.2.1 Solid Isotropic Material with Penalization

The “Solid Isotropic Material with Penalization” (SIMP) method, first intro-

duced by Bendsøe in 1989 [23], is probably the most widespread scheme to solve a

topology optimization problem. It has been further investigated and named SIMP

in a paper by Rozvany, Zouh, and Birker in 1992 [24].

The basic assumption of this method is that the naturally discrete integer

optimization problem (void/dense regions) can be converted into a continuous

problem where the (relative) density ρ(x) of the structure is the design variable.

This approach allows parts of the design domain Ω to have intermediate density

values which can be interpreted as an “artificial material”. That is, instead of using

the binary density definition in eq. (6) the continuous definition is used (see also

eq. (8) (“relax the zero-one constraints” [25])). All density-based TO schemes have

this assumption in common. However, partially dense regions “cannot easily be

manufactured” [22] and often discrete designs with either dense and void regions are
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needed [21, 22]. For this reason, the SIMP scheme penalizes the material properties

(in this case Young’s modulus/stiffness tensor E) of intermediate density regions

with a power law (p � 1) to force convergence to a quasi bimodal (void/dense)

solution [23]:

Eijkl(x) = |ρ(x)|p ∗ Eijkl (7)

where

V =

ˆ
Ω

ρ(x)dx, 0 ≤ ρ(x) ≤ 1, x ∈ Ω (8)

This power law equation is specific to the SIMP formulation. The stiffness

tensor Eijkl on the right side of Equation (7) contains the actual material proper-

ties, while the local stiffness tensor Eijkl(x) for the artificial material is depending

on the intermediate density ρ. Good convergence is achieved with the penalization

parameter p = 3 [22]. The penalization equation is used to calculate K in the load-

displacement constraint in the general optimization problem (6). This problem is

then often solved with the help of FEA and the “Method of Moving Asymptotes”

(MMA), which was developed by Svanberg in 1987 [26]. Another way to penalize

intermediate densities to obtain a quasi bimodal density field is introduced in the

next section.

2.2.2 Rational Approximation of Material Properties

The “Rational Approximation of Material Properties” (RAMP) method is a

density-based method, similar to the SIMP approach introduced in the previous

section. It was proposed by Stolpe and Svanberg in 2001 as an alternative inter-

polation scheme for penalizing the intermediate densities [25]:

Eijkl(x) =
ρ(x)

1 + q(1− ρ(x))
∗ Eijkl (9)
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The RAMP formulation has a non-zero sensitivity in elements with a relative

density of zero, which is an advantage over the SIMP formulation [19]. Figure 4

compares a linear material model, a material model using the SIMP, and a material

model using the RAMP interpolation scheme. Similar figures can be found, for

example, in [19], [27] or [25]. There are more approaches with different penalization

laws in the literature. One example is the SINH method by Bruns, which is based

on hyperbolic sine functions [27].
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Figure 4: Penalization Laws for Intermediate Densities (Eijkl = 1)

2.2.3 Evolutionary Structural Optimization

The “Evolutionary Structural Optimization” (ESO) method, developed by

Xie and Steven in 1993 [28], follows a different approach than the density-based

approaches introduced before. In this scheme, elements with a low criterion value
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will be deleted from the design domain of the finite element analysis in an iterative

manner. This criterion value is, for example, the strain energy density in case of

the minimum compliance problem discussed in this research [19, 10]. The design

variable is binary and states if an element exists (dense) or is deleted (void) (see

first variable definition in eq. (6)). The bi-directional ESO (BESO) is an enhanced

method in which elements can also be added to the structure, as described in an

article by Querin, Steven, and Xie in 1998 [29].

Rozvany argues that the term “Evolutionary Structural Optimization” is inap-

propriate and suggests the term “Sequential Element Rejections and Admissions”

(SERA) [10]. Sigmund and Maute argue that BESO should be perceived as a

discrete update to the SIMP formulation (h-/e-methods) [22].

2.2.4 Level Set and Phase Field Topology Optimization

Unlike density-based and evolutionary-type methods, the fairly new level set

and the phase field schemes do not change the topology on an elemental level, but

rather vary the boundaries of the structure. The level set method was developed for

a different purpose by Osher and Sethian in 1988 [30] and later utilized for TO by

Wang, Wang and Guo in 2003 [31]. The topology of the structure in this method

is described by a scalar function Φ(x), the level set function. The structure is

represented by the positive values of Φ(x) and its boundary is defined by Φ(x) = 0.

The boundary of the structure in the phase field approach is described by the

transition region between two Phases A and B defined by a phase field function

over the design domain [19]. A more detailed description of these methods, which

are recently getting more popular, can exemplary be found in [31, 32, 19, 22].
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2.2.5 Common Problems

There are a number of problems that commonly occur with (FE-based) topol-

ogy optimization schemes. Shukla, Misra, and Kumar [33] name “checkerboard

patterns, [...] mesh dependency, [...] local minima, and [...] singular topologies

(for stress constrained problems)” as the most typical issues. Guest, Prévost, and

Belytschko [34] similarly discuss checkerboarding, non-existence of solutions, and

mesh dependency. Checkerboarding and mesh dependency are of particular inter-

est for the benchmark study in this research.

Figure 5: Checkerboarding Example

The problem of checkerboarding is a discretization issue associated with the

FEA model [10] and is named after the board game. When checkerboarding occurs,

high- and low-density regions (elements) are positioned next to each other in a

periodic order that resembles the checkerboard. These patterns are unintended,

show an overestimated stiffness, and are hardly manufacturable [34]. Figure 5

shows a SIMP result of the Half Michell Arch example problem with checkerboard

which was solved with the 88 line MATLAB code (see sections 2.5 and 5.1.3) [35].

One method of preventing checkerboarding is the use of higher order elements

[33, 36].

15



2.3 Prescribed Material Redistribution

The “Prescribed Material Redistribution” (PMR) method was developed by

Taggart, Dewhurst, Dobrot, and Gill at the University of Rhode Island in 2008 [3].

The scheme has been validated for two- and three-dimensional problems [1, 3] and

has been patented [37]. The PMR algorithm has first been implemented as a user

subroutine in the commercial FEA software Abaqus [3]. A more recent version is

solely written in MATLAB with a simple FE solver. The PMR method is currently

not available in commercial software.

The PMR scheme can be categorized as a density- and FE-based topology op-

timization scheme for compliance minimization under a single volume constraint.

Unlike the SIMP or RAMP formulations, which facilitate the solution of an op-

timization problem, the PMR scheme is a fully heuristic method that imposes a

specific density distribution for every iteration step to obtain a minimum weight

structure with maximized stiffness. This prescribed distribution is based on a

family of Beta (probability) functions [3].

Initially, a volume fraction is specified for the design domain. That is, it is

defined how much volume of this domain should be dense (the actual structure)

and how much volume should be void after the final iteration. Moreover, the

loading and boundary condition are imposed on the domain to completely define

the design problem. This can either be a 2D or a 3D problem.

The initial density distribution is unimodal partially-dense. Thus, all points

in the design domain have the same relative density, which is equal to the vol-

ume fraction defined previously. This distribution is now gradually and smoothly

transitioned to a bimodal distribution where a specific proportion of the design

domain is void and the rest is fully dense according to the volume fraction. The
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total mass of the material is conserved in this transition. The incomplete Beta

function provides this described transition [1]:

F (β) = βinc(ρ, r, s) =
1

B(r, s)

ˆ ρ

0

(ρ′)r−1(1− ρ′)s−1dρ′ (10)

Where ρ is the density and B(r, s) is the Beta function which is computed

using Gamma functions Γ:

B(r, s) =
Γ(r)Γ(s)

Γ(r + s)
(11)

The incomplete Beta function represents the cumulative distribution of the

relative density. The distribution’s parameters r and s are specifically chosen to

ensure the smooth transition (not be confused with local finite element coordinates

r and s). Additionally, an artificial, non-dimensional time t is introduced to param-

eterize the iterations. Figure 6 illustrates the transition from the initial, unimodal

(t = 0) to the final, bimodal (t = 1) distribution of relative material density by

showing a series of Beta distributions. The graph on the left shows the probability

density functions and the graph on the right the cumulative distribution function.

Figure 6: PMR Density Distribution using Beta Functions [1]
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The density distribution is imposed on each node in the design domain in the

descending order of its strain energy density value. That is, the strain energy values

of each node, which result from the FE analysis, are sorted and the node with the

highest strain energy is assigned the highest density value. Because a linear relation

between stiffness and density is assumed, a higher density means that the node is

stiffer. Thus, nodes with a higher strain energy in the FE analysis are stiffened

and vice versa. A minimum density (ρmin = 10−2) is defined to prevent numerical

singularities in the system matrices. This definition is also common practice for

other TO approaches [22].

The PMR scheme has similarities to other TO approaches. Since the compli-

ance problem is quite simple, there is always an increase in stiffness if material is

added (see section 2.6). However, within all approaches utilizing this fact there

are more efficient and less efficient methods [22]. The PMR method has also some

similarity to a scheme developed by Guest et al. in 2004 [34]. This approach

uses mesh independent nodal projection functions to impose minimum length con-

straints onto a TO scheme. The projection function used in the PMR method

simply averages the nodal densities for calculating the elemental stiffness and,

thus, is mesh dependent (see section 6.3).

2.4 Benchmarks of Topology Optimization Schemes

Various benchmark studies in the literature investigate the different methods

introduced previously while focusing on separate objectives. Valdez et al. [38]

carry out a meta study including 103 articles to merge the different 2D benchmark

characteristics, like geometry or loading conditions, into unified problems. Subse-

quently, a benchmark using two versions of SIMP is conducted and solutions for

minimum compliance problems and minimum volume problems with a stress con-

straint are presented. Other studies compare not only different SIMP schemes but
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include also other density-based, evolutionary, or boundary variation approaches.

Sigmund and Maute [22] claim that most of these TO methods, however, are very

similar and are based on an almost identical sensitivity idea. Rojas-Labanda and

Stolpe [39] choose another focus and benchmark different solution algorithms, for

example the MMA scheme. There is no benchmark study including the PMR

method known to the author.

The varied parameter, the criteria, and the sample case chosen in that studies

are of particular interest to the benchmark in this research. A benchmark study by

Bulman et al. [17] investigates the effects of FE mesh density, FE mesh distortion,

and non-uniform initial density distributions on the TO results. These effects are

measured qualitatively and quantitatively using the normalized strain energy. The

influences of the mesh density and the mesh distortion as well as some parameters

generic to the specific schemes (e.g. number of iterations) are investigated in

this research. Additionally, four different standard benchmark cases are described

in that study: clamped deep beam, Michell truss, Messerschmitt-Bölkow-Blohm

(MBB) beam, and short cantilever beam. However, Sigmund and Maute [22] claim

that there are only two standard benchmark cases: the MBB beam and the 5 by 8

cantilever. There are many more studies specifying different or new cases, e.g. [32]

or [38]. Nonetheless, Deaton and Grandhi [19] state that analytical solutions can

be found for particular examples and that these cases should generally be used. A

series of these exact solution is, for example, given in [4, 40, 41, 42]. In section 4.3

the different example cases for this research are chosen based on this overview, are

visually illustrated, and are defined in detail.

2.5 Available Topology Optimization Software

There is a variety of topology optimization software available for either re-

search or commercial use. Reddy et al. [5] provide a list of both types of TO
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software, which includes the commercial software packages “Altair OptiStruct”,

“MSC Nastran”, “Vanderplaats Genesis”, and “SIMULIA Tosca”. The latter is

used in this research because the software is implemented in the same commercial

FEA software used for the PMR scheme (Abaqus). SIMULIA Tosca Structure’s

current version applies a sensitivity-based approach (SIMP or RAMP) and a MMA

algorithm [43]. In earlier versions, Tosca might have been the only commercial

software to use an evolutionary-type algorithm [10]. The software still offers a

non-default option in the settings to delete soft elements in the manner of a hybrid

method (see section 2.2.3).

Open access research software, which has been published for academic pur-

poses, is also used in this benchmark study. Sigmund issued a simple 99-ine MAT-

LAB code using the SIMP scheme for minimizing compliance problems in 2001

and the TopOpt group maintains updated versions available online for academic

purposes [44, 35, 45]. Andreassen et al. [35] claim that the new, efficient 88-line

code can solve an example problem with 7500 elements 100 times faster the the

original 99-line version. These results are achieved with loop vectorization and

memory preallocation. Challis [32] provided an 129-line level set MATLAB code

in analogy to these SIMP versions in 2010. The TopOpt group also published an

open source level set MATLAB algorithm more recently in 2020 [46].

2.6 Discussion within the Structural Optimization Community

There seems to be a division into separated groups within the topology opti-

mization research community in which either SIMP, level set, or BESO schemes are

preferred [22]. An illustrating example of this issue is given in an article by Rozany

[10]. Rozvany names both, criticisms of ESO approaches and “attempts to defend

ESO from the [...] criticisms”. However, Rozvany finally concludes that evolu-

tionary approaches are heuristic, inefficient, and unreliable. Sigmund and Maute
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[22] review the criticism that density-based schemes sometimes yield final results

that still include intermediate densities. They argue that it is common practice

to set a density threshold, when interpreting the design before manufacturing. A

completely different criticism is raised by Reddy et al. [5], who criticize the lack

of suitable manufacturing constraint in present commercial TO software.

One discussion within the community, which is particularly important to this

research, is about how and what TO research is conducted. Sigmund and Maute

[22] criticize visual assessments and the use of the word “optimal” if the convexity

of the problem is not validated. The PMR method is a heuristic approach and,

thus, it is reasonable in this research to use the terms “optimized” or “final re-

sult”. Sigmund and Maute [22] emphasize the need for quantitative comparisons,

when testing algorithms, and demand detailed disclosure of the benchmark set-

tings and results. Moreover, Deaton and Grandhi [19] criticize authors that only

test their new schemes on minimum compliance problems and not on more broad

and practical frameworks (“multi physics” and manufacturing constraints). The

compliance problem is very simple, all sensitivities are always negative, and any

approach which adds material in some way will obtain a stiffer structure [19, 22].

Sigmund and Maute [22] state that they “feel that using rudimentary optimization

algorithms is the wrong direction to take”. For this reason, Sigmund and Maute

propose a list of nine challenges for current TO research at the end of their article:

efficiency, general applicability, multiple constraints, complex boundary conditions,

independence on starting guess, few tuning parameters, mesh-independent conver-

gence, ease of use, and alternatives to finite element analysis. The PMR version

developed and benchmarked in this research was compared to each challenge on

this list in the final discussion (see section 6.1).
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CHAPTER 3

Enhancement

This chapter summarizes the first two steps of the methodological approach.

First, the standalone MATLAB version of the PMR algorithm was translated into

a standalone Python version. Second, Abaqus was integrated in this code and was

utilized for a potential increase in performance and ease of use. In the following,

the term “strain energy” is used in two different ways. One the one hand, strain

energy refers to the nodal values of elastic strain energy density (per unit volume)

and, on the other hand, the term stands for the total strain energy of the system.

3.1 Standalone PMR Algorithms

The initial MATLAB code, as well as the first translated Python version, are

standalone PMR algorithms. That is, running these programs does not require

additional software and corresponding licenses because the FE solver is integrated

in the algorithm. This approach’s advantages and disadvantages found before,

during, and after the translation process are discussed in this section.

First, the MATLAB algorithm was analyzed to determine the general struc-

ture and to understand the fundamental functionality and its limitations. The

integrated FE solver was of particular interest, because it was initially assumed to

cause a poor performance and limit the design options. The analysis revealed that

the solver mainly consists of assembling the global stiffness matrix, solving the

stiffness equation (KU = F), and computing the strain energy. The scheme also

exclusively uses 2x2 Gauss integration (2x2x2 for 3D) to evaluate the integrals.

Furthermore, only four-node quadratic-shaped (2D) and eight-node cubic-shaped

(3D) linear elements with the unitless edge length of 1 are available.
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The limited pre- and post-processing options are another limitation of the

standalone version. The pre-processing is limited to the definition of the design

domain by the number of elements in x, y, and z (for 3D) directions. Hence, the

standalone scheme solely allows for rectangular design domains. Also, the loading

and the boundary conditions have to be applied on the specific degree of freedom

by defining the corresponding vectors directly. For 2D models, the post-processing

options include stress, total strain energy, and density plots, visual feedback, and

an export option. The visual feedback shown each iteration illustrates the current

density distributions as a gray scale contour plot and provides information about

the respective iteration and the objective function value. Following the main part

of the algorithm, the result can be export as a STL file, which is a file format used

in additive manufacturing [7].

After the analysis of the algorithm, the requirements for the Python version

were defined and the algorithm was translated. The main requirement was to keep

all features except the STL file export since the STL file was not relevant to the

benchmark. The standalone Python version was solely an intermediate step to the

final version with embedded FEA software that could potentially handle different

elements and arbitrarily shaped design domains. Hence, there was no need to

translate the export function. The process of translating the other functions was

facilitated by the use of the Python package NumPy and SciPy [47, 48]. These

packages have a high number of syntactic similarities to MATLAB code and provide

high performance since they are written in C.

The standalone MATLAB and the corresponding Python version have the

same structure. Flowchart 7 shows the essential processes of these algorithms.

The general PMR method is explained in more detail in section 2.3. The inputs to

the algorithm are the volume fraction, the number of iterations, and the problem
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Figure 7: Structure of the Standalone PMR Versions

definition, including domain/mesh, loads, and boundary conditions. After ini-

tializing all variables and assigning each node the same partial density, the main

design cycles start. One design cycle consists of an FE analysis, sorting the result-

ing nodal strain energy densities, calculating the beta distributions, and assigning

densities to nodes based on the strain energies. The nodal densities are averaged

for each element and the elemental stiffness is calculated with the linear material

model. Additionally, each design cycle gives visual feedback and optional filtering

and symmetry corrections are applied. The symmetry check, if applied, equates the
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densities of nodes with exact same strain energy density values and, thus, corrects

unsymmetrical density distributions caused by the computational discretization of

the beta function. The time smoothing filtering combines the density distribution

of the current design cycle/ iteration with the previous two distributions:

ρ′t = ρt−1 +
(ρt − ρt−2)

2
(12)

If the time smoothing is disabled, the algorithm was found to give erroneous

results and the solutions start to oscillated at some point. Figure 8 illustrates

the oscillations in two ways. The left illustration shows the density distribution

at the 200th of 250 iterations for the Half Michell Arch Case (see section 4.3).

The structure oscillates in multiple modes. One mode is the transverse wave in

the trusses. Another oscillation is the radial emission of material chunks, which

can be seen on the right side of the density plot. The right illustrations plots the

strain energy of the system over the iteration history. The values start to oscillate

at about 150 iterations. The time smoothing was enabled for all problems in the

benchmark, after this effect was found multiple times.

Figure 8: Oscillations when Time Smoothing is Disabled

The analysis of the PMR algorithm structure showed that the actual FE

analysis can be easily decoupled from the other processes in the design cycle. This
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decoupling was the starting point for the second step, which aimed to perform the

computationally expensive FE analysis with a high-performance solver outside the

implemented PMR code. Additionally, the Abaqus Python interface provides not

only a more efficient FEA solver, but also an interactive graphical user interface

(GUI) to potentially increase the ease of use in the pre- and post-processing steps.

3.2 Embedding the Commercial Finite Element Solver

The second step in the methodological approach was to combine the com-

mercial FEA software Abaqus and the Python PMR scheme. Abaqus offers an

application programming interface (API), “Abaqus Scripting”, using Python as a

programming language [49]. A Python script can then be run from within the inter-

active GUI Abaqus CAE [15]. However, there are limited options to call Abaqus

from an external Python file. Additionally, Abaqus CAE offers comprehensive,

visual, and interactive pre- and post-processing. For this reason, the new PMR

algorithm was developed to be called from inside Abaqus CAE. The script reads,

writes, and manipulates the Abaqus files in a way that pre- and post-processing

can separately be done in Abaqus CAE.

Figure 9 shows a simplified flowchart of the newly developed algorithm struc-

ture. Processes performed in Python have a blue symbol and those that are using

Abaqus are orange. By using Abaqus CAE, the pre- and post-processes became

more clearly separated from the actual main part with the iterative design cycles.

The interface between the Python script and the Abaqus parts was established

by reading and writing files. The Python scripts writes and manipulates the INP

files that are read by the FEA solver. The solver, subsequently, outputs an ODB

file that is read by the Python script again. The script then writes the density

distributions and the strain energy history into the ODB file.
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Figure 9: Structure of the Abaqus-Python PMR Version

The main challenge in the implementation of the method was the design of

these interfaces mentioned previously. The particular problem was that Abaqus

CAE does not provide options to define a local material in the way needed for the

PMR scheme. The problem was overcome by manipulating the INP files instead

of the model database. This manipulation is used in a similar manner by another
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graduate student, who is currently using MATLAB to interface with Abaqus. A

distribution table containing each individual elemental stiffness value is appended

to the initial INP file. This INP file is then run as an Abaqus job.

Figure 10: PMR Result for the 3D Loxodrome Case

The example cases used in the development process were two dimensional

because these cases are less computationally expensive. Finally, it was verified

that the exact same code was also applicable to 3D cases. Figure 10 shows a

PMR result of the Loxodrome Torsion Case (see [3] and Figure A.58) with roughly

150,000 linear elements.

3.3 Performance and Ease of Use Improvements

The second methodological step did not only include the connection Abaqus

and Python code, but also the realization of a potential increase in speed and ease

of use. The question “How to make it faster?” affected primarily the iterative main

part of the algorithm. The question “How to make it easier to use?”, however, was

focused on the pre- and post-processing steps.

The limitations of the standalone versions shown in section 3.1 defined the

major requirements for an increase in ease of use. Hence, a greater variety of

features and more design options are also evaluated as an increase in ease of use
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in the following section. The first enhancement was achieved by using the inter-

active Abaqus GUI. The GUI automatically simplified and visualized the design

process in the pre-processing stage. The GUI also facilitated executing the PMR

algorithm. A pop-up window prompts the user to enter the two PMR parameters,

volume fraction and number of iterations, while the other design information is

automatically transferred from the model database to the Python code. Utilizing

this Abaqus model database allowed for using arbitrarily-shaped design domains

and a mesh that is independent from that domain. This mesh could contain a

variety of new element formulations. That is, triangular and tetrahedral element

shapes, mixed shape meshes, locally refined meshes, axisymmetric elements, lin-

ear and quadratic interpolation, as well as reduced and full integration could be

handled by the algorithm. Different sized elements (e.g., in locally refined meshes)

were made possible by using the Abaqus output variable “SENER” which mea-

sures elastic strain energy density per unit volume. The elemental volume in the

standalone versions was always equal to one.

Additionally, more complex loading and boundary conditions, such as, pres-

sure loading, could be defined more easily. All these new features were tested.

However, there might also be more and potentially nonlinear design options within

the general static step that could be applied to the design problem and were not

tested, such as, multiple part interaction and friction. There are, nevertheless, lim-

itations to the pre-processing options. Dynamic analysis as well as non-mechanical

loading and boundary conditions (e.g., heat transfer) cannot be used since this for-

mulation of the PMR scheme exclusively applies a static analysis in a minimum

compliance problem.

The post-processing options of the standalone version were copied and en-

hanced in the integrated PMR version. That is, the visual feedback now uses
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the Abaqus viewport to illustrate the density distribution in the design domain.

Unlike the other schemes that converge, the PMR method has a fixed number of

iterations. Thus, a duration that is still remaining to finish the scheme can be

linearly estimated fairly precisely. This time prediction was additionally imple-

mented in the visual feedback. This feature is possibly advantageous to designers

because they can schedule large, complex problems better with the heuristic PMR

approach than with any converging method. After the main part of the algorithm,

the files get saved separately to prevent accidentally overwriting the data. All de-

fault mechanical field quantities, like displacement, strain, and stress can be found

in the files. The density distribution history was also written into the ODB files.

With this capability, the optimized structure can be cut out the design domain by

using the “view cut” function and a certain intermediate density threshold (com-

mon practice see 2.6). This structure can then be exported as an OBJ file. This

file format can either be 3D-printed directly or converted to a STL file first and

then printed.

The main body of the algorithm is primarily responsible for the total duration

of the scheme. Figure 11 illustrates the ratios of different functions’ durations in a

single design cycle of the most efficient algorithm version. The computer specifi-

cations can be found in chapter 4. The example case used was a Half Michell Arch

problem (see section 4.3) with 40,000 four-node linear elements with 75 iterations

in total. The total duration of one design cycle was about 20.4 seconds. Roughly

85% of the iteration time was spent with the execution of the FE analysis job. This

duration could not be optimized within the Python code because the calculation

is completely performed by Abaqus. The Abaqus LOG files were analyzed to de-

termine the duration of the individual steps of an Abaqus/Standard job execution.

The total measured job execution took about 17.5 seconds, of which 6 seconds
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1) Job Execution: 17.4950 s
2) Filter and Sym. Check: 0.0060 s
3) INP File Manipulation: 0.6620 s
4) Elemental Stiffness Calculation: 0.4400 s
5) Beta Functions Calculation: 0.0010 s
6) Read Strain Energies: 1.7250 s
7) Visualize Results: 0.2590 s

Figure 11: PMR Design Cycle Durations (Half Michell Arch, 40k elements)

were spent for the Input File Processor, 4 seconds for the actual Abaqus/Standard

FE analysis, and 2 seconds to complete the job. The sums of these processes left

5.5 seconds for the license check, which was not reported in the LOG file. The

comparison to the execution of Tosca jobs showed that these jobs did not seem to

need the Input File Processor and the license check, which cuts down the duration

significantly. Different approaches to make use of this advantage with the PMR

algorithm were evaluated. However, there was no method found to execute the

FEA in the PMR scheme without checking the license and pre-processing in every

iteration using the Python interface.
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Table 1: Comparison of the Old and New Symmetry Check Functions

Old Symmetry Check Algorithm

import numpy as np

de f check sym (U, x ) :
# f i n d nodes with non - unique s t r a i n e n e r g i e s
U s i z = np . shape (U)
isame = -1∗np . ones ( ( U s i z [ 0 ] , 1 ) )
f o r i in range (0 , U s i z [ 0 ] ) :

f o r j in range (0 , U s i z [ 0 ] ) :
e r r o r = abs ( (U[ i ] - U[ j ] ) / U[ i ] )
i f ( e r r o r < 1e - 4 ) and ( i != j ) :

isame [ j ] = i

f o r i in range (0 , U s i z [ 0 ] ) :
f o r j in range (0 , U s i z [ 0 ] ) :

i f isame [ j ] == i :
x [ j ] = x [ i ]

r e turn x

New Symmetry Check Algorithm

import numpy as np

de f check sym (U, x ) :
# f i n d nodes with non - unique s t r a i n e n e r g i e s
values , index , count = np . unique (U, r e tu rn count s=True , r e tu rn index=True )
index2 = index [ count > 1 ]

f o r i in index2 :
y = np . argwhere (U[ : , 0 ] == U[ i ] )
x [ y ] = f l o a t (np . mean( x [ y ] ) )

r e turn x

The other functions were primarily limited in performance by Python, not by

Abaqus. These limitations were most likely caused by Python’s poor performance

with nested loops [50], which were repeatedly used in the script. Thus, loop vector-

ization was applied, which also was one method for increased performance in the

academic 88-line SIMP code [35] (see section 2.5). The two greatest improvements

in speed were made in the function that reads the strain energy densities and in

the symmetry check, which both scale significantly with the size of the arrays.

Table 1 compares the old symmetry check function and the new vectorized form.

Both algorithms compare each nodal strain energy density value to all the other

values. If two nodes have the exact same strain energy, they are assigned the exact
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same density. The new algorithm took 0.0156 seconds to run in an example with

a randomized 10,000 by 1 strain energy vector, the old version needed 138.89 sec-

onds. Hence, the newly developed scheme is four orders of magnitudes faster. The

test was conducted multiple times and the same result or an even bigger difference

could be observed every run. This performance boost made the duration of one of

the initially slowest functions in the scheme negligibly short. The new version has

an additional advantage because it conserves mass by taking the average density,

while the old version did not. The difference between the old solution and a mass

conserving solution is, however, negligible, because a new mass conserving density

distribution, which is independent from the symmetry check, is imposed on the

system in the beginning of every iteration.

3.4 Integration Point-based Density Distribution

A completely different approach to the PMR method is introduced in this sec-

tion, which was not part of the planned methodological concept. The original idea

for this new scheme was to eliminate a computationally expensive loop from the

algorithm by imposing the density distributions on the integration points instead

of the nodes. The integration points are the points at which Abaqus outputs the

strain energy density values by default, while a nodal output requires one extra

step. Additionally, there are more integration points in a mesh than nodes when

using full integration. For example, four node linear elements have four integration

points and four nodes, but the adjacent elements in a mesh share their nodes. The

integration points, however, lay inside the elements. Thus, a potential increase in

accuracy and resolution with a potentially increased performance was assumed for

this approach.

The similarity to the initial approach simplified the implementation of this

scheme. Hence, only minor changes had to be made to the algorithm. After
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the implementation, the integration point-based PMR method was tested on 2D

cases. The most important testing parameter was the dependency on the element

formulation (linear vs. quadratic interpolation and reduced vs. full integration).

The results can be found in section 5.1.2
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CHAPTER 4

Benchmark

This chapter discusses the third methodological step, which is setting up the

benchmark. The sections review what was measured (objectives), how it was

measured (measurements), and in what framework the benchmark was conducted

(cases and settings). The main benchmark included three methods: the new

Abaqus Python PMR version, the SIMP, and the RAMP implementation in SIMU-

LIA Tosca Structure. The following chapter concentrates on these three methods.

However, additional cases were run to compare the standalone versions with the

research MATLAB codes of the SIMP and level set schemes (see section 2.5).

4.1 Benchmark Objectives and Hypotheses

The benchmark was focused on an overall comparison of the PMR, SIMP, and

RAMP schemes and on the effects of varying specific parameters. These parameters

were the number of iterations, the volume fraction, the mesh density, the element

formulation, and the mesh distortion. Bulman et al. [17] also investigated the

effects of non-uniform initial density distributions (see section 2.4). These effects

were not part of this benchmark, because the PMR scheme requires an unimodal

initial density distribution.

4.1.1 Overall Evaluation

The first objective of this benchmark was to determine if the chosen measure-

ments, example cases, and settings are reasonable. That is, the general sampling

and measuring needed to be statistically valid and reliable. Second, the benchmark

test cases had to be tested on typical TO issues. The most common problems of

topology optimization were introduced in section 2.2.5. The two problems checker-
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boarding and mesh dependency were particularly interesting to this benchmark.

For these reasons, the following questions were posed:

• Do the test cases show checkerboarding patterns?

• Do the test cases show mesh dependency?

The primary objective of the overall evaluation was to compare the different

methods and the sample cases. The goal of the comparison was to obtain relative

advantages and disadvantages of the methods and sample cases. For these reasons,

the following questions were formulated:

• What are the visible differences between the three algorithms (e.g., in the

way they converge)?

• Is one method faster than the others?

• Does one method give better results than the others?

• Does one sample case give better results than the others?

• Is one sample case better suited for one particular method?

The following sections reviews more detailed benchmark hypotheses based on

the variation of single parameters.

4.1.2 Number of Iterations

The number of iterations is explicitly specified before starting the PMR

scheme. However, the total number of iterations needed in the SIMP and RAMP

formulation is implicitly determined by the convergence criteria and differs for each

problem. Hence, PMR and the other two methods required two different analyses.

On the one hand, a predictive hypothesis was formulated for the effects of varying
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the iteration number for the PMR scheme. On the other hand, a descriptive analy-

sis was set up to investigate potential patterns in the required number of iterations

when varying different other parameters of the SIMP and RAMP schemes.

The PMR algorithm calculates as many beta functions as there are iterations

specified. Thus, the transition from the unimodal to the bimodal density distri-

bution is smoother for a greater number of iterations. It was anticipated that this

smoother transition would lead to a better result because the incremental changes

in the density distribution are smaller. For this reason, the following hypothesis

was formulated:

Hypothesis 1 A better result will be obtained with the PMR scheme if a higher

number of iterations is used.

This hypothesis was tested for 10, 25, 50, 75, 100, 150, and 250 iterations.

One goal of this test was to determine a generally reasonable number of itera-

tions that balances the overall duration with the obtained solution quality of the

scheme. A designer could obtain a first practical result by using this number and

refine the result by specifying more iterations. It needs to be mentioned that this

hypothesis is directional and, thus, was not analyzed in the same wording as for-

mulated. Instead, it was tried to reject the non-directional null hypothesis that all

the mean evaluations are statistically identical. Other hypotheses in this chapter

were analyzed analogously.

4.1.3 Volume Fraction

The volume fraction is a parameter that rather defines the problem than

changes the settings of the algorithm. Hence, the effects of this parameter needed

to be analyzed from two different perspectives. First, adding material makes a

structure stiffer (see section 2.6). Thus, it was expected that higher volume frac-

tions lead to stiffer results for all three methods:
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Hypothesis 2 A stiffer result will be obtained if a higher volume fraction is used.

Second, volume fraction and domain dimensions are correlated. Slender struc-

tures are obtained when using a very small volume fraction, and simple, uniform

structures are achieved if the volume fraction is chosen very high. Thus, there is

a range of visually optimal volume fraction for each individual problem definition.

For this reason, the result quality of the different algorithms was tested for differ-

ent volume fractions. The particularly interesting research question was whether

the methods fail to give good results for very high and very low volume fractions.

A non-directional hypothesis was formulated accordingly:

Hypothesis 3 There is no difference in the average solutions quality between the

three methods when varying the volume fraction.

Both Hypotheses 2 and 3 were aimed on the final results of the optimization

runs, but not on the efficiency of the algorithms. However, the volume fraction is a

constraint parameter that should not change the algorithm formulation explicitly.

It was anticipated that there should be no significant difference in the duration of

the schemes with a change of the parameter:

Hypothesis 4 There is no difference in performance within each scheme when

varying the volume fraction.

All hypotheses were tested with 5%, 10%, 15%, 20%, 25%, and 50% volume

fraction.

4.1.4 Mesh Density

Mesh dependency as a common problem in TO was reviewed previously (see

sections 2.2.5 and 4.1.1). One characteristic of the mesh is its density. Refining

the mesh by increasing density is referred to as “h-method” in FEA (see section
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2.1). All the benchmark schemes are based on FE calculations. For this reason, it

was assumed that more accurate and better TO results can be achieved with the

h-method:

Hypothesis 5 A better result will be obtained with all scheme if the mesh density

is increased.

The increase in mesh density requires the calculation of matrices with a greater

number of elements. Thus, FEA with more elements is usually computationally

more expensive. A similar effect was assumed for the three FE-based TO schemes:

Hypothesis 6 The computational costs of each scheme will increase if the mesh

density is increased.

The type of this correlation (linear, quadratic, etc.) and a comparison between

the different method would be particularly interesting if the hypothesis had been

proven. Thus, three regressions were fit to the mesh and performance data of each

scheme. Subsequently the calculated regression parameters of the different schemes

were compared. The effects of the mesh density were tested by approximately

meshing the design domain with 5,000, 10,000, 20,000, 40,000, and 80,000 elements.

4.1.5 Element Formulation

The formulation of the elements is another characteristic of a FE mesh. First,

increasing the polynomial order of the interpolation function of the elements (p-

method) is a way of mesh refinement (see section 2.1). Thus, it was assumed

that using linear and quadratic interpolation functions should give different re-

sults, equivalently to varying the mesh density (h-method) in the previous chapter.

Second, generally more accurate FEM results should be obtained when a higher

integration order is used (see section 2.1). Hence, it was anticipated that the use
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of full and reduced integration should also give different results. Finally, the num-

ber of nodes per element changes with shape of the element. For this reason, it

was also important to test if the results change when using triangular instead of

quadrilateral elements. Two hypotheses were formulated by combining these three

aspects:

Hypothesis 7 There is a difference in the solutions quality for each of the methods

when varying the element formulation.

and

Hypothesis 8 There is a difference in the performance for each of the methods

when varying the element formulation.

The aim of these hypotheses was to determine if some formulations are ad-

vantageous to apply because their calculation is faster and/or if they give bet-

ter results. This advantage had to be examined for each method individually.

The following element types were tested in plane stress conditions: four-node lin-

ear quadrilateral with reduced integration (CPS4R), four-node linear quadrilateral

with full integration (CPS4), eight-node quadratic quadrilateral with reduced in-

tegration (CPS8R), eight-node quadratic quadrilateral with full integration, three-

node linear triangle (CPS3), and six-node (modified) quadratic triangle (CPS6M).

4.1.6 Mesh Distortion

The degree of mesh distortion can be interpreted as a characteristic of a FE

mesh. Highly distorted element shapes lead to poor results [11] and are usually

undesired. Figure 12 shows a part of a mesh with extremely distorted elements.

A method for generating and measuring mesh distortion for FE meshes in

TO has been developed by Bulman et al. [17]. The same technique was used in
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Figure 12: Detail of a Highly Distorted Mesh

this benchmark with different values. Three meshes for each sample case were

compared. One of the test cases was the straight mesh, one case was distorted to

the left, and one to the right. The distortion was achieved by seeding the top edge

of the rectangular domain differently than the other three edges. The top edge

of the left-distorted (25%) case had half of the elements evenly spaced within the

first 25% of the edge length and the remaining elements evenly distributed over the

last 75% of the edge. The right-distorted (75%) case is generated the exact other

way around. This method is schematically shown in Figure 13, which compares

the three meshes with about 40,000 elements each.

Different degrees of mesh distortion were achieved in this benchmark because

the aspect rations of the rectangular design domains differed between the sample

cases. Additionally, some sample loading conditions were symmetrical. Thus,

it was assumed that these cases show a mirror image of the same effects when

distorting the mesh to the left and to the right.
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25 % Left-Distorted 75 % Right-Distorted Straight Mesh

Figure 13: The Left-Distorted, the Right-Distorted and the Straight Mesh

4.2 Benchmark Measurements

The previously formulated hypotheses were statistically tested after the bench-

mark data was collected. The quantitative and qualitative measurements of the

benchmark variables, such as solution quality or computational cost, had to be

defined in advance. The solution quality, for example, was expressed both quanti-

tatively (strain energy values) and qualitatively (visual assessment). This approach

can also be found in other benchmark studies (e.g., in [17]). Additionally, the sta-

tistical testing methods had to be reviewed and the associated assumptions had to

be checked.

The quantitative measurements are explicit outputs of the TO algorithms.

The fundamental assumption of this benchmark was that these computed model

results are identical, when the same case is run multiple times. However, the

computational time was expected to vary around some constant average value. An

example case was run several times to check these assumptions.
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The computational costs of a problem were measured as the time that passed

from the very start to the very end of the script. This duration is a useful informa-

tion for any designer that needs to schedule TO analysis. However, it is dependent

on the number of iterations, which is not known in advance for the two converging

algorithms. Thus, the specific duration per iteration was used in most analyses to

measure computational efficiency of the algorithms.

The total strain energy of the system was used as a quantitative measurement

of the solution quality. Minimizing this quantity was the objective of all the tested

problems. However, all the cases were set up with different dimensions, different

volume fractions, and loading condition with arbitrary magnitudes of 1. Thus, the

units of the total strain energy were not meaningful and a normalized quantity was

used to unify the objective values for different cases. This approach is also used in

other benchmark studies (e.g., normalized objective function in [22] or normalized

strain energy in [17]).

Normalizing the total strain energy led to the problem of finding a reasonable

denominator. Three ideas were tested. First, the total strain energy in each step

was divided by the initial strain energy, which represents the strain energy of the

uniform partially dense design domain. The advantage was that the results could

be interpreted as a percentage of improvement. However, the different schemes

penalize intermediate densities differently and, thus, initial strain energies could

not be compared between the schemes. Second, the schemes do not penalize fully

dense regions. Another idea was to divide each strain energy value by the strain

energy of the fully dense design domain. This approach, however, did not unify the

different cases. The best idea would be to divide the values by a known analytically

solution. However, this solution was not known for all the cases and, thus, was
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approximated by the lowest final strain energy value for each case. This approach

showed the most unified results. The normalized strain energy is has no unit.

A visual assessment of the results was used as the qualitative measurement in

the benchmark. The assessment was based on a symmetrical 5-point interval scale,

where 1 was the lowest rating and 5 was the best rating. The rating combined two

quality measures, the qualitative similarity to the exact analytical solution and the

benefit for a designer using this tool. That is the question, “Can an engineer easily

use the result without the need for major structural changes?” The five ratings

had the following literal descriptions:

1. not close to the expected shape at all, pieces floating

2. some intermediate densities, can be made reasonable by adding some density

in some regions (changing the threshold, see sections 2.6 & 3.2)

3. reasonable, physically functioning light weight structure, no symmetry

4. good results with minor flaws (e.g., small non-symmetries), some changes

need to be made for perfect shape

5. perfect shape

Figure 14: A Half Michell Arch Result with a Rating Score of 1

Figures 14 to 18 show five different solutions, one for each of the ratings. Visual

assessments like this are generally rather subjective and potentially biased. For this

reason, all test cases were assessed by the author and two independent mechanical
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Figure 15: A Half Michell Arch Result with a Rating Score of 2

engineering students with a broad background in structural design and FEA. The

arithmetic mean of the three ratings was then used as the qualitative solution

quality measurement. The specific problem definitions and the TO method were

not clearly disclosed to the other two participants to avoid a bias that promoted

a particular scheme. The assessment varied between the three persons. However,

only few test cases (3 out of 306 with a difference of 4 and 13 with a difference of

3) showed significant deviation in the rating scores. Most of these deviations could

be attributed to unexpected and complex designs which differ from the analytical

solution. The individual weighting of “similarity to the exact solution” and “benefit

for the designer” caused the deviating ratings.

Figure 16: A Half Michell Arch Result with a Rating Score of 3
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Using visual assessment has been criticized in the TO literature. Rozvany

[10], for example, rated the visual comparison of TO results and the exact optimal

truss topology as “very subjective”. Bulman et al. [17] were not satisfied by sole

visual similarity and demanded quantitative measurements in algorithm testing

from an optimization perspective. However, PMR is a heuristic scheme intended

as a tool for a designer and, thus, this benchmark was not exclusively focused on

the optimization perspective but rather on the practical applicability.

Figure 17: A Half Michell Arch Result with a Rating Score of 4

The previously formulated hypotheses were checked using three statisti-

cal tests: the linear least-squares regression, the one-way analysis of variances

(ANOVA), and Tukey’s honest significance test. The theoretical foundations of

these tests can be found in text books such as [51] or [52]. Using these tests re-

quires a certain quality of the data and the fulfillment of specific assumptions for

each test. Validity and reliability were previously discussed in section 4.1.1 and as

the fundamental assumption of the quantitative measurements. The objectivity of

the data was reviewed along the visual assessment. One problem of this research

was the size of the sampling. Some tests require a minimum number elements in a

sample. This minimum size was roughly estimated to about 30 samples per group

for this study, which was not met in all the tests. Additionally, the ANOVA and

Tukey’s range test require independence, normality, and homogeneity of variances
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(homoscedasticity). The independence of the data was a reasonable assumption

because the different test cases do not affect each other. All other premises were

also assumed to be met. However, random Kolmogorov-Smirnov and Levenne tests

showed that the assumptions of normally distributed data and homoscedasticity

did not always hold in this benchmark. The small group size and the lack of com-

pliance with the statistical assumptions are part of this research’s limitations (see

section 6.2).

Figure 18: A Half Michell Arch Result with a Rating Score of 5

4.3 Benchmark Sample Cases

Six sample cases were chosen for this benchmark: the “Half Michell Arch”,

Cases 1 to 4, and the “MBB Case”. These samples include some versions of the

standard benchmark cases introduced in section 2.4. Cases 1, 2, 3, and 4 are

identical to those used in the PMR development by Taggart et al. [3]. Most of

the sample cases go back to the work of Michell [18]. The loading and boundary

conditions and some analytically exact solutions or good TO solutions of the sample

cases are illustrated in Figures 19 to 25.

The first case, which in this benchmark is called the Half Michell Arch (see

Figure 19), is a version of the symmetric Michell Half Wheel problem illustrated
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Figure 19: The Half Michell Arch Loading and Boundary Conditions

in Figure 20 (see [2]). The Half Michell Arch sample makes use of the symmetry

by imposing a boundary condition on the symmetry axis and replaces the line load

with three point loads. The exact analytical solution would have a fan of trusses

and three arches connecting the point loads and the left face of the design domain.

Figure 20: The Michell Half Wheel [2]

Case 1 is a center fan topology with a single central load. Case 2 and 3 are

variations of that case (see Figure 21). Case 2 deviates to Case 1 because of a pin

support instead of a roller on the right side. Case 3 uses the full design domain

above and below the supports. Case 4 is a cantilever problem. Some cantilever

problems clamp a complete face of the design domain (e.g., [10], [17]). The used

sample only supports two points.
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Figure 21: Loading and Boundary Conditions of Cases 1, 2, 3, and 4 [3]

Figure 22 shows visually good solutions obtained with the PMR scheme by

Taggart et al. [3] and Figure 23 additionally shows the analytical solution for a

cantilever problem.

Figure 22: Good Results for the Cases 1, 2, 3, and 4 [3]
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The Messerschmidt-Bülkow-Blohm (MBB) Beam (see Figure 24) is one of

the standard sample cases that are widely used in TO literature. The beam is

describing the loading conditions of the floor in the fuselage of an aircraft [17].

Figure 25 shows half of the analytical solution.

Figure 23: Exact Analytical Solution for a Cantilever Problem [4]

Figures of the loading and boundary conditions within the Abaqus model can

be found in Appendix A.

Figure 24: Loading and Boundary Conditions of the MBB Beam [4]

All these cases are two-dimensional. The benchmark was exclusively focused

on two-dimensional problems because of the computational time associated with

three-dimensional cases that have a high resolution. For example, a square-shaped,

two-dimensional design domain with 200 elements along each edge has a total of

40,000 elements. This resolution gave good results, while only about 30 min were

required for the calculations. A three-dimensional mesh with the same resolution

would have a total of 2003 = 8, 000, 000 elements, which would exceed the compu-

tational capacity of the computer used. Only one three-dimensional case was run

for validation purposes (see section 3.2).
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Figure 25: Half of the Analytical MBB Beam Solution [4]

4.4 Benchmark Settings

The same computer has been used for computing all test cases in this bench-

mark. The machine has the following specifications: eight core Intel i7-9700 CPU

operating at 3 GHz, 16 GB of RAM, one SSD with 256 GB memory, Intel UHD

Graphics 630 and AMD Radeon Pro WX 3100. The operating system was Mi-

crosoft Windows 10 Pro (64 bit).

Identical settings were applied for all test cases. The mechanical properties

of steel were used (Young’s Modulus: 210 ∗ 109 N
m2 and Poisson’s Ratio: 0.3). The

default settings for the Tosca optimizations were accepted. That is, among others,

the penalization factor p = 3, minimum density ρmin = 0.001, the two convergence

criteria “objective function delta” = 0.001 and “element density delta” = 0.005,

and the setting “delete soft elements” disabled. The maximum number of iterations

was set to 75 for all cases. All PMR results were run with time smoothing and

symmetry check enabled.

Table 2: Default Volume Fraction and Dimensions of the Six Cases

Case \Property Default Volume Fraction [%] Height [m] Width [m]

Half Michell Arch 5 150 ∗ 10−3 150 ∗ 10−3

Case 1 10 100 100

Case 2 15 100 100

Case 3 10 200 100

Case 4 20 150 150

Case MBB 50 10 100
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Table 2 includes the default volume fractions and the dimensions of the sample

cases. Each case’s straight standard mesh had 40,000 four-node linear quadrilateral

elements with reduced integration in plane stress conditions (CPS4R). The PMR

problems were solved with 75 iterations by default. These standard settings were

defined for each case in advance based on pre-benchmark tests. Some of these

parameters were varied in the different benchmark runs. It needs to be mentioned

that there was no intended physical meaning to the units and that load magnitudes

of 1 were used. The meshing of the domains was automated in the benchmark by

using global edge seeds. The seeds that were used to generate specific numbers of

elements for each case can be found in Table C.4 in the appendix.
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CHAPTER 5

Findings

Collecting and evaluating the benchmark data was the fourth methodological

step of this research. One the one hand, this chapter reviews the findings on the

newly developed PMR algorithm and evaluates the associated enhancement of the

method. On the other hand, the comparative benchmark is discussed and the

formulated hypotheses are tested. Some results fall, however, under both of these

categories.

5.1 Findings about the Enhanced PMR Version

The first half of this study was focused on the potential increase in performance

and ease of use, when the Python-Abaqus interface was used instead of the existing

standalone MATLAB code. The performance of specific parts of the algorithm was

already discussed in section 3.2.

5.1.1 Rerunning the Same Case

The reliability of the quantitative measurement of the PMR method was

checked by rerunning the same case multiple times. Each run generated the exact

same density distribution for each iteration step, as it was expected beforehand.

Hence, the structure and the quantitative measures, such as the total strain energy

of the system, were identical.

The algorithm’s duration varied with each run. The values scattered around

an average if each run was manually started. This variation was also expected

beforehand. However, if the runs were automatically started in a loop of a Python

script, a linear trend was observed. The experiment was conducted multiple times

to rule out a coincidental trend in the data potentially caused by random effects.
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Figure 26 shows the specific duration data of 90 PMR runs of the Half Michell

Arch Case (5% volume fraction, 40,000 CPS4R elements, 10 iterations). The first

30 runs were executed in one loop, the next 30 in another loop, and each of the

last 30 runs were started manually.

0 5 10 15 20 25 30
Try

20.2

20.4

20.6

20.8

21.0

21.2

21.4

21.6

21.8

Du
ra

tio
n 

pe
r I

te
ra

tio
n 

[s
]

Loop 1
Loop 2
Manual Start

Figure 26: Specific Duration of the Same PMR Problem Run 90 Times

Linear regressions were fitted to the loop-executed data points. The lin-

ear functions are good approximations of the trend in the data (loop 1: R2 =

0.9868, p = 0.0000 and loop 2: R2 = 0.8911, p = 0.0000). Both cases had similar

interception of about 21 seconds and similar slopes of 0.0231 seconds per try and

0.0282 seconds per try, respectively. The arithmetic mean of the manually started

cases was also about 21 seconds.

Loops were also used to conduct the parametric study of the main benchmark,

e.g., to loop over different mesh densities. The linear trend caused by the loop

could distort a trend originally related to the change in parameter. However, it

was assumed that this effect is negligible for two reasons. First, the slope measured
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for this sample case was three magnitudes smaller than the average value. Hence,

looping over five to seven different values for a parameter would not change the

specific duration significantly. Second, the scattering of the specific duration when

manually started was of the same magnitude as the linear trend. This linear trend

related to looping over the execution of the PMR algorithm was not found for

looping over the execution of the Tosca SIMP and RAMP problems.

5.1.2 Results of the Integration Point-based Approach

An alternative approach to the PMR method using densities at integration

points instead of nodal densities as design variables was introduced in section 3.4.

This new scheme was tested on quadrilateral elements with linear and quadratic

interpolation functions as well as with full and reduced integration. Figures 27

and 28 display the resulting structures for the linear reduced integration element

(CPS4R) and the quadratic full integration element (CPS8). The test problem was

the default Half Michell Arch Case with 5% volume fraction, 40,000 elements, and

75 iterations. Results using CPS4 and CSP8R elements can be found in Appendix

B.1.

 

Figure 27: Integration Point-based PMR Half Michell Arch Result (CPS4R)
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The CPS4R solution was the only result to show checkerboarding patterns.

These elements have a single integration point in the element center. Hence, this

case could be seen as equivalent to having an elemental design variables. The

checkerboarding was assumed to be caused by this single value elemental allocation

of density that does not require continuity between the elements. SIMP is also a

element-based scheme and checkerboarding is one of SIMP’s common issues (see

section 2.2.5).

 

Figure 28: Integration Point-based PMR Half Michell Arch Result (CPS8)

The other three element types did not show checkerboarding. Checkerboard-

ing is commonly prevented by using higher order elements (see section 2.2.5 and

[33]). A similar effect might be seen here for the cases that have more than one inte-

gration point per element and partly higher interpolation function order. However,

the solutions of these element types have a different disadvantage. It was discov-

ered that relative density values ρ(x) > 1 and ρ(x) < 0 are artificially generated by

the density interpolation within the element. These values, particularly negative

relative densities, have no meaningful physical interpretation. The legend in Fig-

ure 28 includes the minimum (-1.498) and maximum densities (2.210). The color

map of the contour plot, however, is limited to values between zero and one, and
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nodal output averaging is disabled. The interpolation point-based PMR approach

was not pursued any further due to the two discussed disadvantages.

5.1.3 Comparison of Different Versions

There are multiple SIMP and level set TO codes available online for academic

purposes (see section 2.5). These algorithms were built in the similar way as

the standalone PMR codes. Comparing such codes’ performance and ease of use

with a commercial software is not a meaningful exercise. Some of the codes are

purposely not optimized for performance, but for readability [32], [44]. Hence, the

goal of this evaluation was to compare these standalone schemes with each other

and subsequently compare the results of this analysis to the results of the main

benchmark.

Two SIMP implementations in MATLAB, the 99- and the 88-line code, and

the Python version of the 88-line code were used in the quantitative study on

performance. The performance was measured as the specific duration of each

iteration for the same mesh densities that were tested in the mesh refinement

study of the main benchmark (5,000, 10,000, 20,000, 40,000, and 80,000 four-node

elements). The chosen case was the default Half Michell Arch (5% volume fraction

and 75 PMR iterations). The SIMP codes were run using a penalization factor

p = 3, a minimum radius rmin = 1.2 for the mesh-independency filter, and a

density delta convergence criteria of 1%.

Figure 29 shows the results of the performance benchmark. The dashed lines

are the PMR codes and the solid lines the SIMP codes, square markers are used

for MATLAB codes and round markers for Python implementation. Both Python

scripts had to be paused for 0.01 seconds each iteration for smooth visual feedback.

It was determined that the Python versions of the same algorithm were always

slower than the MATLAB versions. Additionally, the claimed performance boost

57



10000 20000 30000 40000 50000 60000 70000 80000
Number of Nodes

0

5

10

15

20

25

30

35

Du
ra

tio
n 

pe
r I

te
ra

tio
n 

[s
]

PMR Standalone (Python)
PMR Standalone (MATLAB)
SIMP (Python)
SIMP 99-line (MATLAB)
SIMP 88-line (MATLAB)

Figure 29: Efficiency of the Academic Codes for Different Fine Meshes

of two magnitudes between the 99- and the 88-line version was validated in this

test (see section 2.5 and [35]). The improved codes generally appeared to lose less

efficiency with a higher number of elements than the original codes. The original

PMR version was faster for bigger problems than the original 99-line SIMP version.

For this reason, it could be assumed that a properly improved PMR MATLAB code

could achieve performance similar to the 88-line code.

Figure 30: Half Michell Arch Problem Solved with 129-line Level Set Code
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The level set methods were exclusively tested qualitatively. Figures 30 and 31

show structures generated with the level set algorithm by Challis [32] and by the

TopOpt group [46], respectively. Both algorithms found the essential structures

for the Half Michell Arch Cases. However, finding a visually satisfactory structure

was highly dependent on the right choice of numerous parameters. The input

parameter for the solutions generated with level set schemes can be found in Table

C.5 in the appendix.
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The problem definition in the SIMP and in the PMR scheme are similar. It

was generally easier to define the Half Michell Arch problem and to apply the TO

method in the SIMP codes than in the level set schemes. However, the SIMP

results showed checkerboarding if a minimum radius rmin ≤ 1 was used (see Figure

5). The TopOpt level set scheme uses the MATLAB-specific struct object. Using

this data structure type similarly in the other MATLAB scripts would improve

their ease of use.

5.2 Findings of the Benchmark

This section reviews the findings of the main benchmark. The sampling of this

benchmark comprised 306 individually assessed test cases, which did not include
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the mesh distortion cases, the previously discussed academic test cases, and other

auxiliary test cases. Only considering the assessed test cases, 126 used the PMR

scheme, 90 the SIMP, and 90 the RAMP formulation in SIMULIA Tosca Structure.

A significance level of 5% was used. The values of the statistical test results can

be found in detail in Appendix C.

5.2.1 Number of Iterations

The number of iterations of the PMR scheme was varied to analyze its effects

on the solution, both quantitatively and qualitatively. The goal was to find a rea-

sonable iteration number balancing duration and result quality. Hence, Hypothesis

1 was formulated accordingly. The quantitative analysis of the normalized strain

energy of the final structure values can be found in Figure 32. There was no clear

trend found in the data. That is, more iterations, and thus a smoother transition,

did not necessary generate a stiffer result. However, solutions with only 10 itera-

tions were either significantly stiffer or more compliant than the other solutions,

which were similarly stiff. The 10 iteration results also did not generate visually

good structures. Hence, a minimum number of iterations greater than 10 should

be chosen.

The qualitative analysis tested the resemblance of the visual assessment dis-

tributions of the seven groups with 10, 20, 50, 75, 10, 150, and 250 iterations (see

Appendix B.2). It was discovered that the distributions did not have the same

population mean (F = 15.44, p = 0.0000). The mean visual assessment was higher

for cases with more iterations. However, the pairwise distribution comparison

could only significantly prove that solutions with 50 or more iterations were better

than solutions with 10 iterations and results with 75 or more iterations were better

than those with 20 iterations. It should be mentioned again that each group only

consisted of 6 sample cases. The appropriate group size for an ANOVA and the
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Figure 32: Final Normalized Strain Energy for Different Iteration Numbers

Tukey test was, however, estimated to about 30 or more elements (see section 4.2).

The results led to the conclusion that a first good result could be achieved with

50 to 75 iterations (assessment means: 3.17 and 3.56).

The duration of the variable initialization at the beginning of the script was

assumed to be independent of the total number of iterations and, thus, the specific

duration should decrease with more iterations in total. It was discovered that the

duration of an iteration in 4 of 6 sample cases was considerably higher if the scheme

used 10 or 20 iterations in total. These cases had similar specific durations for 50

and more total iterations (see Appendix B.2).

Based on the three reviewed aspects, it was concluded that PMR problems

with 75 iterations give good results and have a reasonable duration. Hence, all

other PMR benchmark cases were conducted with 75 iterations by default. Calcu-

lating more iterations will take longer, but better results might also be generated.

Additionally, 75 iterations were set as the iteration maximum for the RAMP and

61



SIMP formulation. The number of iterations these schemes needed to converge was

analyzed separately. These iteration numbers did not noticeably relate to a change

in volume fraction, element formulation, or mesh density in the benchmark tests.

Thus, it could not be stated if and how a change of these parameters would affect

the iterations needed to converge. These iteration numbers were also analyzed

from an overall perspective (see section 5.2.4).

5.2.2 Volume Fraction, Mesh Density, and Element Formulation

This section discusses the effects of varying the volume fraction, the mesh

density, and the element formulation. The duration (efficiency), the final normal-

ized strain energies (quantitative solution quality), and the assessment (qualitative

solution quality) are reviewed.

The total duration of all methods is dependent on the number of iterations.

It was previously discussed that the number of iterations needed in the converging

schemes (SIMP and RAMP) could not be explained by effects of varying volume

fraction, mesh density, and element formulation. For this reason, only the specific

duration per iteration was used to compare the methods in this section.

Changing the volume fraction was assumed to have no effect on the efficiency

of the schemes (Hypothesis 4). The benchmark results verified this assumption

qualitatively. Figure 33 plots the duration per iteration over the volume fraction.

It was discovered that the duration per iteration was varying around a constant

value as expected. SIMP and RAMP formulated problems were faster than PMR

cases. Some samples ran faster with the RAMP scheme and some with SIMP. The

efficiency of SIMP and RAMP was very similar and the different sample cases also

had similar computational costs.

A finer mesh was expected to increase the computational costs of all the

schemes (Hypothesis 6). This effect was indeed found in the benchmark data.
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Figure 33: Duration per Iteration for Different Volume Fractions

A linear trend was determined between the duration per iteration and the to-

tal number of nodes in the mesh for each of the schemes. Figure 34 shows the

collected duration data and three linear regressions (PMR: orange, RAMP: grey,

SIMP: lime). The linear functions approximated the data points well (PMR: R2 =

0.99, p = 0.0000, RAMP: R2 = 0.96, p = 0.0000, SIMP: R2 = 0.99, p = 0.0000).

SIMP and RAMP had similar intercepts (RAMP: 2.01 seconds, SIMP: 1.91 sec-

onds) and slopes (RAMP: 0.000053 seconds per node, SIMP: 0.000057 seconds per

node). That is, their computational efficiency was almost identical.

The PMR code was generally slower (intercept: 13.27 seconds) and about

three times more sensitive to a change in mesh density (slope: 0.00017 seconds per

node). However, the duration of an iteration in the PMR scheme was limited by

the time of the job execution. That is, the specific duration could not be shorter

than Abaqus needed to run the job, including the license check (≈ 5.5 seconds) and

pre-processing (≈ 6 seconds). These two processes took a significant amount of the
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Figure 34: Duration per Iteration for Different Mesh Densities

total iteration duration in the tested cases (about 11.5 of 17.5 seconds, see section

3.2). If the PMR code could be implemented into Abaqus like the Tosca SIMP

and RAMP algorithms, it could be assumed that these processing times would

be eliminated. Hence, these times could be subtracted from the intercept, which

than would be very similar to the intercept of the RAMP and SIMP regressions.

Moreover, the higher slope was most likely caused by not fully optimized code

and the use of time intensive loops, e.g., for reading the strain energy density

values. Considering these two effects, it could be assumed that a commercial PMR

code would be competitive. The results of this analysis were very similar to the

benchmark of the academic software. The academic codes were faster than the

Abaqus schemes for the tested meshes. The only exception is the PMR Abaqus

code, which outperformed the standalone algorithm when using a 80,000 element

mesh and presumably when using even finer meshes.
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Figure 35: Duration per Iteration for Different Element Types

The element formulation was also expected to have an effect on the perfor-

mance of the schemes (Hypothesis 8). In fact, rather the sum of two effects than

one single effect was discovered, the integration order effect and the interpolation

order effect. The latter was more important and is similar to the effect discussed

in the previous paragraphs. All test cases in this analysis were meshed with 40,000

elements. That is, four-node elements generated about 40,000 total nodes, eight-

node elements 120,000, the three-node triangle 20,000, and the six-node triangle

80,000. A linear trend similar to the previous ones was noticed in the duration

per iteration and number of nodes data. The far smaller effect was caused by the

change of the integration order. Full integration was slightly slower than reduced

integration in most of the test cases. That is, when both effects were combined,

the linear triangle meshes were the fastest and the eight-node quadrilaterals were

the slowest. Figure 35 shows the cumulative effect of the element formulation by

plotting the specific duration for the different tested element types. The continu-
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ous line connecting the data points in the discrete groups is only drawn to visually

assist determining which values are smaller or bigger, but has no physical meaning.

10 20 30 40 50
Volume Fraction [%]

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Fi
na

l N
or

m
al

ize
d 

St
ra

in
 E

ne
rg

y 
 

Method
PMR
RAMP
SIMP

Case
Half Michell Arch
Case 1
Case 2
Case 3
Case 4
Case MBB

Figure 36: Final Normalized Strain Energy for Different Volume Fractions

The normalized total strain energy of the final structure was used as a stiffness

measurement and, thus, as a quantitative solution quality measurement. It was as-

sumed that the solution of an identical problem should generate a stiffer structure

with a higher volume fraction (Hypothesis 2). Hence, the final normalized strain

energy value was expected to be lower for higher volume fractions. Figure 36 plots

the final normalized strain energy values over the tested volume fractions for each

sample case and method. The stiffest structures were obtained, when the highest

volume fraction was defined, as expected. The decreasing trend in the normalized

strain energy data was over-proportional, presumably exponentially. Furthermore,

it was found that the scattering between the different sample cases and methods

decreased with the volume fraction. The reason for the resemblance of high vol-

ume fraction solutions could be that these structures were simple, undefined, and
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looked similar for different sample cases and methods. The low volume fraction

structures, however, had more slender trusses, more complex designs, and, thus,

the transmission of loads was very different for each structure. Hence, the stiffness

of these structures scattered more. Moreover, it was found that for each sample

case and volume fraction the PMR scheme generated the stiffest structures.
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Figure 37: Final Normalized Strain Energy for Different Mesh Densities

The objective of the minimum compliance problem is to generate structures

that are as stiff as possible. Thus, the stiffest solution is the quantitatively best

solution. Better results were expected when the mesh density was increased (Hy-

pothesis 5). This effect was found in the benchmark data (see Figure 37). The

normalized strain energy of the final structures was over-proportionally decreas-

ing with an increase in mesh density in most cases. However, this effect was

stronger and clearer for rather coarse meshes, the finer meshes (20,000, 40,000,

and 80,000) had similar strain energy values. One possible reason for the decreas-

ing final strain energies could be that point loads generate stress concentrations,
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which finer meshes can handle better. However, a pressure load PMR case showed

similar trends for the final strain energy. The finer mesh described the problem

in every iteration better. The difference between fine and coarse mesh results,

however, grew with the iterations. That effect caused the normalized strain energy

curves to split over the iteration history (see Figure 38). The boundary and load-

ing conditions for this case can be found in the appendix A.2. Moreover, another

effect, which was already found in the previous analysis, was also discovered with

varying mesh density. The PMR code generated stiffer final results than the SIMP

and RAMP equivalents. This observation is illustrated by the color code in Figure

37. The PMR solutions are red, RAMP results blue, and SIMP results green.
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Figure 38: Normalized Strain Energy History of a Pressure Load Problem

Hypothesis 7 assumed a difference in solution quality for different element

types. Figure 39 shows the final normalized strain energies resulting from the

sample cases, when different elements types were tested. Multiple patterns were

noticed. The four-node quadrilateral with reduced integration, which has only a
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single integration point, gave the most compliant final structure in most of the

cases. The stiffest structure was generated by PMR scheme with three-node tri-

angles in 5 of 6 sample cases. Full integration results were mostly stiffer than

reduced integration solutions. This effect was more distinct for the four-node than

for the eight-node quadrilateral elements. The eight-node problems gave in many

cases more compliant solutions than the fully integrated four-node element. The

six-node triangle mesh was almost always more compliant than the three-node tri-

angle mesh. A more compliant or a stiffer final result does not necessarily mean

that the structure is physically very different, but that the strain energy quanti-

ties calculated by FEA are higher or lower. To give this strain energy patterns

a meaningful interpretation, the next step was to analyze the benchmark cases

qualitatively.
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Figure 39: Final Normalized Strain Energy for Different Element Types

The visual assessment rating was used as a qualitative solution measurement.

The assessment of the test cases was assumed to be similar for all three methods
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if different volume fractions were used (Hypothesis 3). That is, it was expected

all schemes generate the same solution quality on average. The average values

could indicate if good solutions are found by all schemes even if very high or

very low volume fractions were imposed. However, the PMR, RAMP, and SIMP

scheme did not achieve the same average quality in the volume fraction benchmark

(F = 8.55, p = 0.0004). The pairwise comparison showed that the PMR method

on average generated better results than RAMP (p = 0.0027) and SIMP generated

better results than RAMP (p = 0.0010). The RAMP method had the most cases

in the worst rating category and no cases in the best category as illustrated in

Figure 40. The histogram and this analysis contained 108 cases in total (6 sample

case * 6 different volume fractions * 3 methods).
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Figure 40: Histogram of the Assessments in the Volume Fraction Test

A better solution quality was expected when mesh density was increased (Hy-

pothesis 5). The benchmark data indicated that the different chosen mesh density

groups did not have the same solution quality average (F = 2.66, p = 0.0383).
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The mean assessment values were bigger the more elements were used, except for

the 40,000-elements mesh, which had a worse mean assessment than the 20,000-

elements mesh. However, the pairwise comparison exclusively implied that better

results are achieved with 80,000 elements than with 5,000 elements. These qual-

itative results were similar to the quantitative solution quality results discussed

previously. It was concluded that first good solutions can be achieved when using

20,000 to 40,000 elements (assessment means: 3.39 and 3.30). The default value

in all other analyses was 40,000 elements.

The visual solution quality was not significantly different for the different

element types (F = 0.85, p = 0.5146). Thus, Hypothesis 7 could not be sup-

ported. This similarity of averages does not implicate a visual resemblance of the

final structures. The final structures slightly changed visually if different element

formulations were used. The similarity should rather indicate that all different ele-

ment types can be used without a loss in solution quality. Also mixed-shape meshes

should work well (see section 5.2.3). Stiffer results with a similar visual quality

and similar computational costs might be achieved when using CPS4 instead of

default CPS4R. The advantages of using a higher order interpolation function (p-

method) or a finer mesh (h-method) should be evaluated individually because no

significant results were found to promote one over the other. However, using eight-

node elements in a 40,000-elements mesh resulted in about 120,000 total nodes,

which increased the computational costs. These cases had an average assessment

of 3.26. If an 80,000 CPS4R elements mesh was used, the mean assessment was

3.67. Hence, the designer could start to search for a better solution with refining

mesh density, but should ideally try both methods of mesh refinement.
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5.2.3 Mesh Distortion

The effects of mesh distortion were tested on three different meshes for each

of the six sample cases as described in section 4.1.6. All three meshes had about

40,000 CPS4R elements with default settings. The degree of distortion differed

between the sample cases due to different domain dimensions. The elements of the

MBB Beam Case were the most distorted (see Figure 12).

The main focus of this analysis was on the visual appearance of the structures.

The overall solution quality was similar between the three meshes. However, the

solutions were dependent on the mesh distortion. That is, the left-distorted mesh,

the straight mesh, and the right-distorted mesh always generated slightly different

results. These differences were, however, negligible for the most test cases. Typ-

ical variations were slightly skewed structures and parts of structures, new holes

or skewed holes in the structures, or other new features, like e.g., new trusses.

Some distorted meshes gave better results than the straight mesh. The most strik-

ing example is illustrated in Figure 41. The RAMP formulation was used for

this example. The MBB Beam mesh, which is significantly more distorted than

the other sample cases’ meshes, did not show significantly more distortion depen-

dency. Furthermore, all the schemes showed similar distortion dependency and

some symmetric test cases generated the expected mirror images for the left- and

right-distorted meshes.

Left-distorted Mesh Right-distorted MeshStraight Mesh

Figure 41: Distortion of Case 1 (Default Settings, RAMP Formulation)
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The great resemblance of the distorted and straight mesh solutions might be

caused by the high number of elements used. The high resolution might compen-

sate the effects of mesh distortion. Nevertheless, it could be concluded that mesh

distortion only has an insignificant effect on the TO solution. Mesh distortion

frequently occurred if complex meshes were used. Because the effects of mesh dis-

tortion were assumed to be small, no decrease in solution quality was expected

for more complicated meshes with different element shapes. For that reason, the

PMR code was tested on locally refined meshes. That is, a fine mesh was used in

regions of the design domain, where the final structure was assumed, and a coarse

mesh elsewhere. More nodes, hence more design variables, describes the structure

in a higher resolution and, thus, a higher volume fraction was required for similar

results. Figure 42 shows a locally refined Half Michell Arch with about 40,000

mixed-shape elements. This approach required an involving meshing strategy and

multiple tries for choosing reasonable parameter. However, good results can be

achieved with locally refined meshes if used in a second, downstream design phase.

 

Figure 42: Half Michell Arch PMR Result with a Locally Refined Mesh
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5.2.4 Overall Evaluation

The overall evaluation of this benchmark analyzed all 306 test cases in total,

no matter which parameter was varied. The main goal of this analysis was to

answer the previously formulated research questions on an ideally representative

and broad group of samples.

Mesh Density

5,000 elements 10,000 elements 20,000 elements 40,000 elements 80,000 elements

Figure 43: Half Michell Arch SIMP Results for Different Mesh Densities

First, the benchmark test cases were checked for the common problems,

checkerboarding and mesh dependency. Checkerboarding patterns were not found

in any of the main benchmark cases. The issue of mesh dependency was already

discussed previously. Mesh distortion, varying the element type, and changing the

mesh density altered the visual outcome of the TO problem for all schemes. How-

ever, most of these changes were relatively small and did not change the topology

greatly. Mesh distortion and a variation of element type usually generated re-

sults that rather looked different than better or worse, based on subjective visual

observations. Refining mesh density, however, was perceived to enhance the vi-

sual solution quality by creating more detailed topological structures with higher

resolution (see exemplary Figure 43). This trend was, however, not completely

statistically supported (see 5.2.2).

The next analysis focused on the performance difference of the three schemes.

The computational efficiency of the PMR scheme was lower than in the other two
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Figure 44: Performance Analysis of the SIMP and RAMP Schemes

methods in all test cases. This disadvantage was true for the total as well as the

specific duration. It was discussed previously that a commercial PMR code might

be competitively efficient and that the predictable duration due to the heuristic

approach might be advantageous in scheduling big and intensive design problems

(see sections 5.2.2 and 3.2). The similarity of the other two method’s performance

was tested separately. This analysis checked the distributions of total duration,

specific duration, and iterations needed to converge. The resulting histograms can

be found in Figure 44. The SIMP formulation needed fewer iterations to con-

verge than the RAMP formulation (F = 5.49, p = 0.0202). The SIMP formulation

needed 36.22 iterations on average, the RAMP scheme 40.70 iterations. However,

the total durations and the specific durations of these two schemes were not signif-

icantly different (F = 2.88, p = 0.0915 and F = 0.07, p = 0.7957). Two test cases
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using the RAMP formulation reached the maximum number of iterations. All

other SIMP and RAMP cases converged before this limit. The average iterations

needed for both schemes differed between the sample cases (F = 8.30, p = 0.0000),

so did the total durations (F = 3.71, p = 0.00320), although the specific durations

were similar (F = 0.37, p = 0.8701). Case 2 needed the fewest iterations on average

(mean: 31.40) and Case 4 the most (mean: 47.20). The variations might indicate

that the different sample problems were differently hard to solve.
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Figure 45: Assessment Histogram for the Three Different Methods

Another analysis addressed the obtained solution quality. The difference in

quality for different method, for different sample cases, and for different methods

for each sample case was particularly interesting. The overall visual assessments

had an arithmetic mean of 3.01 (standard deviation: 1.00, median: 3.33). This

distribution parameters support the assumption that the chosen quality measure-

ment was statistically valid and the scale was symmetric. The different methods

deviated in their solution quality (F = 33.67, p = 0.0000). The pairwise com-
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parison showed that PMR and SIMP generated better results than the RAMP

method (p = 0.0010 and p = 0.0010). The mean assessment of the PMR solutions

was 3.29, of the SIMP solutions 3.28, and of the RAMP solutions 2.35. Figure

45 shows these assessment distributions grouped by method. The next test ana-

lyzed the assessments grouped by sample cases (see Figure 46). The sample cases

differed in their average solution quality (F = 7.90, p = 0.0000). Case 1 had a

significantly higher solution quality. The Half Michell Arch Case had the lowest

mean assessment. This value might indicate this case was harder to solve because

of the problem definition (e.g., three loads instead of one and low optimal volume

fraction). The order of these solution quality means did not match the order of

the average iterations and durations needed for the different cases (see Table 3).

However, there was a slight overall trend that more iterations were needed, when

better solutions were generated (see Figure 47).
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Figure 46: Assessment Histogram for the Six Different Cases
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The next step was to check if one sample case was better suited for one

particular method. No difference in the solution quality for the three methods was

found in the cases 2 and 3 (F = 2.71, p = 0.0754 and F = 0.41, p = 0.6686). The

solution quality in the other cases differed for the different methods. The pairwise

comparisons indicated that the PMR and SIMP schemes gave better results than

the RAMP scheme in the Half Michell Arch Case, in Case 1, and in the MBB Case.

These are the same findings as in the overall analysis. The solutions of SIMP were

better than of RAMP in Case 4. However, PMR and RAMP as well as PMR and

SIMP did not differ significantly in that case. In summary, it was concluded the

sample cases were chosen appropriately for this benchmark’s purpose, despite the

observed differences. It could, however, not be stated whether a specific scheme

should be used for a specific type of design problem.

Table 3: Differences Between the Sample Cases

Case ∅ Iterations Needed ∅ Total Duration [s] ∅ Visual Assessment
Half Michell Arch 35.50 158.55 2.48

Case 1 39.33 165.27 3.52
Case 2 31.40 137.59 2.98
Case 3 33.30 139.99 3.29
Case 4 47.20 196.57 3.03

Case MBB 44.03 189.03 2.99

Finally, the time history of the schemes was analyzed. That is, the process

of density redistribution and the course of the objective value over the iterations

was examined. Case 2 with default settings was chosen as an example, because its

solution quality for all methods was similarly rated with about 3, which was an

average assessment. Other test cases showed comparable results.

Figure 48 plots the normalized strain energy over the iteration history. Typ-

ical characteristics of the three schemes were determined. The PMR scheme is a

heuristic scheme and does not converge to the minimum strain energy value. in

fact, it was discovered that the PMR scheme created intermediate structures with
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Figure 47: Iterations Needed to Converge vs. Visual Assessment

minimal strain energy, before the strain energy values increased towards the end

again. These intermediate structures, however, are not manufacturable and the

strain energy values are artificially computed by the linear intermediate material

law. Another characteristic was the unchanging strain energy value from iteration

3 to 4, which is caused by the start of the time smoothing function (see section

3.1). The RAMP strain energy was discovered to oscillated in and out of local

minima for some of the test cases. In this example the strain energy curve only

had a small “dent” at about 10 iterations.

The PMR scheme had the smoothest transition in the density distribution.

That is why the PMR strain energy curves were initially less steep. The SIMP

and the RAMP formulation started more compliant, because their penalization

functions penalize the initially uniform density distribution. However, the strain

energy values dropped fast, and the structure emerged more quickly than with

the PMR scheme. Sigmund and Maute [22] also stated that the SIMP algorithm
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Figure 48: Normalized Strain Energy History for an Example Case

convergences fast from intermediate densities state to a solid-void design. It is,

however, slow in making changes to that structure. Both effects are due to the

penalization law for the intermediate densities. The PMR method could have an

advantage in changing the structures because it does not penalize the intermediate

material. However, the heuristic nature of the scheme would also be a disadvantage

because the PMR cannot start with non-uniform initial guesses.

Figure 49: Density Histogram for an Example PMR Case
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These described characteristics of the schemes can also be seen in Figures

49 to 51. The figures show the density distribution and the cumulative density

distribution for each of the methods at about 10% of the iterations and at the last

iteration of the example test case. The displayed densities of SIMP and RAMP

are elemental quantities, while the PMR density is a nodal quantity. The optimal

final distribution of material would look like two peaks at ρ = 0 and ρ = 1 in the

top histogram and a function with two steps in the bottom cumulative histogram

(see t = 1 in Figure 6). The amount of unwanted intermediate density in the

final solution can visually be determined as the area over and under the black

line in the bottom cumulative histograms. The PMR scheme came closest to this

final distribution while the RAMP and SIMP formulations generated slightly more

intermediate densities in the final solution. A possible reason could be that the

density distribution is imposed in the PMR scheme and cannot deviate.

RAMP

Figure 50: Density Histogram for an Example RAMP Case

These intermediate densities could also be the reason why the final PMR

topologies were stiffer than the SIMP and RAMP results. The PMR scheme has

fewer intermediate densities in the final structure and a linear material model,

which does not “penalize” these densities. Additionally, the minimum density was

chosen to be ρmin = 0.01 for the PMR algorithm and the default Tosca SIMP value
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was ρmin = 0.001. That is, the minimum stiffness was 10−2 times smaller than the

original material property for the PMR method and 10−9 times smaller for SIMP.

Hence, the “void” regions of the design domain are computed multiple orders of

magnitudes stiffer in the PMR algorithm.

Figure 51: Density Histogram for an Example SIMP Case

Some discoveries on the three methods were made by looking at the final struc-

ture and were not qualitatively or quantitatively measured. First, the PMR code

generated results that were visually the closest to the exact analytical solutions

in most of the sample cases. That is, for example, the number of trusses in a fan

structure was higher. However, the solution of the other methods also included the

basic features of the analytical solutions. Second, the RAMP scheme was the most

sensitive to a change in parameter. For example, only the finest meshed RAMP

problem in the default Half Michell Arch Case generated a reasonable result. The

resulting structures with coarser meshes were unusable. Finally, the SIMP algo-

rithm was noticeable in that very complex but physically possible structures were

generated in challenging setting, like e.g., very low volume fractions. The other

schemes, particularly RAMP, achieved “unfinished” analytical designs, while the

SIMP formulation rather found a completely different alternative structure. All
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these characteristics were specifically found in this benchmark. It can, however,

not be clarified if all the effects are generally valid.
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CHAPTER 6

Conclusions and Future Research

In this chapter, the results of the research are concluded and the research

questions are answered. Subsequently, the limitations of this work are discussed.

The demand for further future research is then derived from the conclusions and

limitations.

6.1 Conclusions

The fifth and final methodological step was to interpret and discuss the results

of this study and, thus, to answer the posted research questions. This section

follows the general structure of the research, first the enhancement findings and

then the benchmark results are discussed.

The goal of translating and enhancing the original PMR code was to increase

the performance and the ease of use. The computational efficiency boost was not

entirely achieved. The newly developed scheme needed more time per iteration

than the original standalone MATLAB version. However, the new code’s per-

formance was less sensitive to an increase in the number of nodes in the mesh.

Moreover, the new scheme had fixed time costs due to the Abaqus license check

and pre-processing functions. It was assumed that these Abaqus specific processes

could potentially be removed or reduced in a further optimized commercial PMR

implementation. Additionally, the comparison with the SIMP formulation showed

that a good optimized academic MATLAB code was also faster than the Tosca

Structure equivalent. Besides, the efficiency of individual PMR functions was al-

ready improved by multiple orders of magnitudes during the enhancement process.

For this reason, it was argued that a commercial PMR algorithm could potentially

be competitive to other methods in computational efficiency (see section 5.2.2).
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The ease of use of the PMR code was noticeably enhanced. A greater va-

riety of features and more design options were enabled through the use of the

Abaqus FE solver. For example, TO problems with different element types and

non-rectangular design domains can now be generated. Moreover, the direct ease

of use when defining the problem was improved by utilizing the interactive GUI

instead of specifying boundary and load vector explicitly. Every designer who can

set up an elementary static FE model in Abaqus can use the tool and solely needs

to specify two parameters, the volume fraction and the number of iterations.

Previously, it was discussed that the TO research community has developed

some requirements for new schemes (see section 2.6). For example, Deaton and

Grandhi [19] demanded a shift of focus from the simple minimum compliance

problems to more realistic problems. Sigmund and Maute [22] required the con-

centration on more efficient and generally applicable methods and formulated nine

particular challenges for TO schemes. The PMR code was checked on these chal-

lenges.

• Regarding efficiency, the current lack of efficiency was previously discussed.

However, it was assumed that a commercial approach might be faster and

that the predictability of the approach might be advantageous for scheduling

large scale 3D problems.

• Regarding general applicability, the current version of the PMR method is

only applicable to minimum compliance problems with a single volume con-

straint. However, the applicability of this heuristic approach on multi-physics

problems has not been investigated and could be interesting to future re-

search.

• Regarding multiple constraints, the feasibility of imposing multiple con-

straints has also not been investigated yet. Additional geometric constraints,
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however, could potentially be implemented in the current PMR version, e.g.,

minimum length constraints (see section 2.3).

• Regarding complex boundary conditions, the present PMR version only sup-

ports static mechanical loading conditions.

• Regarding independence on starting guess, the PMR method generally im-

poses the uniform initial density distribution.

• Regarding few tuning parameters, one advantage of the PMR scheme is that

only the number of iterations need to be chosen as a tuning parameter.

However, the method is not generally applicable (see challenge 2) and, thus,

no statement about problem depending parameter settings could be made.

• Regarding mesh-independent convergence, another advantage of this heuris-

tic approach is that PMR has a fixed number of iterations and does not

converge.

• Regarding ease of use, PMR requires a similar experience with FEA tools as

other methods. With PMR, the use and the understandability are facilitated

by the simplicity of the approach. That is, no understanding of optimization

theory and convergence, of level set theory, or of artificial material models

is required to understand the prescribed redistribution of material and ob-

tain a topology. Hence, PMR could potentially be applicable in engineering

education and research.

• Regarding alternatives to finite element analysis, the current PMR versions

rely on FEA. Other tools for computing the strain energy fields have not

been investigated.
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It can be summarized that the current PMR version cannot comply with the

nine challenges on general applicable and sophisticated TO software. However,

the heuristic approach could potentially perform well in the minimum compliance

niche. Further investigations are needed on PMR’s general applicability.

The second part of this research was to conduct the benchmark of the PMR,

RAMP and SIMP method. The efficiency as well as the quantitative and quali-

tative measures of the solution quality were examined. The PMR was found to

be slower than the other method as discussed previously. The Tosca Structure’s

SIMP and RAMP formulation were similar in efficiency, which was expected be-

cause the formulations solely deviate in their material penalization model. These

two methods also showed similarly stiff final results. The final PMR structures,

however, where constantly stiffer, although the scheme does not include a conver-

gence criteria. Two explanations, why these solutions may be stiffer than the SIMP

and RAMP results were introduced in section 5.2.4. The visual solution quality

analysis showed deviating results. The RAMP formulation generated worse re-

sults than the SIMP and PMR methods. The solution of the SIMP and PMR

approaches were very similar. The PMR results were visually often closer to the

expected analytical solution of the problems. The SIMP solution tended to find

good practical and alternative structures for complicated problems. Moreover,

SIMP converged quickly to a solid-void state, while the PMR imposed a smoother

density distribution transition.

The conclusion of the benchmark was very similar to the previous discussed

nine challenges and some results were already stated previously. SIMP is generally

well-researched and applicable for many settings. The formulation is also part

of the optimized and dedicated TO software. PMR, however, is a good heuristic

scheme in the ”minimum compliance under a single volume constraint” niche if
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further optimized for more efficiency. Some advantages of PMR are resemblance of

the results to the analytical solution and its duration predictability, which makes

it easier to schedule big problems. Moreover, the PMR scheme is quite simple.

That is, the PMR method is most likely easier to understand than sophisticated

optimization approaches and needs few parameters. Hence, the PMR algorithm

could be used for engineering education purposes. However, the current version

is slower than the other software tools. The presumably biggest disadvantage

of the PMR method is the focus on the compliance minimization problem. In

this field, the heuristic approach was able compete with the solution quality of

the dedicated optimization methods. TO generally finds first practical solutions,

which need further analysis, such as buckling analysis, to obtain production-ready

designs. Hence, the heuristic approach of PMR, potentially in a hybrid software

tool, similar to the hard-kill methods (see section 2.2), could give sufficient results

for many practical situations.

The parametric benchmark study also provided information on reasonable

settings and characteristics of the three tested methods. The reasonable number

of iterations for the PMR method was chosen to be about 75. In some cases, better

results might be obtained with more iterations. A finer mesh might give better

results for all methods, but the calculations will take more time. These meshes

also generated stiffer results. This result is consistent with the findings of Bulman

et al. [17]. A default mesh with 40,000 elements was chosen based on the findings

(see section 5.2.2), which is a finer resolution than the minimum mesh proposal

by Valdez et al. with 10,000 elements [38]. Different element types can be used

in the meshes. Higher order elements might, however, increase the computational

costs. Moreover, no checkerboarding was found for the tested TO schemes and

mesh distortion did not have great impact on the visual solution quality. Hence,
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mixed-shape, locally refined meshes could be used. The mesh distortion results

were similar but slightly less distinct than in the study by Bulman et al. [17].

6.2 Limitations

Some assumptions formulated and accepted in this research limit the validity

of the results. It was assumed that the data complied with the premises for all

conducted statistical tests (see section 4.2). The group size of the sampling in par-

ticular was, however, smaller in some tests than typically required. Additionally,

normality and homoscedasticity were not proven. However, most of the significant

test results statistically supported trends that were expected beforehand and/or

could visually be determined from the data plots. The statistical tests were used

as a tool to potentially quantify these effects. It could be assumed that similar

effects would be discovered with more data and satisfied assumptions.

Another critical assumption was the validity of the visual quality assessment.

The measurement might have been biased towards a specific method. However,

this issue was attempted to be ruled out by averaging three persons’ ratings. The

two other engineering students rated the test cases and were not aware of the TO

method and other settings during the process (see section 4.2).

A more quantitative effect that might of have distorted the data was the effect

of decreasing performance in a loop execution (see section 5.1.1). This effect was

assumed to be negligible and this assumption seemed to hold. Comparing the

order of parameters in the loop with the discovered trends in the duration data

showed that the influences of parameter change were much greater and/or the loop

effect was absence. For example, the mesh was tested in descending order, but the

observed linear trend was the other way around.

Some results were not consistent with literature. Valdez et al. [38] state

that in their study adapting the convergence criteria to the individual cases was
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difficult and, thus, the benchmarked original SIMP algorithm commonly reached

the maximum number of iterations, which was defined to be 150. The threshold in

this benchmark was 75 iterations and was only reached two times by RAMP cases.

The average SIMP algorithm case needed 36.22 iterations. Although a similar

convergence criterion is used, it is difficult to argue why the SIMP algorithm this

study used deviated from the SIMP algorithm the other study used.

Different SIMP algorithms use different solvers and other deviating settings

to solve an optimization problem that includes the SIMP specific material model

(see sections 2.2.1 and 2.4). That is, there is no single “SIMP algorithm”, but

multiple algorithms solving similar versions of the SIMP problem. For example,

one benchmark study by Rojas-Labanda and Stolpe [39] focused specifically on

analyzing different solvers. The results of this benchmark, however, particularly

compare the Tosca Structure’s RAMP and SIMP implementation using the MMA

to the heuristic PMR scheme, because all three schemes use the same FE solver,

Abaqus. However, it is arguable whether all findings have general validity for any

RAMP and SIMP implementation.

6.3 Future Research

In the future, further research could be conducted on both parts of this study,

on the enhancement and on the benchmark. The research on the benchmark could

rule out some of the limitations. First, more test cases could be run to obtain a

better statistical foundation by making the sampling sizes bigger. Additionally,

the resolution of certain effects would be greater if more values for each parameter

were tried, e.g., volume fractions between 25% and 50%. Potentially, more and

other effects could be evaluated with this data. Furthermore, more people could

visually assess the resulting structures to reduce a potential bias. These people

could maybe have different theoretical backgrounds. The benchmark should also
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be conducted with different settings and different convergence criteria to deter-

mine associated effects. Another important research focus would be to replicate

this benchmark for other software and algorithms to check the general validity of

the findings. Future research could also conduct a similar benchmark with the

boundary variation schemes, because they are fairly new and are recently getting

more popular (see section 2.2.4).

Further research on the PMR scheme could improve the method and bring it

closer to commercial viability. For this, the feasibility of certain changes to the

scheme and the effects of these new features need to be investigated. For example,

it should be checked whether a minimization of volume with a stress constraint

analogous to a study by Valdez et al. [38] is feasible. Another test could analyze

the potential decoupling of design variable and the FE mesh, introduced shortly

in section 2.2. One topology optimization element does not necessarily have to

be one element in the FE mesh. Using this approach for the PMR scheme could

potentially optimize efficiency or solution resolution. Moreover, the effects of a

different material model for the PMR code should be tested. It would be interesting

to see whether a penalization law similar to the SIMP formulation would give

comparable results with fewer iterations. Furthermore, two ideas that are also

found in other articles (e.g., [6] and [53]) could be tested in a similar manner,

adaptive remeshing and removing void elements. The former is the fundamental

idea of hybrid methods (see section 2.2). The foundations for adaptive remeshing

have already been set by analyzing locally refined meshes. Hence, both ideas have

a potential to be feasible extensions to the current PMR code. The initial PMR

version has an option to predefine certain nodes to be fully dense or fully void

and, thus, purposely exclude them from the design domain. This feature was not
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implemented in current Abaqus PMR version. However, future research could

realize a similar functionality for the new algorithm if needed.

Two of the presumably most discussed and important characteristics of TO

schemes are general applicability and production-readiness. First, the lack of gen-

eral applicability of the PMR was discussed previously (see section 6.1). Bendsøe

and Sigmund [21] argued that the fundamental idea of homogenization methods is

applicable to other physical properties than elasticity as well. PMR could be cat-

egorized as a homogenization method. Future research could investigate whether

the PMR-specific heuristic transition of density with beta distributions is applica-

ble to multi-physics problems for which sensitives might not be strictly negative

(see section 2.6). Second, some authors demand the ability to impose (additive)

manufacturing constraints on the TO algorithm to obtain designs with a higher

production-readiness (e.g., [5]). For example, a minimum length constraint, similar

to the constraint examined in a study by Guest et al. [34], could potentially be fea-

sible and relatively straightforward to implement into the current PMR code. After

further improvement, the commercial viability of the PMR scheme as a heuristic

approach to TO optimization should be reevaluated.
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APPENDIX A

Boundary Conditions of the Sample Cases

A.1 Benchmark Sample Cases

Figure A.52: Half Michell Arch: Loading and Boundary Conditions
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Figure A.53: Case 1: Loading and Boundary Conditions

Figure A.54: Case 2: Loading and Boundary Conditions

99



Figure A.55: Case 3: Loading and Boundary Conditions
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Figure A.56: Case 4: Loading and Boundary Conditions

Figure A.57: Case MBB: Loading and Boundary Conditions
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A.2 Auxiliary Sample Cases

Figure A.58: 3D Loxodrome: Loading and Boundary Conditions

 

Figure A.59: Pressure Case: Loading and Boundary Conditions

102



APPENDIX B

Additional Figures

B.1 Integration Point-based PMR Scheme

Figure B.60: Integration Point-based PMR Half Michell Arch Result (CPS4)

 

Figure B.61: Integration Point-based PMR Half Michell Arch Result (CPS8R)
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B.2 Varying the Number of Iterations
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Figure B.62: Assessment Histogram Varying the Number of Iterations
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APPENDIX C

Additional Tables

Table C.4: Edge Seeds to Generate Different Fine Meshes

Number of Elements Half Michell Arch Case 1 Case 2 Case 3 Case 4 Case MBB
80,000 (Quad) 0.00053 0.3535 0.3535 0.5 0.53 0.11174
40,000 (Quad) 0.00075 0.5 0.5 0.707 0.750 0.1575
40,000 (Tri) 0.00106 0.707 0.707 1.0 1.061 0.224

20,000 (Quad) 0.00106 0.707 0.707 1.0 1.061 0.224
10,000 (Quad) 0.0015 1.0 1.0 1.41 1.505 0.316
5,000 (Quad) 0.00215 1.41 1.41 2.0 2.12 0.445

Table C.5: Parameter Used to Generate Level Set Results

Parameter Scheme by Challis Scheme by TopOpt Group

# Elements in x Direction 70 200

# Elements in y Direction 70 200

Volume Fraction 7% 8%

Additional Parameters stepLength = 12 optimization delta = 0.01
numReinit = 6
topWeight 3

Table C.6: Results of the ANOVAs

Test object F p Means
Hypothesis 1 15.444596 0.000000 1.33, 2.28, 3.17, 3.56, 3.78, 3.94
Hypothesis 3 8.545259 0.000364 2.92, 2.145, 2.99
Hypothesis 5 2.656151 0.038340 3.67, 3.30, 3.39, 3.17, 2.74
Hypothesis 7 0.854370 0.514597 3.30, 3.43, 3.26, 3.28, 2.87, 3.09

Iterations needed by method 5.492543 0.020202 40.70, 36.22
Duration by method 2.878206 0.091534 173.57 s, 155.43 s

Specific duration by method 0.067248 0.795686 4.30 s, 4.35 s
Iterations needed by case 8.297426 0.000000 35.50, 39.33, 31.40, 33.30, 47.20, 44.03

Duration by case 0.367856 0.870105 4.50 s, 4.36 s, 4.45 s, 4.22 s, 4.19 s, 4.23 s
Specific duration by case 3.710552 0.003237 158.55 s, 165.27 s, 137.59 s,

139.99 s, 196.57 s, 189.03 s
Difference of methods 33.672318 0.000000 3.29, 2.35, 3.28

Difference of cases 7.896284 0.000000 2.48, 3.52, 2.98, 3.29, 3.03, 2.99
Methods (Half Michell) 16.880932 0.000002 2.99, 1.51, 2.75

Methods (Case 1) 35.146339 0.000000 4.15, 2.18, 3.98
Methods (Case 2) 2.710612 0.075381 3.24, 2.84, 2.76
Methods (Case 3) 0.405464 0.668643 3.26, 3.20, 3.41
Methods (Case 4) 5.638141 0.005924 2.96, 2.757, 3.41

Methods (Case MBB) 21.712859 0.000000 3.33, 1.76, 3.73
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Table C.7: Results of the Tukey HSDs 1/2

Test object group1 group2 meandiff p-adj lower upper reject
Hypothesis 1 10 Iterations 25 Iterations 0.9444 0.1477 -0.1779 2.0668 False

10 Iterations 50 Iterations 1.8333 0.001 0.711 2.9557 True
10 Iterations 75 Iterations 2.2222 0.001 1.0998 3.3446 True
10 Iterations 100 Iterations 2.4444 0.001 1.3221 3.5668 True
10 Iterations 150 Iterations 2.6111 0.001 1.4887 3.7335 True
10 Iterations 250 Iterations 2.6667 0.001 1.5443 3.789 True
25 Iterations 50 Iterations 0.8889 0.1992 -0.2335 2.0113 False
25 Iterations 75 Iterations 1.2778 0.0171 0.1554 2.4002 True
25 Iterations 100 Iterations 1.5 0.0032 0.3776 2.6224 True
25 Iterations 150 Iterations 1.6667 0.001 0.5443 2.789 True
25 Iterations 250 Iterations 1.7222 0.001 0.5998 2.8446 True
50 Iterations 75 Iterations 0.3889 0.9 -0.7335 1.5113 False
50 Iterations 100 Iterations 0.6111 0.6045 -0.5113 1.7335 False
50 Iterations 150 Iterations 0.7778 0.3391 -0.3446 1.9002 False
50 Iterations 250 Iterations 0.8333 0.263 -0.289 1.9557 False
75 Iterations 100 Iterations 0.2222 0.9 -0.9002 1.3446 False
75 Iterations 150 Iterations 0.3889 0.9 -0.7335 1.5113 False
75 Iterations 250 Iterations 0.4444 0.8637 -0.6779 1.5668 False
100 Iterations 150 Iterations 0.1667 0.9 -0.9557 1.289 False
100 Iterations 250 Iterations 0.2222 0.9 -0.9002 1.3446 False
150 Iterations 250 Iterations 0.0556 0.9 -1.0668 1.1779 False

Hypothesis 3 PMR RAMP -0.7685 0.0027 -1.3052 -0.2319 True
PMR SIMP 0.0741 0.9 -0.4626 0.6107 False

RAMP SIMP 0.8426 0.001 0.3059 1.3792 True
Hypothesis 5 10k Elements 20k Elements 0.2222 0.9 -0.5991 1.0436 False

10k Elements 40k Elements 0.1296 0.9 -0.6917 0.951 False
10k Elements 5k Elements -0.4259 0.5876 -1.2473 0.3954 False
10k Elements 80k Elements 0.5 0.443 -0.3213 1.3213 False
20k Elements 40k Elements -0.0926 0.9 -0.9139 0.7288 False
20k Elements 5k Elements -0.6481 0.1898 -1.4695 0.1732 False
20k Elements 80k Elements 0.2778 0.8694 -0.5436 1.0991 False
40k Elements 5k Elements -0.5556 0.3332 -1.3769 0.2658 False
40k Elements 80k Elements 0.3704 0.6933 -0.451 1.1917 False
5k Elements 80k Elements 0.9259 0.0191 0.1046 1.7473 True

Hypothesis 7 CPS4 CPS4R -0.1296 0.9 -0.9959 0.7366 False
CPS4 CPS3 -0.5556 0.4329 -1.4218 0.3107 False
CPS4 CPS8 -0.1481 0.9 -1.0144 0.7181 False
CPS4 CPS8R -0.1667 0.9 -1.0329 0.6996 False
CPS4 CPS6M -0.3333 0.8618 -1.1996 0.5329 False

CPS4R CPS3 -0.4259 0.685 -1.2922 0.4403 False
CPS4R CPS8 -0.0185 0.9 -0.8848 0.8477 False
CPS4R CPS8R -0.037 0.9 -0.9033 0.8292 False
CPS4R CPS6M -0.2037 0.9 -1.07 0.6626 False
CPS3 CPS8 0.4074 0.7203 -0.4589 1.2737 False
CPS3 CPS8R 0.3889 0.7557 -0.4774 1.2552 False
CPS3 CPS6M 0.2222 0.9 -0.644 1.0885 False
CPS8 CPS8R -0.0185 0.9 -0.8848 0.8477 False
CPS8 CPS6M -0.1852 0.9 -1.0514 0.6811 False

CPS8R CPS6M -0.1667 0.9 -1.0329 0.6996 False
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Table C.8: Results of the Tukey HSDs 2/2

Test object group1 group2 meandiff p-adj lower upper reject
Difference of methods PMR RAMP -0.9402 0.001 -1.2362 -0.6443 True

PMR SIMP -0.0069 0.9 -0.3028 0.2891 False
RAMP SIMP 0.9333 0.001 0.6137 1.253 True

Methods (Half Michell) PMR RAMP -1.4763 0.001 -2.1112 -0.8414 True
PMR SIMP -0.241 0.6237 -0.8759 0.3939 False

RAMP SIMP 1.2353 0.001 0.5483 1.9223 True
Methods (Case 1) PMR RAMP -1.9763 0.001 -2.5797 -1.3729 True

PMR SIMP -0.1724 0.7521 -0.7758 0.431 False
RAMP SIMP 1.8039 0.001 1.151 2.4568 True

Methods (Case 2) PMR RAMP -0.393 0.1917 -0.9299 0.1439 False
PMR SIMP -0.4714 0.0961 -1.0083 0.0655 False

RAMP SIMP -0.0784 0.9 -0.6593 0.5025 False
Methods (Case 3) PMR RAMP -0.0678 0.9 -0.616 0.4804 False

PMR SIMP 0.1479 0.7739 -0.4003 0.6961 False
RAMP SIMP 0.2157 0.6455 -0.3775 0.8088 False

Methods (Case 4) PMR RAMP -0.2132 0.5 -0.6669 0.2404 False
PMR SIMP 0.4534 0.0502 -0.0002 0.9071 False

RAMP SIMP 0.6667 0.0052 0.1758 1.1575 True
Methods (Case MBB) PMR RAMP -1.5686 0.001 -2.2786 -0.8586 True

PMR SIMP 0.3922 0.386 -0.3179 1.1022 False
RAMP SIMP 1.9608 0.001 1.1925 2.729 True

Table C.9: Results of the Linear Regression

Test object R2 p intercept slope

Mesh density (PMR) 0.990577 0.000000 13.267619 s 0.000171 s/node

Mesh density (RAMP) 0.956974 0.000000 2.009753 s 0.000053 s/node

Mesh density (SIMP) 0.991593 0.000000 1.913398 s 0.000057 s/node

Same case (loop 1) 0.986812 0.000000 21.127775 s 0.023123 s/try

Same case (loop 2) 0.891070 0.000000 20.966208 s 0.028180 s/try
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APPENDIX D

Abaqus PMR Python Code

D.1 Code
# ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

# Author : Tjard Baetge
# Created on : 24 . 01 . 21
# Desc r ip t i on : This Pre sc r ibed Mater ia l R e d i s t r i b u t i o n s c r i p t i s a h e u r i s t i c

↪→ scheme f o r minimizing compliance under a
# s i n g l e volume c o n s t r a i n t . The s c r i p t needs to be run from with in

↪→ the Abaqus CAE. The input parameter
# are the volume f r a c t i o n and the number o f i t e r a t i o n s . The PMR

↪→ method has been developed
# by Taggart et a l . in 2008 .
#
# Taggart , D. G. , Dewhurst , P . , Dobrot , L . , & Gi l l , D. D.
# ”Development o f a beta func t i on based topology opt imiza t i on

↪→ procedure . ”
# 2008 Abaqus Users Conference , Newport , RI . 2008 .
#
# ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

import numpy as np
import time
import s c ipy . s p e c i a l as sc
from sc ipy import i n t e r p o l a t e as s i n t e r p o l a t e
from abaqus import ∗
from abaqusConstants import ∗
from caeModules import ∗
import v i s u a l i z a t i o n
import p i c k l e
import s h u t i l
import os

de f pmrgen ( v o l f r a c , n ) :
t i c = time . time ( )
p r i n t ( ' - - - - - - - - - PMR scheme s t a r t e d - - - - - - - - - ' )
p r i n t ( 'Volume f r a c t i o n : %3.2 f%%' % ( v o l f r a c ∗ 100) )
p r i n t ( 'Number o f I t e r a t i o n s : %d ' % (n) )
p r i n t ( ' - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ' )

# s e t t i n g s
time smooth = 1 # (1 = on , 0 = o f f )
use check sym = 1 # (1 = on , 0 = o f f )
numCPUs = 7 # number o f CPUs that should be used

# get cur rent working d i r e c t o r y and f i l e path
cwd = os . getcwd ( )
pathFolder = cwd + ' / '
f i leName = ' '
f o r root , d i r s , f i l e s in os . walk (cwd) :

f o r f i l e in f i l e s :
i f f i l e . f i n d ( ” . cae ” ) != -1 : # only one . cae f i l e per f o l d e r

↪→ al lowed !
f i leName = f i l e
break

pathFi l e = pathFolder+fi leName

# read out in fo rmat ion and manipulate the . inp f i l e ( noe = number o f elements ,
↪→ non = # of nodes )

noe , non , ModelName , PartName , InstanceName , JobName , e l e nodes , StepName =
↪→ g e t f i r s t i n f o ( pathFi l e )

E, PR = m a n i p u l a t e i n p f i l e ( pathFolder+JobName+ ' . inp ' )

# i n i t i a l i z e node and element ar rays
numdesign = i n t ( non )
numtot = numdesign # t h i s scheme i s not us ing prede f i n ed void or dense nodes
node des ign = [ i f o r i in range (1 , numdesign+1) ]
e l ement des ign = [ i f o r i in range (1 , i n t ( noe ) + 1) ]
node de s i gn ar ray = np . array ( node des ign ) - 1
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e l e m e n t l a b e l a r r a y = np . array ( e l ement des ign ) - 1

# i n i t i a l i z e dens i ty parameters
xsave = np . z e r o s ( ( numtot , n+1) )
xsave [ : , 0 ] = v o l f r a c
x0 = v o l f r a c ∗ np . ones ( ( numdesign , 1) )
x1 = x0
x2 = x0
x4 = np . z e r o s ( ( numtot , 1) )
Usave = np . z e r o s ( ( numtot , n) )
x4 [ node de s i gn ar ray ] = x0
xvec = x4

# compute f i r s t cumulat ive d i s t r i b u t i o n func t i on
t = np . l i n s p a c e ( s t a r t =1./n , stop =.999 , num=n)
Ut = np . z e r o s ( ( n , 1) )
cd f = np . l i n s p a c e (0 , 1 , numdesign )
rhor = (1 - v o l f r a c ) / v o l f r a c
xp = np . l i n s p a c e (0 , 1 , 100)

# main loop
f o r i in range (0 , n ) :

i t e r s t a r t = time . time ( )

# beta func t i on c a l c u l a t i o n
lambda i = t [ i ] ∗ ( v o l f r a c - v o l f r a c ∗∗2) ∗∗ . 5
r = ( -1 + rhor / ( lambda i ∗∗ 2 ∗ (1 + rhor ) ∗∗ 2) ) / (1 + rhor )
s = r ∗ rhor
yp = sc . be ta inc ( r , s , xp )
f = s i n t e r p o l a t e . in te rp1d (np . append (np . i n s e r t ( yp [ ( yp > 0) & ( yp < 1) ] , 1 ,

↪→ 0) , 1) ,
np . append (np . i n s e r t ( xp [ ( yp > 0) & ( yp < 1) ] , 1 ,

↪→ 0) , 1) )
rho = f ( cd f ) # dens i ty d i s t r i b u t i o n f o r t h i s i t e r a t i o n

# FE- Ana lys i s
p r i n t ( 'FEA s t a r t ' )
ca l l FE ( noe , e l e nodes , E, PR, xvec , JobName , InstanceName , pathFolder ,

↪→ e l e m e n t l a b e l a r r a y , numCPUs)
p r i n t ( ”FEA f i n i s h e d ” )
# read in s t r a i n energy va lues
U, Ut [ i ] = r ead va lue s ( non , StepName )

Usave [ : , i ] = U[ : , 0 ]
# update x
Udesign = U[ node de s i gn ar ray ]
rank = np . a r g s o r t ( Udesign [ : , 0 ] ) # mask f o r so r t ed U va lues
x2 [ rank , 0 ] = rho # a s s i g n d e n s i t i e s to nodes based on rank

i f time smooth == 0 :
# no time step smoothing :
i f use check sym == 1 :

x2 = check sym ( Udesign , x2 )

x2 [ x2 < . 0 1 ] = .01
x2 [ x2 > 1 ] = 1
x3 = np . z e r o s ( ( numtot , 1) )
x3 [ node de s i gn ar ray ] = x2

xsave [ : , i +1] = x3 [ : , 0 ]
xvec = x3

e l s e :
# time step smoothing
i f i < 2 :

x3 = x2
x1 = x3

e l s e :
x3 = x1 + . 5 ∗ ( x2 - x0 )
x0 = x1
x1 = x3

i f use check sym == 1 :
x3 = check sym ( Udesign , x3 )

x3 [ x3 < . 0 1 ] = .01
x3 [ x3 > 1 ] = 1
x4 [ node de s i gn ar ray ] = x3

xvec = x4
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xsave [ : , i +1] = x4 [ : , 0 ]

# pr in t r e s u l t s o f t h i s i t e r a t i o n
p r in t ( ' I t e r a t i o n , Time , Total s t r a i n energy = %d/%d , %f , %e ' %( i +1, n , t [ i

↪→ ] , Ut [ i ] ) )

i f i == 0 : # copy f i l e in f i r s t i t e r a t i o n
s r c = ' pmr job . odb '
dst = ' v i s pmr job . odb '
s h u t i l . c o p y f i l e ( src , dst )

# v i s u a l i z e r e s u l t s in Abaqus
v i s u a l i z e d e n s i t i e s ( xvec , i , node des ign , Ut , n , StepName , t )

i t e r s t o p = time . time ( )
p r i n t ( ' Total i t e r a t i o n durat ion : %f '%( i t e r s t o p - i t e r s t a r t ) )
r e s t = ( i t e r s t o p - i t e r s t a r t ) /60∗(n - ( i +1) )
seconds = r e s t %1.0∗60
p r in t ( ' Estimated time l e f t : %d min %d sec '%(re s t , seconds ) )

toc = time . time ( )
t o t a l c a l c d u r a t i o n = toc - t i c
p r i n t ( ” Elapsed time i s : {} min” . format ( ( t o t a l c a l c d u r a t i o n ) /60) )

# save r e s u l t s f o r p l o t t i n g in a d i c t i o n a r y and dump i t
in fo rmat ion = {}
i n fo rmat ion [ 'Volume Fract ion ' ] = v o l f r a c
in fo rmat ion [ 'Number o f I t e r a t i o n s ' ] = n
in fo rmat ion [ 'Number o f Elements ' ] = noe
in fo rmat ion [ 'Number o f Nodes ' ] = non
in fo rmat ion [ ' Total S t ra in Energy ' ] = Ut
in fo rmat ion [ ' Duration ' ] = t o t a l c a l c d u r a t i o n
in fo rmat ion [ ' D e n s i t i e s ' ] = xsave
p i c k l e . dump( in format ion , open ( ” pmr info . p” , ”wb” ) )

# View Cut opt ions
s e s s i o n . v iewports [ ' Viewport : 1 ' ] . odbDisplay . ViewCut (name= 'Cut -4 ' ,

shape=ISOSURFACE)
s e s s i o n . v iewports [ ' Viewport : 1 ' ] . odbDisplay . viewCuts [ 'Cut -4 ' ] . s e tVa lues (

showModelBelowCut=False )
s e s s i o n . v iewports [ ' Viewport : 1 ' ] . odbDisplay . viewCuts [ 'Cut -4 ' ] . s e tVa lues (

showModelOnCut=False )
s e s s i o n . v iewports [ ' Viewport : 1 ' ] . odbDisplay . viewCuts [ 'Cut -4 ' ] . s e tVa lues (

showModelAboveCut=True )
s e s s i o n . v iewports [ ' Viewport : 1 ' ] . odbDisplay . d i s p l ay . s e tVa lues ( p l o t S t a t e =(

UNDEFORMED, ) )
s e s s i o n . v iewports [ ' Viewport : 1 ' ] . view . f i tV i ew ( )

de f check sym (U, x ) :
”””
This func t i on a s s i g n s nodes with the same s t r a i n energy dens i ty the same

↪→ dens i ty
: param U: s t r a i n energy dens i ty vec to r
: param x : dens i ty vec to r
: r e turn : r e v i s e d dens i ty vec to r
”””
c h e c k s t a r t = time . time ( )

# c a l c u l a t e unique s t r a i n energy dens i ty va lue s
values , index , count = np . unique (U, r e tu rn count s=True , r e tu rn index=True )
index2 = index [ count > 1 ] # i n d i c e s o f nodes with s t r a i n energy va lue s that

↪→ occur more than once

f o r i in index2 :
y = np . argwhere (U[ : , 0 ] == U[ i ] ) # c r e a t e mask o f nodes with the same

↪→ s t r a i n energy value
x [ y ] = f l o a t (np . mean( x [ y ] ) ) # average d e n s i t i e s to conserve mass

check s top = time . time ( )
p r i n t ( ' Check sym durat ion : %f '%(check stop - c h e c k s t a r t ) )
re turn x

de f g e t f i r s t i n f o ( pathFi l e ) :
”””
This func t i on reads the model database and i n i t i a l l y e x t r a c t s the important

↪→ i n fo rmat ion
: param pathFi l e : path to the . cae f i l e
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: r e turn : Number o f Elements , Number o f Nodes , Dic t ionary which element has
↪→ which nodes ,

and Names o f Model , Part , Instance , Job and Step
”””
openMdb(pathName=pathFi l e ) # open f i l e and read i n f o
ModelName = mdb. models . keys ( ) [ 0 ]
PartName = mdb. models [ ModelName ] . par t s . keys ( ) [ 0 ]
InstanceName = mdb. models [ ModelName ] . rootAssembly . i n s t a n c e s . keys ( ) [ 0 ]
JobName = mdb. jobs . keys ( ) [ 0 ]
StepName = mdb. models [ ModelName ] . s t ep s . keys ( ) [ 1 ]

# ensure that s t r a i n energy measurement i s s e l e c t e d
FieldOutputName = mdb. models [ ModelName ] . f i e ldOutputRequests . keys ( ) [ 0 ]
mdb. models [ ModelName ] . f i e ldOutputRequests [ FieldOutputName ] . s e tVa lues ( v a r i a b l e s

↪→ =(
'S ' , 'PE ' , 'PEEQ ' , 'PEMAG' , 'LE ' , 'U ' , 'RF ' , 'CF ' , 'CSTRESS ' , 'CDISP ' ,
'ENER ' ) )

# wr i t e the . inp f i l e that can be manipulated l a t e r on
mdb. jobs [ JobName ] . wr i te Input ( cons i s tencyCheck ing=OFF)

# read number o f nodes and number o f e lements
p = mdb. models [ ModelName ] . par t s [ PartName ]
s t a t s = p . getMeshStats ( )
non = s t a t s . numNodes
noe po int = s t a t s . numPointElems
n o e l i n e = s t a t s . numLineElems
n o e t r i = s t a t s . numTriElems
noe hex = s t a t s . numHexElems
noe wedge = s t a t s . numWedgeElems
n o e t e t = s t a t s . numTetElems
noe pyramid = s t a t s . numPyramidElems
noe quad = s t a t s . numQuadElems
noe = noe quad+n o e t e t+n o e t r i+noe hex+noe pyramid+noe po int+noe wedge+

↪→ n o e l i n e

e l e n o d e s = {} # d i c t i o n a r y which element hold which nodes
f o r element in p . e lements :

nodes = element . getNodes ( )
e l e n o d e s [ element . l a b e l ] = [ node . l a b e l f o r node in nodes ]

r e turn noe , non , ModelName , PartName , InstanceName , JobName , e l e nodes ,
↪→ StepName

de f ca l l FE ( noe , e l e node , E, PR, xvec , JobName , InstanceName , pathFolder ,
↪→ e l e m e n t l a b e l a r r a y , numCPUs) :
”””
This func t i on s o l v e s the FE problem by running an Abaqus job
: param noe : Number o f Elements
: param e l e node : Dic t ionary which e lements ho lds which nodes
: param E: Young ' s Modulus
: param PR: Poisson Ratio
: param xvec : dens i ty d i s t r i b u t i o n vec to r
: param JobName : name o f job
: param InstanceName : name o f i n s t ance
: param pathFolder : path o f the f i l e ' s f o l d e r
: param e l e m e n t l a b e l a r r a y : array with element l a b e l s
”””
# c a l c u l a t e s t i f f n e s s based on nodal d e n s i t i e s
e l e m e n t s t i f f n e s s = c a l c u l a t e e l e m e n t s t i f f n e s s ( noe , e l e node , E, PR, xvec )

# wr i t e the d i s t r i b u t i o n ta b l e in the new input f i l e
w r i t e i n p f i l e (E, PR, e l e m e n t s t i f f n e s s , InstanceName , pathFolder ,

↪→ e l e m e n t l a b e l a r r a y )

# run job
s t a r t = time . time ( )
myjob = mdb. JobFromInputFile ( ' pmr job ' , JobName+ ' . inp ' , numCpus=numCPUs,

↪→ numDomains=numCPUs)
myjob . submit ( cons i s tencyCheck ing=OFF)
myjob . waitForCompletion ( )
stop = time . time ( )
p r i n t ( ' job durat ion : %f '%(stop - s t a r t ) )

de f c a l c u l a t e e l e m e n t s t i f f n e s s ( noe , e l e node , E, PR, xvec ) :
”””
This func t i on l i n e a r l y c a l c u l a t e s e l ementa l s t i f f n e s s based on average nodal

↪→ d e n s i t i e s
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: param noe : Number o f Elements
: param e l e node : Dic t ionary which e lements ho lds which nodes
: param E: Young ' s Modulus
: param PR: Poisson Ratio
: param xvec : dens i ty d i s t r i b u t i o n vec to r
: r e turn : e l ementa l s t i f f n e s s ( and Poisson Ratio )
”””
e l e m e n t s t i f f n e s s = 0.01∗np . ones ( ( noe , 2) ) # pre - a l l o c a t e
e l e m e n t s t i f f n e s s [ : , 1 ] = PR
avg e l ement dens i ty = [ np . mean( xvec [ np . array ( node ids ) - 1 ] ) f o r e lement id ,

↪→ node ids in e l e node . i tems ( ) ]
e l e m e n t s t i f f n e s s [ : , 0 ] = E∗np . array ( avg e l ement dens i ty ) # l i n e a r mate r i a l

↪→ law
return e l e m e n t s t i f f n e s s

de f w r i t e i n p f i l e (E, PR, data , instance name , pathFolder , e l e m e n t l a b e l a r r a y ) :
”””
This func t i on w r i t e s the e l ementa l s t i f f n e s s i n to the Abaqus d i s t r i b u t i o n

↪→ tab le , which i s l o ca t ed in an a d d i t i o n a l
. inp f i l e . Only t h i s . inp f i l e i s manipulated in t h i s func t i on .
: param E: Young ' s Modulus
: param PR: Poisson Ratio
: param data : array with e l ementa l s t i f f n e s s and PR
: param instance name : name o f the in s t ance
: param pathFolder : path o f the f i l e ' s f o l d e r
: param e l e m e n t l a b e l a r r a y : array with element l a b e l s

”””
f i l ename = pathFolder+ ' D i s t r i b u t i o n 1 . inp '
t ry : # i f f i l e does not ex i s t , i t i s c r ea ted

f = open ( f i l ename , ”x” )
except :

f = open ( f i l ename , ”w” )

f . wr i t e ( ' , %f , %f \n '%(E, PR) )
f o r i in e l e m e n t l a b e l a r r a y : # s t i f f n e s s va lue s f o r each des ign element

f . wr i t e ( '%s.%d , %f , %f \n '%(instance name , i +1, data [ i , 0 ] , data [ i , 1 ] ) )
f . c l o s e ( )

de f r e ad va lue s ( non , StepName ) :
”””
This func t i on reads the s t r a i n energy from the . odb f i l e the job execut ion

↪→ c rea ted .
: param non : number o f nodes
: param StepName : name o f the s tep
: r e turn : vec to r with s t r a i n energy d e n s i t i e s and the t o t a l s t r a i n energy o f

↪→ the system
”””
r e a d v a l u e s t a r t = time . time ( )
# open database
myOdb = v i s u a l i z a t i o n . openOdb( path= ' pmr job . odb ' )
# get f i r s t s tep
f i r s t S t e p = myOdb. s t ep s [ StepName ]

# get l a s t frame
frame1 = f i r s t S t e p . frames [ - 1 ]
# get s t r a i n energy and s t r a i n energy dens i ty va lue s
s t r a i n e n e r g y = frame1 . f i e l dOutput s [ 'SENER ' ]
r e g i on = f i r s t S t e p . h i s to ryReg ions [ ' Assembly ASSEMBLY ' ]
t o t a l s t r a i n e n e r g y = reg i on . h i s toryOutputs [ 'ALLIE ' ] . data [ - 1 ] [ 1 ]

# trans form outputs to element nodal va lue s
myf i e ld = s t r a i n e n e r g y . getSubset ( p o s i t i o n=ELEMENT NODAL)
myf ie ldValues = myf i e ld . va lue s
# average the va lue s f o r the same node f o r the d i f f e r e n t e lements the node

↪→ be longs to and save i t to numpy array
s t r a i n e n e r g y v a l u e s = np . z e r o s ( ( non , 1) )
counter = np . z e r o s ( ( non , 1) )
f o r v in myf ie ldValues :

s t r a i n e n e r g y v a l u e s [ v . nodeLabel - 1 ] += v . data
counter [ v . nodeLabel - 1 ] += 1

s t r a i n e n e r g y v a l u e s = s t r a i n e n e r g y v a l u e s / counter

myOdb. c l o s e ( )
r e a d v a l u e s t o p = time . time ( )
p r i n t ( ' read value durat ion : %f '%(read va lue s top - r e a d v a l u e s t a r t ) )
re turn s t r a i n e n e r g y v a l u e s , t o t a l s t r a i n e n e r g y
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de f m a n i p u l a t e i n p f i l e ( f i l ename ) :
”””
This func t i on manipulates the i n i t i a l . inp f i l e to in c lude the d i s t r i b u t i o n

↪→ t ab l e from an a u x i l i a r y f i l e
: param f i l ename : name o f the f i l e
: r e turn : Young ' s modulus and Poisson r a t i o o f the f u l l y dense mate r i a l as

↪→ s p e c i f i e d in the FE model
”””
# 1) read
with open ( f i l ename , ” r ” ) as f i l e :

data = f i l e . read ( )

# 2) manipulate t ext
# f i n d the important passage in the . inp f i l e and read out E and PR
text = data [ data . f i n d ( ”∗∗ MATERIALS” ) : data . f i n d ( ”∗∗ - - - - - ” ) ]
t e x t l i s t = text . s p l i t ( ”\n” )
materialname = t e x t l i s t [ 2 ] [ t e x t l i s t [ 2 ] . f i n d ( ”=” ) + 1 : ]
p r o p e r t i e s = [ f l o a t ( item ) f o r item in t e x t l i s t [ - 2 ] . s p l i t ( ” , ” ) ]
E0 = p r o p e r t i e s [ 0 ]
v0 = p r o p e r t i e s [ 1 ]
# r e w r i t e the mate r i a l d e f i n i t i o n to in c lude the d i s t r i b u t i o n ta b l e
newtext = ' ∗∗ MATERIALS\n∗∗\n∗DISTRIBUTION TABLE, name=Table1\n Modulus , Ratio

↪→ \n ' \
' ∗DISTRIBUTION, name=Distro1 , Locat ion=element , Table=Table1\n∗

↪→ INCLUDE, INPUT=D i s t r i b u t i o n 1 . inp \n ' \
' ∗ Mater ia l , name=%s \n∗ E l a s t i c \n Distro1 ,\n '%(materialname )

newdata = data . r e p l a c e ( text , newtext )

# 3) wr i t e again
with open ( f i l ename , ”w” ) as f i l e :

f i l e . wr i t e ( newdata )

re turn E0 , v0

de f v i s u a l i z e d e n s i t i e s ( xvec , i , node des ign , Ut , n , StepName , t ) :
”””
This func t i on w r i t e s dens i ty d i s t r i b u t i o n and o b j e c t i v e va lue in to the . odb

↪→ f i l e and d i s p l a y s
the r e l a t i v e dens i ty f i e l d in the viewport

: param xvec : dens i ty d i s t r i b u t i o n vec to r
: param i : i t e r a t i o n number
: param node des ign : l i s t o f des ign nodes
: param Ut : t o t a l s t r a i n energy vec to r
: param n : number o f i t e r a t i o n s
: param StepName : name o f the s tep
: param t : a r t i f i c i a l time vec to r
”””
# open
o3 = v i s u a l i z a t i o n . openOdb( path= ' v i s pmr job . odb ' )
InstanceName = o3 . rootAssembly . i n s t a n c e s . keys ( ) [ 0 ]
myPart = o3 . rootAssembly . i n s t a n c e s [ InstanceName ]
f i r s t S t e p = o3 . s t ep s [ StepName ]

# get l a s t frame
frame2 = f i r s t S t e p . Frame( incrementNumber=i n t ( i +2) , frameValue=f l o a t ( t [ i ] ) )
i f i == n - 1 : # in the l a s t i t e r a t i o n the s t r a i n energy h i s t o r y i s added

reg i on = f i r s t S t e p . h i s to ryReg ions [ ' Assembly ASSEMBLY ' ]
h i s t o r y = reg i on . HistoryOutput (name= 'TSE ' , d e s c r i p t i o n= ' Total S t ra in

↪→ Energy ' , type=SCALAR)
va lue s = Ut [ : i +1, 0 ]
h i s t o r y . addData ( frameValue=t , va lue=va lue s )

# generate Re la t i v e Density F i e ld Var iab le
t F i e l d = frame2 . FieldOutput (name= ' Re la t i v e Density ' ,

d e s c r i p t i o n= ' D e n s i t i e s ' , type=SCALAR)
# Create the node l a b e l s .
nodeLabelData = node des ign
# Each s e t o f dens i ty data corresponds to a node l a b e l .
dispData = xvec
# Add nodal data to the FieldOutput ob j e c t us ing the
# node l a b e l s and the nodal data f o r t h i s part i n s t ance .
t F i e l d . addData ( p o s i t i o n=NODAL, in s t ance=myPart , l a b e l s=nodeLabelData , data=

↪→ dispData )
# make sure everyth ing i s saved and d i sp layed proper ly
f i r s t S t e p . s e t D e f a u l t F i e l d ( t F i e l d )
o3 . update ( )
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o3 . save ( )
o3 . c l o s e ( )
o3 = v i s u a l i z a t i o n . openOdb( path= ' v i s pmr job . odb ' )
# s e t viewport to t h i s new f i e l s
s e s s i o n . v iewports [ ' Viewport : 1 ' ] . s e tVa lues ( d i sp layedObject=o3 )
s e s s i o n . v iewports [ ' Viewport : 1 ' ] . makeCurrent ( )
s e s s i o n . v iewports [ ' Viewport : 1 ' ] . view . f i tV i ew ( )
s e s s i o n . v iewports [ ' Viewport : 1 ' ] . odbDisplay . d i s p l ay . s e tVa lues ( p l o t S t a t e =(

CONTOURS ON DEF, ) )
s e s s i o n . v iewports [ ' Viewport : 1 ' ] . odbDisplay . setFrame ( frame=frame2 )
s e s s i o n . v iewports [ ' Viewport : 1 ' ] . odbDisplay . setPr imaryVar iab le (

va r i ab l eLabe l= ' Re la t i v e Density ' , outputPos i t i on=NODAL)

i f name == ' main ' :
# popup f o r v o l f r a c and i t e r a t i o n s input
f i e l d s = ( ( 'Volume Fract ion [ 0 , 1 ] : ' , ' 0 .07 ' ) , ( ' I t e r a t i o n s : ' , ' 100 ' ) )
v o l f r a c , num ite ra t ion = get Inputs ( f i e l d s=f i e l d s , l a b e l= ' Spec i f y PMR s e t t i n g s :

↪→ ' ,
d i a l o g T i t l e= 'PMR Topology Optimizat ion ' , )

v o l f r a c = f l o a t ( v o l f r a c )
num ite ra t ion = i n t ( num ite ra t ion )

# run PMR algor i thm
pmrgen ( v o l f r a c , num ite ra t ion )

# popup f o r f i l ename and save r e s u l t s under that name
f i e l d s = ( ( ' F i l e name [ . odb / . p ] : ' , ' myResult ' ) )
f i l ename = get Inputs ( f i e l d s=f i e l d s , l a b e l= ' Save OutputFile as : ' , d i a l o g T i t l e= '

↪→ C a l cu l a t i o n s Fin i shed ! ' , )
f i l ename = s t r ( f i l ename [ 0 ] )
s r c = ' v i s pmr job . odb '
dst = f i l ename+ ' . odb '
s c r i n f o = ' pmr info . p '
d s t i n f o = f i l ename+ ' . p '
s h u t i l . c o p y f i l e ( src , dst )
s h u t i l . c o p y f i l e ( s c r i n f o , d s t i n f o )

D.2 User Guide (Cantilever Example)

1. Create a new folder

2. Copy the file Abaqus PMR TO Scheme.py into that folder

3. Open Abaqus CAE

4. Click File, click Save, and save the model filename.cae file in the new folder

5. Close Abaqus CAE

6. Double click the model filename.cae file in your file browser to open it Abaqus

CAE again. Now your working directory is set to your folder, and all tem-

porary files will be saved in that folder.

7. Create the Abaqus Model
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a. Part Module: Click Part, Create, choose 2D Planar, click Continue.

Choose “Create line rectangle” (second row, second column). Enter

(0,0), hit enter, enter (100,100), hit enter. Cancel Procedure, click Done.

b. Property Module: Create Material, mechanical → elasticity → elastic

(E=210e9 GPa, PR=0.3). Click OK. Create Section, Continue, OK.

Assign section, click on part, Done, OK.

c. Assembly Module: Create Instance, OK.

d. Step Module: Create Step, Continue, OK.

e. Load Module: Create Load, Continue, select bottom right corner of your

part, click Done, CF1=0, CF2=-1, OK. Create Boundary Condition,

select Displacement/Rotation, continue, select left edge of your part,

click Done, and check U1 and U2, OK.

f. Mesh Module: Select Part instead of Assembly under Object in the

top bar above the viewport, Seed Part Instance, Approximate Global

Size=1, OK. Click Mesh Part, Yes.

g. Job Module: Create Job, Continue, OK.

8. Click File, click Save.

9. Close Abaqus CAE.

10. Double click the model filename.cae file in your file browser to open it Abaqus

CAE again. Closing and opening makes sure all changes are saved.

11. Click File, click Run Script, select Abaqus PMR TO Scheme.py, click OK.

12. Specify Volume Fraction (example case=0.4)

13. Specify Number of Iterations (example case=75)
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14. Click OK.

15. Once finished: Specify save filename to save results and click OK. Now the

save filename.odb file and the save filename.p file are saved to your folder

containing all the information of the scheme.

16. To visualizes the result more comprehensively: close Abaqus, you do not need

to save the changes, and then double click on the new save filename.odb file.

17. Visualization options

a. Click “plot contours on deformed shape” to see the final density distri-

bution. This variable can also be animated over the time history.

b. Click Viewcut manager, Create, select shape → isosurface, OK. Check

the second and the third box of the new cut, uncheck the first box.

c. Alternative to the view cut: Click Tools, Display Group, create, select

result value, specify min=0.5 and max=1, click Replace, save or close

the display group window.

d. Strain Energy History: Click Result, History Output, Select Total

Strain Energy (TSE), Plot

Notes (for advanced users):

• The names of the part, instance, job, etc. are irrelevant.

• The step must be general static.

• The material must be linear elastic.

• There should only be one part/one instance in the assembly.

• There should only be one *.cae file in the folder.
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• The script changes the field output variables. If other variables than default

are wanted, the line must be commented out of the script, and ENER must

be specified in the model database.

• The script specifies the number of CPUs used in the beginning (default=7).

This value can be changed for the individual PCs and might lead to an error

if the number of processing cores does not match your system.

• Time smoothing and symmetry checking can be turned off in the beginning

of the script by setting the values to 0.

• If the mesh density is changed, the assembly needs to be regenerated before

saving and running the PMR script.

Figure D.64: Cantilever Example Loading Conditions

Figure D.65: Cantilever Example Solution
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