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ABSTRACT 

Fisheries management requires regularly assessing stock status and setting catch 

levels for the coming years. Although data-rich stock assessment models incorporating 

demographic and biological information are generally preferred, such approaches are 

often prohibited by either insufficient data or a history of poor performance. In such 

cases, simpler Index-Based Methods (IBMs) are often used to generate catch advice 

for a fishery. However, these approaches do not typically forecast future abundance 

levels or quantify scientific uncertainty, making it difficult to assess the performance 

of different candidate methods prior to implementation. As a result, there is not a 

consensus as to which IBMs may be best suited to a particular situation and available 

biological information is often under-utilized in the management process. 

To address this shortcoming, this work developed a novel Index-Based Method 

framework using dynamic linear models (DLMs), a flexible Bayesian state-space 

approach. Using simulated population data mimicking member species of the 

Northeast Multispecies groundfish complex, the predictive performance of candidate 

DLM structures were evaluated via retrospective forecasting. In both an Index-Based 

(age-aggregated) and Age-Based formulation constructed to demonstrate how the 

modular nature of these models can make fuller use of available data, the tested DLMs 

displayed promising predictive ability. While further testing is needed, this 

preliminary evaluation suggests that DLMs may become a valuable approach in the 

management of fisheries for which a data-rich stock assessment approach is not 

possible. 



 

 

The research in this thesis aims to provide scientists and fisheries managers with 

an additional tool to be developed for use in fisheries management. Because the 

majority of world fish stocks lack sufficient data for conventional stock assessment 

methods, the modeling approach and insights developed here are meant to contribute 

knowledge to the global pursuit of productive and sustainable marine fisheries.  
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INTRODUCTION 

Since 1976, the Magnuson-Stevens Act has provided the regulatory framework to 

preserve living marine resources and the economic activities that they support in US 

waters through its requirement that fisheries management bodies prevent overfishing, 

rebuild depleted stocks, and ensure future sustainability of the seafood supply 

(National Oceanic and Atmospheric Administration 2006). To pursue these objectives, 

fisheries scientists generally assess the status of managed fish and invertebrate stocks 

every one to four years and evaluate what, if any, management actions are required. 

Referred to as stock assessments, these efforts involve combining fishery-independent 

survey data with catch information in population models that estimate current stock 

abundance. These estimates can then be used to set Acceptable Biological Catch 

(ABC) levels for the following years that will alter population abundance in the 

desired direction (National Marine Fisheries Service 2001; ASMFC 2009; 

Wiedenmann and Jensen 2018). Conducted one or more times each year, these 

scientific surveys consist of systematic sampling throughout the spatial range of 

managed species using appropriate gear types to gather abundance and other 

biological information over time (Politis et al. 2014). Although such survey and 

harvest data are usually gathered annually (ASMFC 2009; Politis et al. 2014), the 

ABCs set during the prior stock assessment are typically maintained until there are 

sufficient resources to conduct a new assessment (National Marine Fisheries Service 

2001). In the interim, any short-term projection of biomass and subsequent adjustment 

of catch levels is constrained to a less formal consultation of recent survey and catch 

data. Without a designated model in place beyond the stock assessment for updating 
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abundance estimates, such intermediate forecasts are often challenging and have high 

prediction error that can contribute to regulatory volatility, ratcheting down of catch 

quotas, increased risk of overfishing, and degraded stakeholder confidence in the 

assessment process (Glaser et al. 2014; Brooks and Legault 2016; Szuwalski et al. 

2018). 

When sufficient data are available, age-structured stock assessment approaches 

are preferred in the management of US stocks (e.g. Legault and Restrepo 1998). In 

general, these age-structured models combine survey data, catch information, age-

composition data, and biological information, such as growth rates and maturation 

schedules, to track individual cohorts through the life cycle and ultimately estimate the 

true total population size. With an estimate of the true population size and potential 

productivity, fisheries managers can identify biological reference points to describe 

stock status and develop regulatory strategies to maintain fishery productivity 

(National Marine Fisheries Service 2001; ASMFC 2009; Punt et al. 2020). When these 

data-rich models perform poorly, however, they may be rejected in favor of a simpler 

approach (Punt et al. 2020). Furthermore, the majority of global fish stocks, including 

many in US waters, lack adequate data to implement an age-structured approach and 

thus require data-limited methods (Costello et al. 2012).  

If an age-structured assessment cannot be implemented for a particular stock due 

either to data limitations or poor performance, one of many simple, data-limited 

methods may be implemented. Often known as Index-Based Methods (IBMs), these 

approaches typically involve the use of survey data and/or catch information to 

execute ad hoc procedures to develop catch advice without forecasting future stock 
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abundance or quantifying scientific uncertainty (Wiedenmann et al. 2019; Legault et 

al. 2021). These procedures vary in both data requirements and technical form, which 

may involve calculating recent abundance trend estimates or assessing changes in the 

ratio between catch and survey abundances. Because IBMs do not produce forecasts of 

future abundance or estimate the true stock abundance, it can be difficult to determine 

which methods are most effective in a given situation and to develop decision rules 

with which to manage the fishery (Legault et al. 2021). Furthermore, the absence of an 

estimate of the uncertainty surrounding developed catch advice makes it difficult to 

assess the risk associated with candidate management strategies (Berkson et al. 2011; 

Maunder and Piner 2015; Kokkalis et al. 2017). There is therefore a need to develop 

an IBM that is able to forecast future stock abundance and quantify scientific 

uncertainty to aid in the management process when an age-structured approach is not 

possible for a target stock. 

Due to their modular, flexible nature (Prado and West 2010), dynamic linear 

models (DLMs) are well-suited to tracking time series of observed relative abundance 

and develop probabilistic forecasts of managed fish stocks. As a Bayesian state-space 

approach, past research suggests that DLMs will likely exhibit strong performance in 

assessing scientific uncertainty (Fronczyk et al. 2012; Magnusson et al. 2013). 

Therefore, the objectives of this thesis are to 1) develop a DLM approach for 

forecasting relative stock abundance using only aggregate survey and catch 

information, 2) investigate the incorporation of additional data, like demographic 

information, into the DLM approach, and 3) test the predictive performance of the 

developed DLMs on simulated fish population data. In doing so, we hope to provide a 
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preliminary understanding of the promise of DLMs as a tool in fisheries management 

and contribute to the sustainable management of data-limited marine fisheries.   
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ABSTRACT 

Fisheries management requires regularly assessing stock status and setting catch levels 

for the coming years. Although data-rich stock assessment models incorporating 

demographic and biological information are generally preferred, such approaches are 

often prohibited by either insufficient data or a history of poor performance. In such 

cases, simpler Index-Based Methods are often used to generate catch advice for a 

fishery without forecasting future abundance levels or quantifying scientific 

uncertainty, making it difficult to assess the performance of different approaches prior 

to implementation. To address this shortcoming, this work developed a novel Index-

Based Method framework using dynamic linear models (DLMs), a flexible Bayesian 

state-space approach. Using simulated population data mimicking member species of 

the Northeast Multispecies groundfish complex, the predictive performance of 

candidate DLM structures were evaluated via retrospective forecasting. In both an 

Index-Based (age-aggregated) and Age-Based formulation, the tested DLMs displayed 

promising predictive ability. While further testing is needed, this preliminary 

evaluation suggests that DLMs may become a valuable tool in the management of 

fisheries for which a data-rich stock assessment approach is not possible. 
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INTRODUCTION 

Since its first passage in 1976 and through subsequent revisions, the Magnuson-

Stevens Act has provided the regulatory framework in the United States to preserve 

living marine resources and the economic activities that they support through its 

mandate that management bodies prevent overfishing, rebuild overfished stocks, and 

ensure a sustainable seafood supply into the future (National Oceanic and 

Atmospheric Administration 2006). In pursuit of these goals, fisheries scientists 

conduct stock assessments, generally every one to four years, in which fisheries-

independent survey data are combined with catch information to assess the status of 

harvested fish stocks and recommend Acceptable Biological Catch levels for the 

following years (National Marine Fisheries Service 2001; ASMFC 2009; Wiedenmann 

and Jensen 2018). Although such survey and harvest data are generally compiled 

annually (ASMFC 2009; Politis et al. 2014), the Acceptable Biological Catch levels 

set during the last assessment are typically maintained until resources allow for an 

assessment update (National Marine Fisheries Service 2001).  

Stock assessment approaches generally fall into two categories. Length- or age-

structured assessments rely on models that explicitly consider the survey and catch 

records of a species at each stage or age throughout its post-larval life cycle in order to 

estimate biological reference points and develop catch advice at the scale of the true 

stock biomass (e.g. Legault and Restrepo 1998). While this approach is generally 

preferred for its greater use of biological data and desirable outputs for the 

management process, age-structured assessment models have for some stocks been 

observed to produce consistent, retrospective patterns of projection errors that lead to 
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poor performance in maintaining stock abundance (Brooks and Legault 2016; 

Szuwalski et al. 2018). Defined by Mohn (1999) as “systematic inconsistencies among 

a series of estimates of population size based on increasing periods of data”, 

retrospective errors are typically the result of data errors, including biased catch 

information, or misspecification of life history parameters, such as recruitment or 

natural (non-fishing) mortality, for the target fish stock (Wiedenmann and Jensen 

2018; Szuwalski et al. 2018). When such patterns develop in an age-structured 

assessment model of a fish stock, the model may be rejected from use in the 

management process (Punt et al. 2020). 

Strong retrospective patterns have appeared in the assessments of many stocks on 

the Northeast US shelf, where positive errors have led to an overestimation of stock 

biomass and an underestimation of fishing mortality that combine to result in 

Acceptable Biological Catch levels being set too high (Brooks and Legault 2016; 

Wiedenmann and Jensen 2018). This issue has been particularly pervasive in member 

stocks of the New England Multispecies groundfish complex (Deroba et al. 2010; 

Northeast Fisheries Science Center 2017a). For example, assessment models used to 

manage the Gulf of Maine Atlantic cod (Gadus morhua) stock suggested that the 

population was increasing during the late 2000s and led to higher harvest levels. 

Subsequent model updates, however, revealed that the stock was in fact being 

overfished and declining. Catch quotas were immediately and significantly cut in an 

effort to reverse this trend, resulting in consequential economic impacts for the 

regional fishing industry (Northeast Fisheries Science Center 2015; National Marine 

Fisheries Service 2018; Wiedenmann and Jensen 2018) While not limited to the 
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Northeast US, the abundance of retrospective patterns in assessment models in this 

region presents significant challenges to fisheries managers tasked with tracking stock 

status and setting catch advice.  

When an age-structured assessment model is rejected due to poor performance, 

like a persistent, strong retrospective pattern, or cannot be fit due to data limitations, 

simpler approaches are employed. Known as index-based methods (IBMs), these 

approaches use catch information and indices of relative abundance from fisheries-

independent surveys, each often aggregated across (st)ages, to develop catch advice 

generally without forecasting future stock abundance or estimating the involved 

uncertainty (Wiedenmann et al. 2019; Legault et al. 2021). IBMs vary in the 

calculations used to generate catch advice. Some make determinations based upon the 

recent trend of a smoother fit to an index of abundance, while others compare survey 

indices to catch records to estimate relative exploitation rates that are then adjusted 

toward a desired level. Several also rely upon assumptions regarding the life history 

parameters that may lead to poor performance in age-structured models (Wiedenmann 

and Jensen 2018; Szuwalski et al. 2018; Wiedenmann et al. 2019; Legault et al. 2021). 

Due in part to this diversity, there is not a clear consensus as to which IBM(s) are 

optimal in a given management situation. An additional challenge lies in the 

determination of reference abundance levels to target with management actions. 

Because IBMs do not estimate the true population abundance, there is not a clear way 

to determine what is a “healthy” population level and estimates often rely upon expert 

knowledge on a stock by stock basis. Furthermore, many authors have stressed the 

importance of developing full, quantified accountings of scientific uncertainty in stock 
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assessments (Berkson et al. 2011; Punt et al. 2011; Deroba et al. 2015; Maunder and 

Piner 2015; Chrysafi and Kuparinen 2016) in order meet management goals. Although 

recent research has sought to provide guidance into the relative strengths and 

weaknesses of different approaches, the current situation is one in which a large 

amount of biological information collected for a rejected age-structured assessment 

goes unused, fishery managers are unable to perform risk assessment in developing 

catch advice, and the diversity of IBMs available may produce divergent catch advice 

in different situations (Wiedenmann et al. 2019; Legault et al. 2021).  

There is therefore a need for an IBM that can take advantage of all available 

biological information to produce probabilistic forecasts with which fishery managers 

can make regulatory decisions and assess risk. In an effort to fill this need, this work 

seeks to meet the following objectives: 1) develop an IBM that produces actionable, 

probabilistic forecasts, 2) evaluate the performance and potential weaknesses of the 

developed IBM in simulations mimicking member stocks of the New England 

Multispecies groundfish complex, and 3) investigate the incorporation of demographic 

information into the IBM and the resulting changes in performance. In doing so, the 

results of this work will provide a new set of model options to fishery managers tasked 

with assessing stock abundance and developing harvest regulations in situations where 

an age-structured assessment model cannot be used.  

METHODS 

Dynamic Linear Models 

This work focuses on the use of dynamic linear models (DLMs) (West and 

Harrison 1997) in a Bayesian framework. As state-space models, DLMs comprise two 
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equations: (1) an observation equation defining the relationship between a latent 

system state and the measured variable of interest, and (2) an evolution equation 

describing changes in the latent system state through time. 

𝑦! = 𝑭!𝜽! + 𝜈! , 						𝜈! ∼ 𝑁(0, 𝑉!)                (1) 

𝜽! = 𝑮!𝜽!"# +𝝎! ,						𝝎! ∼ 𝑁(0,𝑾!)                        (2) 

			𝜽$|𝐷$ ∼ 𝑁(𝒎$, 𝑪$) 

                                           𝑉$ ∼ 𝐼𝐺(𝑎% , 𝑏%), 𝑾$ ∼ 𝐼𝑊(𝒂& , 𝑏&) 

where, at time 𝑡 in 1: 𝑇, 𝑦! is the observed variable of interest, 𝑭! is the observation 

matrix containing covariate information, 𝜽! is a vector of state variables defining the 

latent state, 𝑮! is the evolution matrix describing changes in the latent state through 

time, 𝜈! is an observation error with variance 𝑉!, and 𝝎! is a vector of evolutions with 

variance 𝑾!. The gaussian prior on the latent state variables, given prior information 

𝐷$, has moments 𝒎$ and 𝑪$. The observation and evolution error variances follow an 

inverse-gamma and inverse-Wishart distribution, respectively.  

The latent state(s) of the DLM model are assumed to follow a Markovian 

structure and can therefore be sampled iteratively, and forecasted, using a forward-

filtering backward-sampling (FFBS) algorithm (Frühwirth-Schnatter 1994; Carter and 

Kohn 1994) derived from the Kalman Filter and Kalman Smoother (Kalman 1960). 

Specifically, the FFBS algorithm is used to sample the state variables 𝜽!, conditioned 

on values of 𝑭!, 𝑮!, 𝑉!, and 𝑾!, at each time point (Appendix I). Because the annual 

survey data used to assess fish stocks rarely are available for more than 50 years, the 

evolution matrix (𝑮) and both the observation error (𝑉) and evolution (𝑾) variances 

are assumed to be constant in this application. The form of the observation (𝑭!) and 
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evolution (𝑮) matrices are determined by the employed model structure. Sampling of 

𝜽!, 𝑉, and 𝑾 to fit each DLM is conducted using a Gibbs sampler. 

Index-Based DLM for a single abundance index 

We define a DLM of a single survey index of log relative abundance (𝑆!) to 

comprise two components, a trend (𝜏) and a regression (𝛽!) on log catch (𝐻!). In a 

generalized DLM form, this structure can be written as: 

𝑆! = [1 𝐻!] F
𝜏!
𝛽!G + 𝜈!             (3) 

F
𝜏!
𝛽!G = 𝑮 F

𝜏!"#
𝛽!"#G + F

𝜔',!
𝜔),!G                  (4) 

The trend component of this model is intended to capture the broad temporal pattern in 

the data and could take on different forms, including a static linear trend, a random 

walk, a dynamic linear trend (random walk added to an otherwise static intercept term 

in each time step), or a first order autoregressive process. One could also define the 

trend as the sum of two or more of these forms.  

The catch regression component requires a priori data treatment. In general, the 

observed relative stock abundance recorded by a fisheries-independent survey and the 

harvest in a given year reflect the true underlying stock abundance. As a result, there 

would be significant collinearity between the trend and catch regression components 

of the DLM if the data are not first transformed. Because abundance indices from 

surveys are generally considered to be more reliable than the catch information 

available to fisheries managers (Branch et al. 2011), the catch data are converted into 

catch anomalies. Specifically, a log-log linear regression of the catch history on the 

smoothed survey index is used to difference out the average relative exploitation rate. 
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The survey index is smoothed using a loess smoother with a span of 0.3, as in the 

PlanBSmooth IBM (Northeast Fisheries Science Center 2015) currently in use, to 

mitigate the inclusion of observation errors in the catch covariate. The residuals of this 

regression are the catch anomalies used in the catch regression component of the 

DLM. Despite this transformation, it is possible that the effect-per-unit catch 

(anomaly) will remain a function of the true stock biomass. In this case, the evolutions 

of the regression coefficient (𝜔),!) are allowed to be correlated to the evolutions of the 

trend component (𝜔',!) if it is assumed to be time-varying in model fitting.  

The prior distributions for this and all subsequent DLM structures are defined 

using the same approach. The constant observation error variance (𝑉) is characterized 

with an inverse-gamma distribution with prior hyperparameters 𝑎* = 1 and 𝑏* =

%+,(.)
0

, based upon the assumption that the total data variance could be allocated 

equally between observation error and evolution variance. Similarly, the constant 

evolution variance (𝑾) is characterized with an inverse-Wishart distribution where the 

prior hyperparameter 𝒂1 is defined such that 𝑑𝑖𝑎𝑔(𝒂1"#) =
%+,(.)
02

  , where 𝑝 is the 

number of state variables. For state variables assumed to be correlated, the 

corresponding off-diagonal elements of 𝒂1 defining the covariances are set to one half 

the variance terms on the main diagonal. The prior hyperparameter 𝑏1 is set to 𝑝 + 2. 

The state variables are characterized with flat gaussian prior distributions except for 

the regression coefficient on catch anomalies. Because the effect of catch on the 

population is expected to be strictly negative and have a coefficient less than one, a 
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𝑁(−0.5, 0.0625) prior distribution is used. Additional details are provided in 

Appendix II. 

Multivariate extension: multiple indices of abundance 

When multiple survey abundance indices are available for a fish stock of interest, 

IBMs currently in use often average them to create a single index (Maunder and Punt 

2013; Legault et al. 2021). However, this averaging represents a loss of information. 

DLMs are easily adapted to model multivariate observations (Prado and West 2010) 

and thus a seemingly unrelated equations approach is taken here. For example, 

equations (3) and (4) can be rewritten as follows in a two survey case with the catch 

anomalies denoted by 𝐻∗: 

R
𝑆#,!
𝑆0,!

S = R
1 0 𝐻#,!∗ 0
0 1 0 𝐻0,!∗

S T

𝜏#,!
𝜏0,!
𝛽#,!
𝛽0,!

U + 𝝂!         (5) 

T

𝜏#,!
𝜏0,!
𝛽#,!
𝛽0,!

U = 𝑮 T

𝜏#,!"#
𝜏0,!"#
𝛽#,!"#
𝛽0,!"#

U + 𝝎!             (6) 

In this framework, estimation of the correlation within and among the trend and catch 

regression components of the fits to each survey allows the fitting procedure to 

“borrow strength” in estimating the time series of the state variables. Therefore, it can 

be expected that jointly modeling multiple survey indices will reduce estimation 

uncertainty given that they are correlated. 
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Hierarchical extension: demographic structure in a Stage- or Age-Based DLM 

While currently employed IBMs generally do not use demographic data for a 

stock in setting catch advice, it is very often available in some form. If, for example, 

length information is available for both the survey abundance and landed catch, a 

stock could be split into an unfished pre-recruit (PR) stage and a harvested recruit (R) 

stage. These stages can then be modeled using a hierarchical structure of DLMs, in 

which the estimated abundance of the pre-recruit stage acts as a covariate in the model 

of the recruit stage with regression coefficient 𝛾. In a case where one survey index of 

abundance was available, a general hierarchical model can be written as follows:  

Pre-recruits 

𝑆45,! = 𝜏45,! + 𝜈45,!               (7) 

𝜏45,! = 𝐺𝜏45,! + 𝜔45,!                        (8) 

Recruits 

𝑆5,! = [1 𝐻!∗ 𝜏45,!"#] X
𝜏5,!
𝛽!
𝛾!
Y + 𝜈5,!                    (9) 

X
𝜏5,!
𝛽!
𝛾!
Y = 𝑮 X

𝜏5,!"#
𝛽!"#
𝛾!"#

Y + 𝝎5,!                     (10) 

If age information is available for both the survey and the fishery, this stage-

based model can be extended to an age-based framework where a DLM fit to each age 

class in the population informs the fit of the proceeding age class.  Similarly, if sexual 

maturity information is available, an age-based model could incorporate a stock-

recruit relationship in the form of a regression on the lagged abundance of older age 

classes in the age-1 DLM following the methods of Tableau et al. (2019). In doing so, 
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this Age-Based DLM representation can capture the demographic structure of a 

population in a manner similar to a traditional age-structured assessment model 

without requiring strict assumptions about life history parameters or catch information. 

In the case that multiple age-explicit survey indices of abundance are available, 

this age-based hierarchical framework can bet fit with a common set of state variables. 

With known or estimated ages assigned to the abundance data, differences in survey 

selectivity by age do not present a challenge as they would in modeling abundance 

aggregated across ages. Because the DLMs are fit on the log scale, the survey indices 

should differ by an estimable intercept term, which may be static or dynamic if there is 

evidence to suggest divergent trends in catchability. Therefore, the multivariate DLM 

for each age can be fit with a single set of state variables describing the trend, catch 

regression, and regression on the prior age plus additional static or dynamic intercept 

terms. In a case where two survey indices of abundance are available, an Age-Based 

model with common state variables can be written as follows:  

Age-1 

R
𝑆#,#,!
𝑆0,#,!

S = F1 0
1 1G F

𝜏#,!
𝜇0,#G + 𝝂#,!                                    (11) 

F
𝜏#,!
𝜇0,#G = 𝑮 F

𝜏#,!"#
𝜇#0,# G + 𝝎#,!                                                (12) 

Age-2 or older 

R
𝑆#,6,!
𝑆0,6,!

S = R
1 𝐻!∗ 𝐵+"#,!	 0
1 𝐻!∗ 𝐵+"#,!	 1S T

𝜏+,!
𝛽+,!
𝛾+,!
𝜇#0,+

U + 𝝂+,!        (13) 
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T

𝜏+,!
𝛽+,!
𝛾+,!
𝜇#0,+

U = 𝑮 T

𝜏+,!"#
𝛽+,!"#
𝛾+,!"#
𝜇#0,+

U + 𝝎+,!                                (14) 

Where 𝑆8,+,! is an observation of age 𝑎 for survey 𝑆 at time 𝑡, 𝜏+,! is a common trend 

for age 𝑎 shared across surveys, 𝛽+,! and 𝛾+,! are the regression coefficients on the 

catch anomalies and the estimated abundance of the prior age class (𝐵+"#,!), 

respectively, shared across surveys, and 𝜇8!8",+ is a constant intercept term for age 𝑎 to 

account for the catchability difference between survey 𝑆# and survey 𝑆0.  

In fitting a single set of state variables for each modeled age class, this 

representation of an age-based model can identify common abundance trends across 

surveys if differences in catchability are assumed constant. Because each age is 

modeled individually, overall uncertainty will be reduced while differences in survey 

selectivity will not impact the fits. The additional state variable 𝛾+,! in this model 

compared to the Index-Based approach is characterized with a 𝑁(1, 0.25) prior 

distribution, corresponding to the belief that the correlations among sequential age 

classes should be strictly positive and have a coefficient less than or slightly larger 

than one. Additional details are provided in Appendix II.  

Simulated case studies 

To evaluate the performance of the Index-Based and Age-Based DLMs in 

forecasting relative abundance of fish stocks, realistic, simulated data series were 

generated using the PopSim tools provided in the NOAA Fisheries Toolbox made 

available by NOAA Fisheries’ Office of Science and Technology (https://nmfs-fish-

tools.github.io/). Specifically, three stocks from the New England Multispecies 
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groundfish complex that display varying life history characteristics and have produced 

retrospective patterns in age-structured assessment models were chosen for simulation: 

1) Georges Bank Atlantic cod, 2) Georges Bank yellowtail flounder (Limanda 

ferruginea), and 3) witch flounder (Glyptocephalus cynoglossus). In each case, the 

simulations were initialized using the values of life history parameters, recruitment, 

and catch history from the recent assessments for each stock (Legault et al. 2013, 

2014; Northeast Fisheries Science Center 2013, 2015, 2017a, 2017b) to create 

scenarios similar to what would be encountered in fisheries management. The 

simulated stocks were each sampled by three surveys with characteristics (catchability, 

selectivity, and variability) set to be like those of important surveys used to track 

abundance for their real-world counterparts. For the Georges Bank stocks, these 

surveys consisted of the Northeast Fisheries Science Center Spring and Fall bottom 

trawl surveys (Politis et al. 2014) and the Canadian Department of Fisheries and 

Oceans annual trawl survey (Chadwick et al. 2007). For witch flounder, the Northeast 

Fisheries Science Center surveys were also used in addition to the Maine-New 

Hampshire Inshore survey conducted by the Maine Department of Marine Resources 

(https://www.maine.gov/dmr/science-research/projects/trawlsurvey/index.html). The 

features of, and notable differences among, the simulated stocks are summarized in 

Table 1 and illustrated in Figure 1. An example of the age-specific data available for 

modeling is shown for the Georges Bank yellowtail flounder stock in Figure 2 

Additional, modified simulated scenarios were generated for the Georges Bank 

yellowtail flounder stock in order to study different challenging data patterns that may 

be encountered in management. Sharp changes in recruitment and natural mortality, 
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which have both been implicated in causing errors in stock assessment, are present in 

the base yellowtail flounder scenario detailed above. To separate and study the effects 

of these processes, a new “Stable Recruitment” (SR) scenario was created for 

yellowtail flounder in which recruitment was stablized at the end of the time series by 

repeating the 1993-2003 observations from 2004-2014. Very large measurement error 

variance can also pose difficulties in the fitting of assessment models by masking 

signals of population dynamics and harvest effects within the data. To investigate such 

effects in the DLM framework, the base yellowtail flounder scenario was repeated 

with the survey coefficients of variation each multiplied by three to create a “High 

Measurement Error” (HME) case. 

Evaluation of model performance 

Index-Based and Age-Based DLMs were fit to 50 simulations of each scenario 

(Figure 1). Each model fit was performed using a Gibbs sampler with 30,000 

iterations, where 20,000 iterations were discarded as the burn-in period and a thinning 

interval of 10 was applied to yield 1,000 posterior samples of each parameter. Model 

convergence and sampling of the estimated posterior distributions were evaluated 

using the Geweke diagonal and the effective sample size for each parameter with the 

R package “coda” (Plummer et al. 2006). It is important to note that each scenario 

produced a single stock trajectory common to all simulations, where simulations 

differed in the survey observations. Therefore, the results must be interpreted as 

performance in a particular scenario that may be faced by fisheries managers under 

variations in patterns of observation errors in the data used to fit the model. Predictive 

performance was tested using a retrospective forecasting approach similar to Brooks 
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and Legault (2016). For each simulation, a DLM was fit to all but the last three years 

of the time series and a three-year forecast was generated to compare to the true future 

values. These forecasts used catch anomalies calculated with the true future catch and 

abundance values such that predictive performance could be tested when future 

harvest rates were known. The specific model structures within each DLM class used 

for a given scenario were determined by evaluating predictive performance in a subset 

of simulations and verifying that the fitted parameters agreed with a priori hypotheses 

(e.g. a negative coefficient in the catch regression and a positive coefficient in 

regressions on the prior age class).  

Several performance metrics were calculated for each DLM class and scenario 

based upon the simulated survey observations and the true relative stock biomass 

scaled to the levels of the surveys using their relative catchabilities. Forecast 

performance was summarized using the mean percent prediction error and median 

absolute percent prediction error compared to the true relative abundance averaged 

across surveys for each year of the forecast. Here, the average prediction error 

between the median of the posterior predictive distributions and the simulated data 

was calculated across the three surveys for each year of the forecast period. The mean 

and median absolute errors across all 50 simulations were then calculated for each 

year using these survey-averaged values. To determine if the estimated forecast 

uncertainty was well-calibrated, the proportion of all instances in which the simulated 

survey observations fell within the 95% posterior predictive highest density interval 

was also calculated using the R package “HDInterval” (Meredith and Kruschke 2020). 

Finally, the median ratio across surveys of the root mean squared model residuals to 
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the root mean squared measurement errors (RMSE) was calculated for both the 

training data and the forecast period to measure the relative magnitude of the model 

residuals to the observation errors of the data. The focus of this work was an 

evaluation of forecast performance of candidate DLM model structures and not on 

methods to generate catch advice from those forecasts. However, potential approaches 

to generate catch advice for use in management are outlined in the discussion.  

RESULTS 

Two Index-Based structures and one Age-Based DLM structure were selected as 

the best performing across the five scenarios based on testing using a subset of the 

simulated datasets. In all cases, fitting a dynamic coefficient in the catch regression 

component of the model either did not appear to improve performance in prediction or 

resulted in an estimated coefficient time series that did not follow expectations given 

the observed abundance trend. Similarly, a static relationship between age classes was 

selected in the Age-Based model for the same reasons. The observation error variance 

was also assumed to be constant in all models. In the Index-Based fits, the trend 

component was characterized with a random walk for Georges Bank cod and with a 

dynamic linear trend in all other cases. A random walk for age-1 and a first order 

autoregressive process for all the older age classes was used in in all cases for the 

Age-Based model. Full model specifications are provided in Appendix II.  

Index-Based DLM Performance 

The Index-Based DLMs generally exhibited strong predictive performance for the 

base simulations of Georges Bank cod, Georges Bank yellowtail flounder, and witch 

flounder (Table 2, Figures 3 and S1). The mean and median absolute prediction errors 
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were all less than 75% in magnitude, with the largest errors observed in the DLM fit of 

yellowtail flounder. Unsurprisingly, prediction error increased with the length of the 

forecast, where mean errors across surveys were generally below 25% in the first year 

of the forecast period (Table 2, Figure 4). Because the data were fit on the log scale 

and the errors were assumed to be normally distributed, the largest prediction errors 

were consistently positive. The average magnitude of forecast errors was also 

consistently and strongly correlated to the accuracy of the model-estimated abundance 

in the terminal year of the data used in fitting (Figure 5). When large forecast errors 

occurred, they generally resulted from simulations in which multiple consecutive 

observation errors of the same sign were recorded at the end of the time series (ex. top 

two rows of Figure S1d). The median RMSE ratios between the model residuals and 

the observation errors were between 0.48 and 0.63 in the training data interval, 

indicating that the Index-Based DLM fit was able to separate signal from noise. 

During the forecast period, the median RMSE ratios were between 0.92 and 1.65. For 

the cod and yellowtail flounder scenarios, the comparison of the forecast uncertainty 

to the observations that occurred during the forecast window suggested that the 

estimated uncertainty was slightly too large.  

The modified Georges Bank yellowtail flounder scenarios exhibited similar error 

patterns to the base scenario. In the Stable Recruitment case, the prediction 

performance metrics were slightly better than the results for the base yellowtail 

flounder simulation and particularly during the first two years of the forecast (Table 

2). This limited improvement suggests that the Index-Based DLM may not be 

dramatically impacted by sharp changes in recruitment in proximity to the end of the 
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training data. Predictive performance was less strong in the High Measurement Error 

scenario than for the base or Stable Recruitment yellowtail flounder simulations 

(Table 2). While the median absolute prediction errors were not a lot larger than in the 

base scenario, the larger differences occurring during the first two years of the forecast 

period indicates that decreased accuracy does not only occur in longer forecasts. The 

mean prediction errors, meanwhile, were nearly twice as large as in the base scenario. 

These results suggest that the Index-Based DLM will exhibit declining prediction 

performance and increasing frequency of large errors as measurement error increases. 

However, the median RMSE ratio during the forecast period was 0.81. Therefore, the 

posterior predictive median forecast still often provided a better estimate of relative 

stock biomass than the highly variable future observations.  

Age-Based DLM Performance 

The Age-Based DLM approach also exhibited strong predictive performance 

across the three base stock simulation scenarios (Table 2, Figures 3, 6, and S1). The 

mean and median absolute prediction errors were less than 30% throughout the 

forecast interval in all cases. As in the Index-Based approach, prediction error 

magnitude increased with the length of the forecast (Table 2). In general, the error 

patterns for the DLM fit to each age class and their relationship to estimation errors in 

the terminal year of the training data time series were similar to the results obtained 

for the Index-Based case. During the data time series used to fit the Age-Based DLMs, 

the median RMSE ratios between the model residuals and the observation errors were 

0.51 or 0.52 for the three base scenarios. The median RMSE ratios in the forecast 

interval, meanwhile, were between 0.68 and 1.13. For all three stock scenarios, the 
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estimated forecast uncertainty appeared to be too small (Table 2). However, the 

coverage of the posterior predictive distributions relative to the observations for the 

DLMs fit to each individual age class were similar to the results obtained in the Index-

Based case (Figure 6). Only when the age-specific DLM fits were summed into an 

aggregate model estimate was the forecast uncertainty too small, likely due to 

correlation among the fits to each age.  

In contrast to the Index-Based case, the predictive performance of the Age-Based 

DLM was worse in the Stable Recruitment than the base yellowtail flounder 

simulations. In the High Measurement Error scenario, the mean and median prediction 

errors were much larger than the base case and particularly so beginning in the second 

year of the forecast. While the median RMSE ratio for the training data suggested that 

the median model fit was close to the true simulated relative yellowtail flounder 

abundance, the ratio during the forecast period was over three due in part to patterns of 

observation errors at the end of the training data that resulted in large terminal year 

estimation errors (Figure S1d). The large prediction errors observed in the High 

Measurement Error scenario therefore indicate that the performance of the Age-Based 

approach may be sensitive to large observation error variance among the modeled age 

classes.   

Model Comparison 

As could be expected of a model based upon greater biological information, the 

Age-Based DLM approach performed better and with less uncertainty (Figures 3 and 

S1) than the Index-Based approach across the three base simulation scenarios (Table 

2). In general, the mean and median absolute prediction errors were smaller for Age-
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Based DLM and particularly after the first year of the forecast. However, the Age-

Based DLM was not necessarily superior in the fits of all simulations. For the Georges 

Bank cod scenario, for example, the Age-Based DLM had a larger range of survey-

averaged prediction errors despite scoring better in the mean and median absolute 

error metrics (Figure 5). Inspection of the model fits suggested these large errors may 

have stemmed from sharp increasing trends in abundance observed for individual age 

classes that did not manifest during the forecast period. However, the correlation 

between the forecast errors of the Index-Based and Age-Based approaches in this 

scenario was 0.65, indicating that both model structures tend to produce large errors in 

similar situations. Interestingly, the median RMSE ratios for the training data period 

were very similar between the DLM approaches, but the Age-Based models had lower 

values for the forecast period. This suggests that both approaches performed similarly 

in identifying observation errors during fitting, but that the Age-Based DLM produced 

better median forecasts.  

This comparative performance trend was matched in the Stable Recruitment 

yellowtail flounder scenario. The differences in mean and median absolute prediction 

error and in the median RMSE ratios were smaller between the Age-Based and Index-

Based approaches than the base yellowtail flounder scenario, but the performance 

pattern was similar. In the High Measurement Error scenario, however, the Age-Based 

DLM exhibited much larger prediction errors and a larger median RMSE ratio during 

the forecast period. This result suggests that a simpler, smoother model may perform 

better when the observed data exhibit a very large observation error variance that 

could mask relationships among age classes.  
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DISCUSSION 

The results of the simulation testing performed in this work indicate that DLMs 

hold promise as a tool for managing fish stocks for which a conventional stock 

assessment model cannot be reliably used. Across the generated simulation scenarios 

mimicking population dynamics observed in the Northeast Multispecies groundfish 

stock complex, the tested models exhibited strong predictive performance and realistic 

quantifications of forecast uncertainty. Due to the flexible nature of DLMs, the model 

structure employed for a given stock can be drawn from a spectrum of complexity 

depending upon the available data. The Index-Based and Age-Based structures 

evaluated here represent two interior points on the possible spectrum. Although the 

inclusion of additional biological information allowed the Age-Based DLMs to 

generally perform better than their Index-Based counterparts, the results indicate that 

using a simpler model may be better under certain circumstances. Further 

development of the DLM approach could include alternative model structures or 

different approaches for incorporating catch information to maximize the potential of 

this tool in fisheries management.  

Despite making use of limited biological information, the Index-Based DLMs 

performed well in prediction across simulation scenarios. Similar to the results of 

Brooks and Legault (2016) and Wiedenmann and Jensen (2018), the magnitude of the 

observed prediction errors were strongly correlated with the error in the terminal 

abundance estimate in the training data. These errors also tended to grow with the 

length of the forecast, suggesting that these models should be updated and used to 

generate new forecasts as often as data availability and resources allow in a 
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management setting. Among the base scenarios, the prediction errors appeared to be 

the smallest for witch flounder and the largest for Georges Bank yellowtail flounder. 

Given that changes in natural mortality and recruitment have both been implicated as 

sources of forecast error in stock assessments (Maunder and Piner 2015; Brooks and 

Legault 2016; Wiedenmann and Jensen 2018), these characteristics in the yellowtail 

flounder simulation may be responsible for the larger errors. However, the Index-

Based DLM fit of the Stable Recruitment modified yellowtail flounder scenario did 

not perform much better than the base scenario and the change in natural mortality 

occurred in the middle of the time series. Because it is unclear if changes in natural 

mortality and recruitment or another characteristic were responsible for the larger 

prediction errors observed for yellowtail flounder, additional testing would be required 

to better measure the impacts of changes in individual population parameters on 

forecast accuracy.  

In general, the Age-Based DLM structure appeared to perform as well or better 

than the Index-Based approach. An improvement in the magnitude of the prediction 

errors and the median RMSE ratio during the forecast period was observed for all of 

the base simulation scenarios. It should be noted, however, that the Age-Based 

approach did produce a larger range of errors for the Georges Bank Atlantic cod 

scenario. This indicates that the relative strengths of the two approaches tested here 

may not always be clear cut. Unlike the Index-Based approach, the estimated forecast 

uncertainty was too small in the Age-Based model fits. However, the coverage of the 

95% highest density forecast intervals for each individual age class was similar to that 

of the Index-Based DLM. Therefore, the small uncertainty estimate recorded for the 
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aggregated abundance forecast is likely an artefact of the correlation among the 

summed age-specific model fits. The one scenario in which the Age-Based approach 

performed worse than its Index-Based counterpart was in the High Measurement Error 

yellowtail flounder simulation. Given that consecutive, large measurement errors of 

the same sign at the end of the fitted time series were observed to result in larger 

measurement errors, it is possible that such a pattern is more likely to occur across age 

classes when the measurement error variance is high. If so, these errors may be 

compounded through the summation of the individual model fits into an aggregate 

whole. Additionally, large errors may also mask the relationships between age classes 

that help provide strength to the Age-Based approach. Therefore, these results indicate 

that a simpler, smoother model like the Index-Based DLM may be more desirable in 

cases where measurement error is very high.  

The relative strengths of the Index-Based and Age-Based DLM approaches 

highlight the benefit of the modular, additive nature of this model framework. If a 

single survey index of abundance is available for a fish stock with no reliable catch 

information, a simple, univariate DLM consisting of only a trend component could be 

fit and used in a similar manner to the PlanBSmooth IBM (Northeast Fisheries Science 

Center 2015). As demonstrated in this work, additional surveys of abundance, catch 

information, or length or age data can be built into an Index-Based, Stage-Based, or 

Age-Based approach without needing to average or summarize data and risk a 

detrimental loss of information (Maunder and Punt 2013). There is also additional 

capacity in this modeling framework beyond the scope of this work. Several previous 

studies have noted the importance of including the effects of environmental conditions 



 

30 

 

on population processes in stock assessment (Szuwalski et al. 2015; Szuwalski and 

Hollowed 2016; Xu et al. 2018). Within the DLM framework, such environmental 

conditions can simply be added as a covariate whose effect may be allowed to change 

over time if such a dynamic coefficient is supported by existing knowledge of a stock. 

Additionally, significant work in recent years has been devoted to developing 

multispecies models, both in order to capture the effects of trophic interactions within 

a biological community or to inform the assessments of data poor stocks (Punt et al. 

2011; Curti et al. 2013; Gaichas et al. 2017). The multivariate DLM structure used 

here to model multiple, correlated survey indices of abundance could be employed to 

model multiple species whose abundances tend to covary. Similarly, the hierarchical 

DLM structure used to model demographic information could be used to capture the 

direct trophic relationships among predator and prey species. In this manner, the 

developed DLM model framework does not represent a set of unrelated models that 

fisheries managers must choose between, but rather a spectrum of internally consistent 

models that can be adapted to make the most of available biological information. 

Beyond this modular capability, the DLM framework has other characteristics 

that past research has identified as desirable in assessing fish stocks. Perhaps most 

significantly, the importance of assessing and quantifying uncertainty in stock 

assessment has been repeatedly stressed (Berkson et al. 2011; Magnusson et al. 2013; 

Maunder and Piner 2015; Kokkalis et al. 2017). Unlike many of the IBMs currently in 

use (Wiedenmann et al. 2019; Legault et al. 2021), fitted DLMs produce true forecasts 

of future stock abundance with quantified uncertainty that can be used to assess risk 

among potential management actions.  
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Furthermore, the DLMs produced here are fit in a Bayesian framework, which 

has been identified as well-suited to making use of available biological information 

and expert input and producing accurate accountings of scientific uncertainty in stock 

assessment (Fronczyk et al. 2012; Magnusson et al. 2013; Chrysafi and Kuparinen 

2016). The use of the Bayesian approach also allows for a convenient imputation of 

missing data (Chrysafi and Kuparinen 2016), which could occur if, for example, a 

survey was not conducted in a year due to mechanical issues or as a result of the recent 

restrictions associated with the COVID-19 pandemic (Appendix III). This ability to 

produce probabilistic forecasts of abundance also has benefits in optimizing model 

structure and testing performance. Due in part to their reliance on decision rules to 

generate catch advice as opposed to predicting future stock abundance, there is not a 

consensus on which IBMs perform best under what circumstances and testing different 

approaches may involve a large simulation experiment (Wiedenmann et al. 2019; 

Legault et al. 2021). Using the retrospective forecasting approach developed by 

Brooks and Legault (2016), one could repeatedly fit candidate DLM structures to 

progressively longer time series of available data and compare the forecasts to the 

known future observations (Appendix III). While imperfect and prone to errors if 

underlying stock dynamics change, such testing could allow fisheries managers to 

identify the structure best-suited to modeling a particular fish stock and to gain a 

preliminary estimate of potential prediction performance. Finally, the ability of DLMs 

to capture changing population processes (e.g. natural mortality) may boost prediction 

accuracy while avoiding explicit assumptions about those processes that have resulted 

in significant errors in past stock assessments (Szuwalski et al. 2018). 
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It is difficult to directly compare the performance of the DLM approaches 

evaluated in this work to other IBMs used in management. Because the IBMs 

currently in use generally do not make forecasts of abundance or estimate the 

associated scientific uncertainty (Legault et al. 2021), the only way to draw 

comparative conclusions is through a detailed simulation experiment (Wiedenmann et 

al. 2019) beyond the scope of this work. However, such an experiment was recently 

conducted to test a variety of IBMs on simulated stocks that exhibited features that 

would have likely led to the rejection of age-structured assessments in a “real world” 

management process (Legault et al. 2021). This work included a limited, preliminary 

version of the Index-Based DLM and found that it performed as well or better than the 

other IBMs in recovering and maintaining stock abundance over the long-term. While 

the tested DLM model was found to be overly conservative in limiting harvest, this 

may have been a function of the chosen method to generate catch advice. Additionally, 

the DLM performed similarly well both in cases where natural mortality or catch were 

misspecified in the simulation experiment. While further testing is required to fully 

interpret the DLM performance in the IBMWG experiment, these results suggest that 

the different classes of DLMs described here hold great promise in providing fisheries 

managers with tools to evaluate potential harvest regulations and assess the associated 

uncertainty. 

To provide this utility in management, however, the forecast produced by a DLM 

model for a given stock must be converted to catch advice. While this work focused 

on developing model structures and assessing performance in prediction, it would be 

straightforward to produce catch advice using these DLMs. If reliable catch 
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information is not available for a given stock, an Index-Based DLM consisting of only 

a trend component could be fit and used to generate catch advice in a similar manner 

to that of the PlanBSmooth IBM (Northeast Fisheries Science Center 2015). This 

approach could be extended to an Age-Based DLM in which the fitted state variables 

only describe abundance trends-at-age and the relationships among successive ages. 

When catch information is incorporated into the model, one can use an optimization 

algorithm based on the estimated latent state in the terminal year of the training data 

and the filtering equations (above) to solve for a harvest level that will result in the 

population reaching a given target level by the end of the forecast interval with a 

desired level of certainty. For example, the use of log-transformed data in model-

fitting results in larger overestimation errors on average. Given that overoptimistic 

forecasts that lead to higher harvest levels are more problematic in maintaining stock 

abundance over the long-term (Glaser et al. 2014; Brooks and Legault 2016; 

Szuwalski et al. 2018), users could consider requiring higher forecast certainty when 

providing catch advice that supports raising harvest levels. This could take the form of 

developing catch advice such that the 40% quantile of the posterior predictive 

distribution meets a target abundance at the end of the forecast window in place of the 

mean or median. Determining the quantile that best mitigates these risks while 

allowing sufficient harvest, however, will be a challenge that requires significant 

investigation.  

These potential approaches to developing catch advice, however, rely upon a 

target abundance level being identified. Like other IBMs (Wiedenmann et al. 2019; 

Legault et al. 2021), the developed DLM structures model data on the relative (survey) 
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scale and do not attempt to estimate the true population abundance. Therefore, users 

will not have clear biological reference points with which to assess current stock status 

and determine a desirable future population trajectory as they would when using an 

age-structured stock assessment model. Determining target abundance levels will 

therefore have to rely upon expert knowledge of each individual stock being modeled. 

Although imperfect, the ability of the DLM framework to generate forecasts of 

abundance and estimate uncertainty still represents a step forward in capability 

compared to current IBMs that will prove valuable in management. 

Another consideration in the use of the developed DLM framework to develop 

catch advice for fisheries management is the differences among the Index-Based and 

Age-Based approaches. Because the Index-Based DLM only assumes correlation 

among survey indices of abundance, simulation cases emerged in which the forecasts 

for different surveys had divergent (positive and negative) slopes. If the surveys were 

representing different parts of the population that are indeed exhibiting divergent 

trajectories, this result would be desirable. However, it could also occur if differing 

patterns of observation errors among indices impacted the model estimates of 

abundance trends. In the case where a user is implementing the Index-Based DLM due 

to a lack of available size, life stage, or age information, there would not be a way to 

determine the root cause the divergent pattern in the forecasts and thus additional 

caution is warranted. When demographic structure is included in the model, however, 

the ability to represent multiple survey indices with a single set of state variables 

results in forecasts with a consistent trajectory for generating catch advice with less 

involved uncertainty. While testing different approaches or decision rules for using 
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DLM forecasts to create catch advice was outside the scope of this work, this 

prospective ability to directly evaluate potential harvest levels against probabilistic 

forecasts of abundance will be very valuable in management. 

In summary, the developed DLM approach appears promising as a tool to forecast 

future abundance and manage index-based stocks. In the demonstration cases tested 

here using simulated data, strong predictive performance was observed for both the 

Index-Based and Age-Based approaches. Despite this performance, it is recommended 

that additional model development and evaluations using realistic management 

scenarios are undertaken. It is likely that additional model structures not tested here or 

alternative methods for incorporating catch information may produce better results. 

Nevertheless, the results demonstrate that the DLM framework addresses many of the 

needs and shortcomings identified by past research of IBMs currently in use. The 

modular ability of the model structures and development of priors can allow for the 

use of all available biological information and expert input to manage a stock. The 

majority of global fish stocks lack the data necessary for conventional stock 

assessment methods (Costello et al. 2012). With additional testing and validation, the 

DLM framework may be able to become a valuable tool for fisheries managers to use 

the information at hand to be more successful in maintaining productive marine 

fisheries around the globe. 
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FIGURES 

 
Figure 1. The true relative (survey scale) abundance (dark blue) and 50 simulated 
survey time series (light blue) for a single survey for each of the five stock simulation 
scenarios. SR: Stable Recruitment scenario, HME: High Measurement Error scenario. 
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Figure 2. The true relative (survey scale) abundance (dark blue) and the 50 simulated 
survey time series (light blue) for the modeled age classes (1-6+) in the base yellowtail 
flounder scenario.  
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Figure 3. The Index-Based (left) and Age-Based (right) DLM fits for three surveys 
(rows) in a single simulation of the base yellowtail flounder scenario. The true relative 
(survey scale) abundance (RA, black) and observed survey abundance used in fitting 
(gray) is compared to the median model fit (blue) and forecast (red). The credible 
intervals for the posterior predictive distributions estimated for each year are 
represented by shading.  
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Figure 4. The distributions of survey-averaged prediction errors by year (rows) of the 
forecast period for the Index-Based (left) and Age-Based (right) DLM fits of the base 
yellowtail flounder scenario.  
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Figure 5. The relationship between the estimation error, based on the median of the 
posterior predictive distribution, in the terminal year of the training data and the 
average error observed during the forecast period for each survey for the Index-Based 
(left) and Age-Based (right) DLM fits to each of the 50 simulations of the base 
Georges Bank Atlantic cod scenario simulations.  
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Figure 6. The Age-Based DLM fit for all surveys (columns) and age classes (rows) of 
a single simulation of the base yellowtail flounder scenario. The simulated survey 
observations used in model fitting are depicted by a black line and the median model 
fit and forecast are depicted by blue and red lines, respectively. The credible intervals 
for the model fit and forecast are shown as shaded regions.  
 

  



 

49 

 

SUPPLEMENTS 

Figure S1. The Index-Based (left) and Age-Based (right) DLM fits for three surveys 
(rows) in a single simulation of the simulation scenarios not shown in Figure 3. The 
true relative (survey scale) abundance (RA, black) and observed survey abundance 
used in fitting (gray) is compared to the median model fit (blue) and forecast (red). 
The credible intervals for the posterior predictive distributions estimated for each year 
are represented by shading.  

 
a. Georges Bank Atlantic cod base scenario 
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b. Witch flounder base scenario 
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c. Georges Bank yellowtail flounder- Stable Recruitment scenario 
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d. Georges Bank yellowtail flounder- High Measurement Error scenario 
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Appendix I: Forward-Filtering Backward-Sampling (FFBS) Algorithm 

The set of state variables 𝜽! to be estimated in a DLM fit to observed data 𝑦! for time 

points 𝑡 in 1: 𝑇 are sampled using the following steps. For a given time 𝑡, the FFBS 

algorithm first calculates the one-step-ahead predictive distribution of the latent state, 

𝑓(𝜽!|𝑦#:!"#) = 𝑁(𝒂! , 𝑹!), where: 

𝒂! = 𝐸(𝜽!|𝑦#:!"#) = 𝑮!𝒎!"# 

𝑹! = 𝑉𝑎𝑟(𝜽!|𝑦#:!"#) = 𝑮!𝑪!"#𝑮!: +𝑾! 

The one-step-ahead predictive distribution of the observation, 𝑓(𝑦!|𝑦#:!"#) =

𝑁(𝑓! , 𝑄!), is then defined as: 

𝑓! = 𝐸(𝑦!|𝑦#:!"#) = 𝑭!𝒂! 

𝑄! = 𝑉𝑎𝑟(𝑦!|𝑦#:!"#) = 𝑭!𝑹!𝑭!: + 𝑉! 

The forward filtered distribution of the latent state, 𝑓(𝜽!|𝑦#:!) = 𝑁(𝒎! , 𝑪!), has 

moments: 

𝒎! = 𝐸(𝜽!|𝑦#:!) = 𝒂! + 𝑨!𝑒! 

𝑪! = 𝑉𝑎𝑟(𝜽!|𝑦#:!) = 𝑹! − 𝑨!𝑨!:𝑄! 

𝑒! = 𝑦! − 𝑓! 

𝑨! = 𝑹!𝑭!:/𝑄! 

Finally, the smoothed (backward sampled) distribution of the latent state, 

𝑓(𝜽!|𝜽!;#, 𝑦#:<) = 𝑁(𝒎!
∗, 𝑪!∗), has moments: 

𝒎!
∗ = 𝐸(𝜽!|𝜽!;#, 𝑦#:<) = 𝒎! + 𝑩!(𝜽!;# − 𝒂!;#) 

𝑪!∗ = 𝑉𝑎𝑟(𝜽!|𝜽!;#, 𝑦#:<) = 𝑪! − 𝑩!𝑹!;#𝑩!:  

𝑩! = 𝑪!𝑮!;#: 𝑹!;#"#  
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The moments 𝒎!
∗ and 𝑪!∗ are then recorded for all time points and returned to the 

Gibbs sampler for use in sampling the observation error variance 𝑉! and the evolution 

error variance 𝑾! and to make forecasts of future values of the observed data 𝑦!. 
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Appendix II. DLM Specifications 

Common Prior Distributions 

A similar strategy was employed in setting priors for both the Index-Based and 

Age-Based DLMs. The state variables defining the trend component of the models 

were assigned flat gaussian priors (variance = 1 x 107). The means of these priors were 

set to the mean of the observed data for intercept terms and zero for the slope terms of 

dynamic trends. The priors on the regression coefficients on catch anomalies, which 

were expected to be between 0 and -1, were in all cases assigned the gaussian prior 

𝑁(−0.5, 0.0625).  

The prior distributions on the observation and evolution error variances were 

informed by the data. Specifically, it was assumed a priori that half of the total data 

variance could be explained by observation error and the other half by evolution error. 

Therefore, the observation error variances for each survey were assigned the inverse-

gamma prior 𝐼𝐺 e1, =+,(>)
0

f. The evolution error variances for the dynamic state 

variables were assigned inverse-Wishart priors, where it was assumed that the state 

variables explained equal proportions of the total evolution variance. The covariances 

among the dynamic state variables were set to one half that variances a priori. The 

prior degrees of freedom was set to the number of dynamic state variables plus two. 

Thus, in an example model with two dynamic state variables, the parameters of the 

inverse-Wishart prior distribution would be: 

𝒂& = T

𝑉𝑎𝑟(𝑌)
4

𝑉𝑎𝑟(𝑌)
8

𝑉𝑎𝑟(𝑌)
8

𝑉𝑎𝑟(𝑌)
4

U

"#

, 		𝑏& = 4 



 

56 

 

 

Index-Based DLMs 

 

Georges Bank Atlantic cod 

Trend component: random walk 

Catch regression: static 

𝑭! = j
1 0 0 𝐻#,!"#∗ 0 0
0 1 0 0 𝐻0,!"#∗ 0
0 0 1 0 0 𝐻?,!"#∗

k              𝑮 =

⎣
⎢
⎢
⎢
⎢
⎡
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1⎦

⎥
⎥
⎥
⎥
⎤

 

 

𝑽 = X
𝑉# 0 0
0 𝑉0 0
0 0 𝑉?

Y                            𝑾 =

⎣
⎢
⎢
⎢
⎢
⎡
𝑊'! 𝑊'!'" 𝑊'!'# 0 0 0
𝑊'"'! 𝑊'" 𝑊'"'# 0 0 0
𝑊'#'! 𝑊'#'" 𝑊'# 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0⎦

⎥
⎥
⎥
⎥
⎤

 

𝜽!: = [𝜏#,! 𝜏0,! 𝜏?,! 𝛽#,! 𝛽0,! 𝛽?,!] 

 

Where 𝐻8,!"#∗  denotes the catch anomalies calculated for survey 𝑆 lagged by one year, 

𝑉8 is the measurement error variance for survey 𝑆, 𝑊'$ is the evolution error variance 

for a random walk (𝜏) fit to survey 𝑆, 𝑊'%!'%"  is the covariance between random walks 

fit to two surveys, 𝜽! is the vector of state variables at time 𝑡, and 𝛽8,! is the regression 

coefficient for the catch anomalies calculated using survey 𝑆.  
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Georges Bank yellowtail flounder, witch flounder, Georges Bank yellowtail flounder- 

Stable Recruitment, Georges Bank yellowtail flounder- High Measurement Error 

Trend component: dynamic linear trend 

Catch regression: static 

 

𝑭! = j
1 0 0 0 0 0 𝐻#,!"#∗ 0 0
0 1 0 0 0 0 0 𝐻0,!"#∗ 0
0 0 1 0 0 0 0 0 𝐻?,!"#∗

k 

 

𝑮 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
1 0 0 1 0 0 0 0 0
0 1 0 0 1 0 0 0 0
0 0 1 0 0 1 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

 

𝑽 = X
𝑉# 0 0
0 𝑉0 0
0 0 𝑉?

Y                   𝑾 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 𝑊'! 𝑊'!'" 𝑊'!'# 0 0 0
0 0 0 𝑊'"'! 𝑊'" 𝑊'"'# 0 0 0
0 0 0 𝑊'#@! 𝑊'#'" 𝑊'# 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

 

𝜽!: = [𝐼#,! 𝐼0,! 𝐼0,! 𝜏#,! 𝜏0,! 𝜏?,! 𝛽# 𝛽0 𝛽?] 
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Where 𝐻8,!"#∗  denotes the catch anomalies calculated for survey 𝑆 lagged by one year, 

𝑉8 is the measurement error variance for survey 𝑆, 𝑊'$ is the evolution error variance 

for the slope term of a dynamic linear trend (𝜏) fit to survey 𝑆, 𝑊'%!'%"  is the 

covariance between the dynamic linear trend slopes fit to two surveys,  𝜃! is the vector 

of state variables at time 𝑡, 𝐼8,! is the intercept term of the dynamic linear trend for 

survey 𝑆 at time 𝑡, and 𝛽8 is the static regression coefficient for the catch anomalies 

calculated using survey 𝑆.  

 

Age-Based DLMs 

All scenarios 

Trend component: random walk (age-1), first order autoregressive process (age-2+) 

Catch regressions: static 

Regressions on prior age: static 

State variables: common across surveys  

 

Priors 

The regression coefficients on the prior age class in the Age-Based DLMs were 

expected to be positive, but generally not much larger than 1. Therefore, these terms 

were all assigned the gaussian prior 𝑁(1, 0.25). Flat gaussian priors, 𝑁(0,1 × 10A), 

were used for the intercept terms accounting for differences in catchability and 

selectivity among surveys 
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Age-1 

 

𝑭! = X
1 0 0
1 1 0
1 0 1

Y                           𝑮 = X
1 0 0
0 1 0
0 0 1

Y 

 

𝑽 = X
𝑉# 0 0
0 𝑉0 0
0 0 𝑉?

Y                      𝑾 = X
𝑊' 0 0
0 0 0
0 0 0

Y 

 

𝜽!: = [𝜏! 𝜇#0 𝜇#?] 

 

Where 𝑉8 is the measurement error variance for survey 𝑆 and 𝑊' is the evolution error 

variance for the common random walk (𝜏) fit to all surveys, and 𝜇8!8" is the constant 

relative difference in catchability and selectivity between surveys 1 and 2.  

 

Age-2 or older 

 

𝑭! = j
𝐵+"# 𝐻!"#∗ 1 0 0
𝐵+"# 𝐻!"#∗ 1 1 0
𝐵+"# 𝐻!"#∗ 1 0 1

k             𝑮 =

⎣
⎢
⎢
⎢
⎡
1 0 0 0 0
0 1 0 0 0
0 0 𝜙 0 0
0 0 0 1 0
0 0 0 0 1⎦

⎥
⎥
⎥
⎤
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𝑽 = X
𝑉# 0 0
0 𝑉0 0
0 0 𝑉?

Y                                   𝑾 =

⎣
⎢
⎢
⎢
⎡
0 0 0 0 0
0 0 0 0 0
0 0 𝑊' 0 0
0 0 0 0 0
0 0 0 0 0⎦

⎥
⎥
⎥
⎤
 

 

𝜽!: = [𝛾+ 𝛽+ 𝜏+,! 𝜇#0,+ 𝜇#?,+] 

 

 

Where 𝑉8 is the measurement error variance for survey 𝑆, 𝑊' is the evolution error 

variance for the common first order autoregressive process (𝜏) for age 𝑎	with 

coefficient 𝜙 fit to all surveys, 𝐵+"# is the estimated relative abundance of the prior 

age class, 𝐻!"#∗  is the mean catch anomaly, calculated using the age-aggregated survey 

and catch data, across surveys lagged by one year, 𝛾+ is the static regression 

coefficient for age 𝑎	on the relative abundance of the prior age class, 𝛽+ is the static 

regression coefficient on the lagged catch anomalies, and 𝜇8!8" is the constant relative 

difference in catchability and selectivity between surveys 1 and 2. 
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Appendix III. DLM test with real world Georges Bank yellowtail flounder data 

To perform a preliminary comparison of the retrospective forecasting 

performance of the Index-Based and Age-Based DLM approaches between the 

simulated data sets and real-world observations, survey data were gathered for the 

Georges Bank yellowtail flounder stock. Specifically, age-specific indices of 

abundance (mean number/tow) were obtained for the Department of Fisheries and 

Oceans Canada (DFO) trawl survey (1987-2019) and the Spring and Fall bottom trawl 

surveys conducted by the Northeast Fisheries Science Center of the National Marine 

Fisheries Service (NMFS, 1973-2019). The three survey time series were then fit with 

an Index-Based and an Age-Based DLM as in the main text and using model 

specifications detailed in Appendix II. The Index-Based model used the same model 

structure as for the Georges Bank Atlantic cod scenario. Because the DFO survey did 

not begin until 1987, missing values of the catch anomalies for 1973-1986 were 

estimated and imputed using a linear regression of the observed DFO catch anomalies 

on the anomalies calculated for the two NMFS surveys. The DLMs were then fit to 

subsets of the survey time series such that the generated forecasts could be compared 

to true observations recorded after the training data period. 

Comparison of the retrospective forecasts to the true observations produced 

mixed results that were broadly similar to the performance observed when using 

simulated data. When the models were fit to the 1973-2016 survey data, the Index-

Based DLM produced forecasts much closer to the observed data for 2017-2019 than 

the Age-Based approach (Figure A3.1). However, models fit to different subsets of the 

data (minimum: 1973-2005) suggested that the Index-Based DLM was not necessarily 
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exhibiting better performance (Figure A3.2). Prior to the steep drop in abundance 

beginning in the 2010s, the forecasts generated by the Age-Based approach were 

generally closer to the future observed data. The Age-Based approach also provided a 

more consistent imputation of the missing (pre-1987) values of the DFO survey as 

additional data were added to model fitting. During the abundance decline, however, 

the Age-Based DLM predicted population growth that did not occur based upon low 

levels of harvest. As a result, the forecasts produced by the Index-Based DLM during 

the 2010s were closer to the real data. Taken together, these results suggest that 

retrospective forecasting using different subsets of available observed data can provide 

useful insights into prospective model performance. However, a change in the 

underlying population dynamics may alter the performance of a DLM structure that 

appeared well-suited to modeling a target stock based upon historic data. The poor 

forecast performance observed during the 2010s indicates that additional Age-Based 

DLM structures would need to be explored for use on the Georges Bank yellowtail 

flounder stock.  
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Figure A3.1. The Index-Based (left) and Age-Based (right) DLM fits of three surveys 
(rows) used to monitor the Georges Bank yellowtail flounder stock. The observed 
survey abundance used in fitting (black) is compared to the median model fit (blue) 
and forecast (red). The credible intervals for the posterior predictive distributions 
estimated for each year are represented by shading. 
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Figure A3.2. The Index-Based (left) and Age-Based (right) DLM fits of sequentially 
longer time series (minimum: 1973-2005, each year from 2005-2019 was used as an 
endpoint) of three surveys (rows) used to monitor the Georges Bank yellowtail 
flounder stock. The observed survey abundance used in fitting (black) is compared to 
the median model fits and three year forecasts (colors).  
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CONCLUSIONS 

 

The results of this thesis support further exploration of the use of dynamic linear 

models (DLMs) in the assessment of fisheries for which age-structured stock 

assessment approaches are not possible. While the Index-Based Methods (IBMs) 

currently used to manage stocks in such situations do not make forecasts of future 

abundance or quantify scientific uncertainty (Wiedenmann et al. 2019; Legault et al. 

2021), the developed DLM models exhibited strong predictive performance across the 

simulated scenarios. Similar to previous research into the performance of different 

stock assessment approaches (Brooks and Legault 2016; Wiedenmann and Jensen 

2018), prediction errors in this work were strongly correlated with the estimation error 

magnitude in the terminal year of the observed data and tended to grow with the length 

of the forecast. Prediction error magnitude also appeared to increase with the 

observation error variance of the fitted data. Because large terminal estimation errors 

appeared to manifest in cases where consecutive observation errors of the same sign 

were observed at the end of the available time series, these results suggest that the 

DLM approach may perform best if the forecasts are updated frequently (annually) 

before prediction errors compound.  

In general, the Age-Based DLM appeared to perform better than the Index-Based 

approach. This is not unexpected given that additional demographic information is 

being supplied to the model. However, the results of this thesis do not suggest that the 

Age-Based approach will be more desirable in every situation. For example, the Age-

Based DLM produced smaller mean and median absolute prediction errors than the 
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Index-Based case in the Georges Bank Atlantic cod scenario, but also exhibited a 

larger range of errors. Apparently due to the compounding of forecast errors for 

individual age classes, this suggests that the preferred DLM structure in this case may 

depend on the acceptable risk level among fishery managers. Additionally, the High 

Measurement Error scenario for the Georges Bank yellowtail flounder simulation 

suggested that the simpler, smoother Index-Based DLM would perform better than a 

more complex model when observation error variance was very high. Taken together, 

these examples highlight the need for additional research to characterize the strengths 

and weaknesses of different levels of DLM complexity when applied to a variety of 

fisheries management situations. 

Although development of specific strategies was beyond the scope of this thesis, 

it will be important to evaluate different methods of using the forecast produced by 

DLM models in generating catch advice for the management of specific fisheries. In 

the case that catch information is not included in a particular DLM, one could employ 

a similar approach for recommending harvest levels as is conducted in the 

PlanBSmooth IBM (Northeast Fisheries Science Center 2015). When catch 

information is included, the estimated DLM equations could be used to solve for the 

catch levels that could produce a target abundance with a desired level of uncertainty. 

Like other IBMs currently employed (Wiedenmann et al. 2019; Legault et al. 2021), 

however, the DLMs described in this work do not estimate the true population size. As 

a consequence of this characteristic, fisheries managers will face ambiguity in 

determining biomass targets that represent a healthy state for a given stock. In the 

absence of the ability to calculate reference levels relative to, for example, the 



 

67 

 

population size at maximum sustainable yield, the development of catch advice from 

employed DLMs will rely upon the knowledge of experts in assessing fish stocks. 

However, the ability to produce true forecasts of future abundance and fulfill the well-

recognized need to account for scientific uncertainty in fisheries management 

(Berkson et al. 2011; Maunder and Piner 2015; Kokkalis et al. 2017) gives users of the 

DLM framework more information with which to develop catch advice than in 

currently employed IBMs (Wiedenmann et al. 2019; Legault et al. 2021). 

Finally, the DLM structures developed and evaluated here are not meant to be 

exhaustive, but rather a first exploration into the capabilities and utility of this 

approach in fisheries management. We strongly encourage additional testing and 

further development of DLMs in order to maximize their potential to improve fisheries 

management outcomes in the many fisheries for which a conventional stock 

assessment approach is not possible (Costello et al. 2012). To this end, we hope that 

this thesis provides scientists and fisheries managers, present and future, with 

inspiration and a jumping off point to continue to strive toward a more productive and 

sustainable future for global fisheries.  
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