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ABSTRACT 

Tropical biodiversity is threatened globally by anthropogenic disturbances, particu-

larly forest degradation and overhunting. Where large mammals have been extirpated, 

smaller-bodied “mesomammals” may play an important ecological role (e.g., as seed-dis-

persers). However, mesomammals are routinely understudied as they tend to be rare, 

cryptic, and nocturnal. Tropical tree-dwelling (arboreal and semi-arboreal) mesomam-

mals are especially vulnerable to forest conversion, particularly when reliant on old 

growth forest structures. Understanding species- and community-level responses of ter-

restrial and arboreal mesomammals to changes in forest structure and human activity is 

crucial for informing management decisions in protected areas where resources are lim-

ited. We deployed 20 arboreal and 75 terrestrial camera traps throughout Nam Cat Tien 

National Park, southern Vietnam. The study objectives of the first chapter were to 1) 

identify long-term changes in terrestrial mesomammal richness and 2) evaluate the ef-

fects of forest structure and anthropogenic disturbance on an 18-species mesomammal 

community using community occupancy models. The objectives of the second chapter 

were to 1) evaluate the utility of arboreal camera traps for surveying nine arboreal and 

four semi-arboreal tropical mesomammals, 2) model the effects of forest structure and 

anthropogenic disturbance on detection and occurrence of arboreal mesomammals using 

generalized linear mixed models and single-season occupancy models, and 3) estimate 

arboreality of semi-arboreal species using multi-scale occupancy models. We found that 

terrestrial mesomammal site occupancy was driven largely by the interaction between 

distance to seasonally inundated grassland and absolute forest cover (basal area per hec-

tare). We found no negative effects of anthropogenic factors at the community-level. 



 

 
 

However, we did find that four disturbance-tolerant small carnivores have been extirpated 

since the 1990s and continued human presence in the park suggests that hunting and snar-

ing remains an acute threat to native mesomammals. We also found that canopy connec-

tivity and other mature forest characteristics were important across the arboreal commu-

nity. The effect of tree and focal limb characteristics on species detection was most likely 

explained by physiological adaptations and tree use behavior. Mean occupancy was un-

derestimated for most semi-arboreal species when only one method was used. Multi-

method occupancy designs may thus improve estimates of species distribution and habitat 

use, which are important for guiding management and conservation decisions. 
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PREFACE 

The two chapters of this thesis have been provided in the manuscript format of the 

respective journals they were submitted to. Manuscript 1 follows the Ecosphere journal 

guidelines, and Manuscript 2 follows the Animal Conservation journal guidelines. All 

tables, figures, and appendices for both chapters are included at the end of Manuscript 2. 

All literature cited for both chapters are combined in the Bibliography section.  
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Introduction 

Tropical biodiversity is acutely threatened by anthropogenic development and 

overexploitation (Bradshaw, Sodhi, & Brook, 2009). Land use change, particularly 

conversion of intact native forests for agriculture, alters habitat structure and resource 

availability in ways that preclude species persistence and is the greatest driver of 

biodiversity loss (Newbold et al., 2016; Tilman et al., 2017). While selectively logged 

forests can retain habitat and thus have value for conserving many species, high-intensity 

logging and land conversion negatively affects the abundance and species richness of 

forest-dwelling mammals in the tropics (Laurance et al., 2008; Brodie, Giordano, & 

Ambu, 2015). Resource specialists and species with small ranges are particularly 

vulnerable to extinction by habitat loss and anthropogenic disturbances (Pimm & Raven, 

2000; Davies, Margules, & Lawrence, 2004), especially when combined with additional 

pressures, such as unsustainable hunting and climate change (William F. Laurance & 

Useche, 2009; Wilkie et al., 2011). 

Tropical Southeast Asia is a biodiversity hotspot that contains the highest 

proportion of globally unique (endemic) mammal species (Myers et al., 2000; Olson et 

al., 2001). However, Southeast Asia also has the highest rate of anthropogenic 

deforestation of any major tropical region (Sodhi et al., 2010). The region has lost over 

half of their primary forest (Sodhi et al., 2004) and 20% of their total species richness 

(Newbold et al., 2016), largely due to land conversion for the production of agricultural 

commodities (e.g., oil palm; Schipper et al. 2008). Further, the region experiences heavy 

exploitation of wildlife for subsistence hunting and the rapidly expanding medicine, pet, 

and bushmeat market (Corlett, 2007). The synergistic combination of anthropogenic 
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pressures on wildlife in Southeast Asia has the potential to rapidly disrupt ecosystems 

and drive disturbance-sensitive species to local or global extinction.  

Protected areas, such as national parks, wilderness areas, and nature reserves have 

been established globally as refuges for wildlife with the aim of preserving biodiversity 

and ecosystem integrity. However, the effectiveness and conservation potential of 

protected areas in the tropics is endangered by human activities and ineffective 

governance. Over 68% of tropical protected forests have experienced loss of forest cover 

within a 50 km range of the boundary, and 25% have experienced loss within protected 

area boundaries, with loss rates highest in South and Southeast Asia (Clark et al., 2013; 

Brun et al., 2015). Reductions in forest cover surrounding protected areas (i.e., buffer 

zones) jeopardize the capacity for protected areas to conserve species (DeFries et al., 

2005). Further, the fragmentation and potential isolation of high-quality habitat between 

protected areas can threaten the long-term persistence of wide-ranging species (Crooks et 

al., 2011). In addition, concentrated development around protected areas in Southeast 

Asia facilitates illegal hunting, snaring, and the movement of wildlife from parks to urban 

consumers, especially where local poverty rates are high and alternative livelihood 

options are limited (Johannesen, 2007; Watson et al., 2013). 

Many of Southeast Asia’s larger frugivorous mammals have experienced 

significant population and range declines in recent years even within national parks (i.e. 

elephants, gaur, sun bear; Sukumar 2003, IUCN 2016a, 2016b). Frugivorous or partially 

frugivorous forest mesomammals can play important yet undervalued ecological roles as 

seed dispersers (Nakashima et al., 2010; Corlett, 2017) and may help maintain ecosystem 

stability as larger and more disturbance-sensitive species disappear (Cardillo et al., 2004). 



 
 

4 
 

Yet, despite similar levels of extinction among smaller-bodied mammals as large 

mammals (Schipper et al., 2008), there has been relatively little research on these species 

in tropical areas as they tend to be rare, cryptic, and nocturnal (Brooke et al., 2014). For 

example, civets, mongoose, and small cats are among the least studied members of the 

order Carnivora (Brodie 2009; Brooke et al. 2014); 22% of small carnivores are classified 

as threatened under IUCN due to population declines or range contractions (Schipper et 

al. 2008). Although forest mesomammals have shown resilience to moderate 

anthropogenic disturbance in Southeast Asia, such as selective logging, responses can 

vary by species and fine-scale vegetation structure (e.g., canopy cover; Mathai et al. 

2010). However, quantifying anthropogenic and habitat effects can be difficult for 

Southeast Asian mesomammals, as habitat suitability analyses (e.g., gap analyses) have 

been shown to be inconsistent with ground-truthed occurrence data (biased estimates of 

distribution and abundance; Jennings and Veron 2011). Such analyses often ignore edge 

effects beyond changes in forest structure (Tabarelli, Cardoso da Silva, & Gascon, 2004). 

For example, hunting in Southeast Asia disproportionally affects distributions of species 

selectively targeted for the urban wildlife market (e.g., pangolin, civets, wild pigs, and 

primates) despite availability of suitable habitat (Brodie, Giordano, & Ambu, 2015; 

Wearn et al., 2017). In addition, community stability is reliant on species and interaction 

diversity (Mougi & Kondoh, 2012), yet few studies have examined spatio-temporal 

responses to anthropogenic disturbance by mesomammals at the community level. 

Identifying community-level sensitivity and responses to disturbance may identify 

imbalances within an ecosystem that could threaten long-term species persistence. 
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Our study objectives are to 1) identify long-term changes in terrestrial 

mesomammal richness and 2) evaluate how current forest structure and encroaching 

anthropogenic activities affect occurrence of forest dwelling mesomammals within a 

protected tropical forest of Southeast Asia. The protected area has been increasingly 

fragmented by landcover change and urbanization within the surrounding buffer zone 

since its establishment in the 1990s. We hypothesized that park-level terrestrial and semi-

terrestrial mesomammal community richness would have declined since the last rigorous 

biodiversity surveys conducted in the 1990s, with species requiring larger ranges, more 

intact primary forest, or which are selectively targeted by the wildlife trade no longer 

occur in the park or occur at very low rates. We also hypothesized that site-level 

community occurrence and richness throughout the park would increase where forest 

structure was most intact (i.e., high absolute cover and low understory cover) and would 

decrease where human use and accessibility was higher. Given the long history of 

anthropogenic disturbance in and around the park since its establishment, we reasoned 

that there would be a gradient of species-specific responses, where disturbance-sensitive 

species would be constrained to less disturbed areas while more adaptable species would 

be less selective in their use of forest sites. 

Methods 

Study Area  

We surveyed terrestrial and semi-terrestrial forest mesomammals in Cat Tien 

National Park, located ~150 km north of Ho Chi Minh City in Southern Vietnam. It is 

one of the largest national parks in the country, at 72,000 ha, and is part of a greater 

UNESCO Biosphere Reserve buffer zone and Ramsar Site. The park consists of two 
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segments separated by eight kilometers of agricultural land: Cat Loc in the north and 

Nam Cat Tien and Tay Cat Tien in the south. Our study occurred within the core zone of 

Nam Cat Tien in Dong Nai province (Figure 1). Nam Cat Tien has several landcover 

types, including secondary mixed evergreen and deciduous forest, bamboo forest, and 

seasonally inundated grassland. 

Seventy-six mammal species were confirmed to inhabit Cat Tien National Park 

during surveys conducted between 1993 and 2001, comprising 30% of Vietnam’s known 

mammal species. Of these, 23 species can be classified as terrestrial or semi-terrestrial 

mesomammals. At least sixteen of the park’s mammal species are listed as threatened 

under IUCN and several are endemic to Vietnam. Most large mammals have been 

extirpated from the park, including tiger (Panthera tigris) and Javan rhinoceros 

(Rhinoceros sondaicus), or restricted to very small local populations, such as Asian 

elephant (Elephas maximus) and gaur (Bos gaurus; Murphy 2004, Polet and Ling 2004, 

Nguyen 2009). 

Most of Cat Tien National Park consists of secondary and bamboo-dominated 

forest due to a legacy of anthropogenic disturbance within and around the park. Portions 

of the park were sprayed with herbicides, such as Agent Orange, during the U.S.-Vietnam 

War between 1965-1970 (Stellman et al., 2003). The park was also logged after the war 

and prior to its establishment as a protected area in 1992. Most logging occurred within 

the buffer zone of the park (Figure 1; delineated by UNESCO in 2001) between 1973 and 

1989, with some forest regeneration during the 1990s accompanying a shift from forest 

extraction and agriculture to agroforestry (Meyfroidt & Lambin, 2008; Vogelmann et al., 

2017). While the core of the park has not much changed in forest cover since the 1970s, 
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the buffer zone and areas beyond have been extensively converted for small-scale 

agriculture and anthropogenic development (Emerton et al., 2014; Vogelmann et al., 

2017; Duong et al., 2018). In addition, harvest of wild animals for trade and subsistence 

poses a serious threat to the remaining wildlife within the park and has been linked to 

increasing demand for bushmeat in the cities (Polet & Ling, 2004; Van Song, 2008; An, 

Markowski, & Bartos, 2018). 

Camera trapping 

 The use of automated cameras to capture animal incidences is a well-documented 

and preferred method of non-invasively assessing terrestrial mammal populations, species 

diversity, occurrence patterns, and temporal activity (Tobler et al. 2008, Rovero and 

Marshall 2009). We set seventy-five terrestrial camera traps in Nam Cat Tien from June 

2019 to January 2020 to allow for data collection across wet (June to September 2019) 

and dry (October 2019 to January 2020) seasons. We used a stratified random sampling 

approach to select camera sites in proportion to the availability of four different land 

cover classifications (secondary forest, mixed forest, bamboo, and grassland; ESA Land 

Cover CCI 2015, Figure 1). Sites were selected at varying proximity to anthropogenic 

disturbance (urban areas, agricultural land, park edge), with minimum proximity between 

sites at 500 m. Cameras were set approximately 30-70 cm off the ground to maximize 

detections of small- to medium-bodied mammals (M. W. Tobler et al., 2008a; Sunarto, 

Sollman, & Kelly, 2013) and placed on or near (within 5 m) human trails for maximizing 

detection of human activity and facilitating revisit accessibility. The detection range of 

each camera (max 24 m detection distance) was limited by obstructing vegetation, 

especially at night when the infrared flash may be reflected off nearby foliage. We 
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minimized detection range variation across cameras by clearing vegetation in front of the 

camera to approximately two meters. Cameras were continuously active throughout each 

season and had large (32 GB) memory cards to limit revisits to once per month. Most 

trails were not heavily used or significantly altered by people, thus we did not expect 

mesomammals to avoid trails. Photos were tagged to species by six observers using the 

Digikam photo manager (https://digikam.org) and all mesomammal tags were reviewed 

for accuracy by the lead author. 

Covariates 

We hypothesized that mesomammal occurrence would be affected by various 

combinations of environmental and anthropogenic variables. A 10x10m landcover 

classification (i.e., forest, bamboo, grassland) was assigned at each camera site using 

ArcGIS v. 10.5 (ESRI 2011; ESA 2015) and was confirmed on the ground with visual 

observation, capturing broad-scale habitat features. We quantified forest structure at each 

camera site at the end of each season. Understory cover can influence mammal detection 

and occurrence (William F. Laurance et al., 2008; Gerber, Karpanty, & 

Randrianantenaina, 2012) and can act as a proxy for habitat disturbance where dense 

bamboo has colonized and dominated logged forests, potentially disrupting forest 

regeneration (Larpkern, Moe, & Totland, 2011). We used the point intercept method to 

measure understory and percent high canopy (>15 m) within a five-meter radius at the 

camera location (0 m) and three intervals (17 m, 35 m, 50 m) along three equidistant 50 

m transects. We measured nearest tree distances and diameter at breast height (DBH >30 

cm) at each point interval to estimate basal area and absolute cover (basal area per ha) 

using an unbiased point-centered-quarter estimator (Pollard 1971, Appendix S1: Table 
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S1). Fruit were rarely detected during vegetation surveys and revisits, likely due to short 

and dispersed fruiting periods, so could not be included as a variable. 

We evaluated anthropogenic activity in three ways. We used a cost-path analysis 

in ArcGIS from urban areas (from Duong et al. 2018) as an index of site accessibility to 

humans. The cost raster included four variables that we reasoned would most affect 

accessibility to the camera site from urban areas: roads (associated cost = 1), open 

landscape (e.g. grassland, agriculture, rice plantations; cost = 2), forest (cost = 10), and 

water (cost = 30). Water, such as the Dong Nai river, was considered the highest barrier 

to forest entry, but according to park staff it is easily traversed by locals who own or have 

access to small motorized boats and pirogues. We also obtained site-level counts of 

independent (>30 min) human detections for each season from camera data. When 

possible, we identified five different types of human presence (e.g., hunter, tourist, 

ranger) to better understand types of risk, but all human detections were collated for the 

human count covariate. Lastly, we conducted a point density analysis within 300 m cells 

using ArcGIS as an index of site protection effort from available ranger tracklog data 

(2017-2019) which is expected to capture the general spatial variation of patrolling effort. 

All environmental and anthropogenic variables are summarized in Appendix S1. We 

tested for pair-wise correlation among covariates and highly correlated variables (r > 0.6) 

were removed or not included within the same model. A few sites missing field 

measurements were assigned the mean covariate value and all covariates were 

standardized at a mean of zero and a standard deviation of one for analyses. 

Modelling framework 
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  We analyzed our photographic data using community occupancy modelling 

(Dorazio & Royle, 2005; Mathias W. Tobler et al., 2015), which uses detection/non-

detection data to estimate species richness and community- and species-level responses to 

predictor variables. Occupancy analyses are able to accommodate for imperfect 

detections, such as the probability that a species uses a site but is not detected by the 

camera (MacKenzie et al., 2002). This is a common issue when sampling wild animals, 

especially rare and elusive species. Point-sampling, such as using camera traps, does not 

allow for inference to a strict definition of species occurrence, as individuals are able to 

move in and out of a site within the season, violating the assumptions of site closure. As 

such, we interpret our inference on occupancy as the probability a species uses the site 

during the sampling period (asymptotic occupancy; (Mackenzie & Royle, 2005; Efford & 

Dawson, 2012). Hereafter, “occupancy” refers to site “use” for each species. We 

considered differences in species occurrence across the dry and wet season using a 

stacked modeling approach, where season was represented as a categorical variable 

(Monterroso et al., 2020). We did not explicitly model the dynamic changes (i.e., site 

colonization and extirpation) in occurrence as two seasons were inappropriate to capture 

these processes.  

We used a Bayesian framework to fit and compare models and estimate parameter 

effects, such as on mean community-level detection (𝜇𝜇𝑝𝑝) and occupancy (𝜇𝜇𝜓𝜓), using 

JAGS via the ‘runjags’ package (Denwood 2016, Plummer 2003). Species-specific 

parameters were treated as random effects with a community-level distribution (i.e., 

Normal distribution). We standardized all covariates and fit the models using diffuse 

priors on all logit-scaled effects on detection and occupancy using a Logistic distribution 
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(hyperparameters of 0 and 1 for location and scale, respectively; (Northrup & Gerber, 

2018)) and a half-Cauchy distribution on the standard deviation (hyperparameter of 2.5 

for the scale; (Gelman, 2006). Occupancy probability of species i at site j (𝜓𝜓𝑖𝑖𝑖𝑖 ) were 

modelled as a Bernoulli random variable, such as zij ~ Bernoulli(𝜓𝜓𝑖𝑖𝑖𝑖 ), where zij is the 

latent state occurrence and is equal to1 if a species occurred at a site and 0 if it did not 

occur. Surveys were defined as a period of seven camera trap days. Observations for each 

survey k (yijk) are a joint product of occurrence and detection probability, such that, yijk ~ 

Bernoulli(pij × zij), where pij is the detection probability for each species at each site, but 

assumed to not vary by survey occasion. Detection and occupancy probabilities can be a 

function of hypothesized covariates and specified as a logit-linear model, as  

logit(𝜓𝜓𝑖𝑖𝑖𝑖 ) =  xijβi   (2) 

logit(pij) =  wijαi   (3) 

with covariates in design matrices xij and wij, a vector of species occupancy coefficients, 

βi, and a vector of species detection coefficients, αi. The community level distributions 

are then 

βi ∼ Normal(𝜇𝜇𝜓𝜓 ,𝜎𝜎𝜓𝜓 ) and αi ∼ Normal(𝜇𝜇𝑝𝑝 ,𝜎𝜎𝑝𝑝 ). 

We fit 18 candidate models that hypothesized species occurrence to vary by only 

environmental variables or a combination of anthropogenic and environmental variables; 

all models considered the same variables to influence detection: understory cover, counts 

of human detections, and season. Detailed explanations of model structures, hypotheses, 

and predictions are specified in Appendix S2. For each model, we fit two parallel 

Markov-chain Monte Carlo chains of 40,000 iterations with a burn in of 10,000 and a 

thinning rate of 2. We assessed parameter convergence by visually inspecting trace plots 
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and using the Gelman-Rubin statistic to ensure values were close to 1. To evaluate model 

fit, we used a goodness-of-fit (GOF) approach to derive a Bayesian p-value from a 

posterior predictive check (Gelman & Hill, 2007) based on differences in the observed 

and predicted deviance residuals. We compared models via 10-fold (across sites) cross 

validation using a logarithmic scoring rule based on predicted deviances (Broms, Hooten, 

& Fitzpatrick, 2016); models with smaller log-scores indicate more support in terms of 

out-of-sample prediction. We make inference using the top supported model and present 

estimated mean effects with associated Bayesian credible intervals (BCI). We quantify 

support for estimated species and community effects by reporting the proportion of 

posterior samples <0 or >0, which are indicative of the probability that the effect is 

negative or positive, respectively; we qualitatively evaluate strong support as a 

proportion >0.9 and moderate support >0.7 and <0.9. 

We estimated site-level species richness using the mesomammal community as 

our species pool and did not use data augmentation to estimate undetected species within 

our community (Guillera‐Arroita, Kéry, & Lahoz‐Monfort, 2019). We assessed changes 

in mesomammal community composition by comparing our community to the results of 

previous large-scale biodiversity surveys conducted in the park between 1993 and 2001 

(Polet and Ling 2004). 

Results 

Species richness 

We obtained data from 60 of the 75 camera trap sites for a total of 7,699 effective 

camera trap nights and 10,197 independent detections (30 minutes between subsequent 

detections of the same species) of vertebrate animals and humans. Fifteen cameras were 
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stolen and were not replaced. We detected 18 mesomammals (Appendix S3: Table S1), 

as well as several non-target species, including birds, reptiles, bats, and small mammals. 

Predicted site-level community richness from the top model varied from one to 15, with a 

seasonal decline in occurrence between seasons from a mode of eight species in the wet 

season to seven in the dry season (Appendix S4: Figure S1). No sites were estimated to 

be used by all 18 mesomammals. 

When compared to biodiversity assessments compiled by Polet and Ling from 

1993-2001, we found a 17% (19/23) decline in total terrestrial mesomammal richness. 

We failed to detect large Indian civet (Viverra cibetha), binturong (Arctictis binturong), 

sun bear (Helarctos malayanus), and hog badger (Arctonyx collaris), all of which are 

small carnivores. Given that these species have also not been detected in other small-

scale camera surveys and ranger patrols it is unlikely that viable populations of any of 

these species still exist in the park. All other previously-confirmed terrestrial 

mesomammals were detected on our cameras (Appendix S3: Table S1). 

Model support 

We found all models converged (mean Gelman-Rubin <1.1) and fit the data (0.1 > 

GOF p-value <0.9). The most supported (lowest log-score; Appendix S5: Table S1) 

model included effects of absolute cover, distance to grassland, the interaction between 

absolute cover and distance to grassland, and season on occupancy (Figure 2). The 

second most supported model (increase in log-score of 4.22; Appendix S5: Table S1) 

differed in that it did not include an effect of grassland or an interaction of grassland with 

absolute cover. Considering the top model, we found community-level detection 

probability declined as understory increased (Figure 3; mean = -0.15; 95% BCI = 0.26, -
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0.12; Pr<0 = 0.999); all species showed strong support for this effect (Appendix S6: 

Table S1). The effect of human counts on detection probability was not supported overall 

at the community-level (mean = 0.02; 95% BCI = -0.11, 0.12; PR>0 = 0.650), while we 

identified strong positive effects only for the common palm civet (Paradoxurus 

hermaphroditus), Malayan porcupine (Hystrix brachyura), and pig-tailed macaque 

(Macaca leonina). In addition, the effect of season on detection probability was not 

strongly supported at the community-level (mean = -0.02, 95% BCI = -0.29, 0.24; Pr<0 = 

0.559) because effects varied by species with some strong positive effects (brush-tailed 

porcupine Atherurus macrourus, Eurasian wild pig Sus scrofa), some strong negative 

(common palm civet, pig-tailed macaque), and some without evidence of an effect (e.g., 

leopard cat Prionailurus bengalensis, long-tailed macaque Macaca fascicularis). Overall, 

detection covariate effects varied by species and were generally small in size (|𝜶𝜶𝒊𝒊|<1) 

suggesting that these covariates did not have a large effect on community-level detection. 

Mesomammal community occurrence was best explained by the interaction 

between absolute cover and grassland, where higher absolute cover increased the 

probability of occupancy at sites closer to grassland, but reduced probability of 

occupancy at sites further from grassland for all species (Figure 3; Appendix S6: Table 

S1; mean = -0.46; 95% BCI = -0.77, -0.16; Pr>0 = 0.998). Community and species-level 

occupancy probability increased with higher absolute cover when distance to grassland 

was zero (mean = 0.20; 95% BCI = 0.03, 0.39; Pr>0 = 0.991). Occupancy probability 

decreased with distance to grassland when absolute cover was zero (mean = -0.31; 95% 

BCI = -0.56, -0.08; Pr<0 = 0.996) with the effect being strong for most species and 

moderate for Eurasian wild pig, Malayan porcupine, and stump-tailed macaque (Macaca 
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arctoides). Community and species-level occupancy probability also increased strongly 

in the wet season compared to the dry season (mean = 0.29; 95% BCI = -0.04, 0.61; Pr<0 

= 0.960). Overall, the effects of the occupancy covariates were similar across the 

community and were not large (|𝜷𝜷𝒊𝒊|<1). 

The difference in deviance residuals between the top model and several 

subsequent competing models was marginal (<4), suggesting that several other 

environmental covariates could predict occupancy similarly to the top model (Appendix 

S5: Table S1). Across these other models, absolute cover and percent high canopy 

generally had a positive effect on community occurrence, and distance to grassland, 

distance to water, and understory cover generally had a negative effect on community 

occurrence. Contrary to our hypotheses, few of the competing models included 

anthropogenic covariates, and the parameter effects on occurrence of those anthropogenic 

covariates were not strongly negative. Thus, human accessibility and use of the national 

park does not appear to have a strong negative effect on the current resident 

mesomammal community. 

Discussion 

Protected areas are vital to conserving wildlife populations and natural ecosystems. 

There is increasing acknowledgement of the conservation value of secondary and 

historically disturbed landscapes (Barlow et al., 2007; Chazdon et al., 2009; Sodhi et al., 

2010). With less than one percent of Vietnam’s primary forest remaining (Vogelmann et 

al., 2017), future conservation planning will need to prioritize moderately disturbed and 

regenerating forests. Still, continued monitoring of protected area biodiversity and drivers 

of species occurrence is important for ensuring the effectiveness of protected areas, 
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especially where additive and synergistic types of disturbance occur. Even in a relatively 

biodiverse and well-protected park, like Cat Tien, hunting and genetic isolation has 

already extirpated several of the park’s larger-bodied mesomammals and threatens the 

persistence of many others. 

All four mesomammal species previously confirmed to inhabit Nam Cat Tien but not 

detected in our study (sun bear, hog badger, large Indian civet, and binturong) are 

moderate-to-high disturbance-tolerant (Appendix S3: Table S1), suggesting that other 

factors, such as hunting and snaring, may have contributed to their absence from the park. 

Given the low number of detections of these species from past surveys (Murphy & Duy 

Thuc, 2002; Polet & Ling, 2004) and the isolated geography of the park in relation to 

other intact forest habitat, it is increasingly unlikely that genetically viable populations of 

these four species still occur in Nam Cat Tien. Additional surveys should be extended to 

include Cat Loc as this region has previously supported some of these species, including 

sun bear and binturong. Interestingly, species richness varied across the landscape and by 

season and never exceeded 15, suggesting a degree of niche separation or interspecies 

competition within the community. 

We found support that high absolute cover (more and/or larger trees typical of more 

intact evergreen forest) is important for mesomammal occurrence closer to grasslands, 

but in more interior areas of the park further from grassland, mesomammals are more 

likely to use sites with lower absolute cover (fewer/smaller trees, typical of more 

disturbed bamboo forest). This is consistent with our hypotheses given that most of the 

remaining mesomammals among our community are habitat generalists and known to 

occur in a wide variety of disturbed and undisturbed environments (see Appendix S3). In 
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addition, frugivore distribution and space use depends heavily on fruit availability 

(Nakashima et al., 2013). Many of the fruiting trees which make up frugivorous and 

omnivorous species’ diets in disturbed forests are early-successional and pioneer species 

(e.g., Calamus and Ficus spp) and are often located near water, regenerating stands, and 

forest edges ((Vandekerkhove, De Wulf, & Chinh, 1993; Nakashima, Nakabayashi, & 

Sukor, 2013; Nakabayashi & Ahmad, 2018). In addition, fruit availability in Cat Tien 

varies seasonally and is highest in the wet season (Bach et al., 2017) which may explain 

higher detection rates as individuals moved around the landscape in search of dispersed 

fruiting trees. Disentangling the effects of water, grassland, and forest edge is also 

difficult as the three are moderately correlated due to the park’s geography (r ~ 0.5-0.6; 

Appendix S8; most supported models included water or grassland; Appendix S5: Table 

S1). Many of the grassland areas occur close to rivers and streams and tend to be 

seasonally inundated. Crocodile Lake, a 13,759-ha open wetland and semi-seasonal 

floodplain located in the core of the park and surrounded by relatively intact forest 

(Appendix S7: Figure S1), is likely to play an important role in mesomammal occurrence. 

Further, absolute cover was correlated with tree hollows (Appendix S8), so regions of 

intact forest with high absolute cover are more likely to provide denning and nesting 

cavities important to semi-arboreal mesomammals even as they move around forest edges 

in search of food. Distance to grassland and water was also moderately correlated with 

distance to ranger station. Thus, hunting and harvesting activities may be reduced in areas 

closer to water and grassland due to the possible deterring presence of ranger stations. 

Anthropogenic variables, including cost distance to urban areas and site-level human 

detections, did not affect mesomammal community landscape use. This may be due to a 
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combination of factors. Most mesomammals detected within the park have high or 

medium tolerance to forest disturbance (Appendix S3: Table S1), meaning that they have 

previously been detected in secondary and regenerating forest, plantations, and 

grasslands. The high occurrence of these species in more disturbed bamboo-dominated 

forest provides further evidence that regenerating and secondary forest can still 

accommodate high mesomammal biodiversity. There is a large quantity of low-risk 

human activity within the park, including collection of non-timber forest products 

(NTFP) and tourism, which may have habituated many wildlife species to human 

presence. These activities are relatively low-impact and may not directly affect wildlife 

populations except by propagating bamboo regrowth within the forest. NTFP users also 

use the park largely during the day (Appendix S9: Figure S2), while many mesomammal 

species are nocturnal, so temporal differentiation may reduce any conflict that would 

otherwise preclude the species from utilizing high human-use sites.  

Hunter presence in the park overall was low, with only 20 confirmed independent 

hunter detections over the seven-month study period, and exclusively nocturnal 

(Appendix S9: Figure S1). However, many of our cameras and SD cards were stolen 

from the higher-risk, high-human-use areas including Dat Do and Ta Lai (Appendix S7: 

Figure S1), limiting availability of data and precluding generalizations about species 

occurrence within these high-risk areas. This may bias our occurrence estimates away 

from the highest-risk areas. In 2016 the Cat Tien National Park Forest Protection 

Department made 122 arrests and confiscated 42 animals including common palm civet, 

lesser chevrotain, and stump-tailed macaque. Hundreds to thousands of snares and traps 

are removed or confiscated from Cat Tien every year (Cat Tien National Park, 
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Unpublished data, 2020). These devices indiscriminately capture a variety of medium-

bodied species and have contributed to the depauperate state of many of Southeast Asia’s 

protected areas (Gray et al., 2018). Thus, understanding human activity levels and 

hotspots within the park and where they overlap sites with high species richness can help 

identify high conflict zones where conservation actions can be prioritized (Appendix S8: 

Supplemental information S1). Future enforcement efforts should aim to increase 

nocturnal patrol efforts particularly in the higher-risk areas identified by our study. 

 The future of wildlife in Southeast Asia hangs in precarious balance. Well-funded 

protected areas, such as Cat Tien National Park, can act as a refuge for a wide range of 

tropical species even under conditions of moderate disturbance. However, the increasing 

number of “empty forests” globally (Sreekar et al., 2015; Wilkie et al., 2011) are 

evidence that without adequate measures for minimizing hunting and snaring, protected 

areas hold little value for preserving biodiversity. All of Vietnam’s largest mammals have 

been extirpated (tiger, Javan rhinoceros) or fragmented into small, isolated populations 

(Asian elephants, sun bear). The mesomammal community, which is more resilient to 

disturbance, persists in a few well-managed protected areas but is under constant threat 

from local and international wildlife trade markets. The loss of Javan rhinoceros from Cat 

Tien serves as a warning that even under high levels of funding and support, insufficient 

staffing capacity, low motivation, and complacency in the face of limited data can 

condemn conservation efforts to failure (Brooke et al., 2014). Community education 

programs on the economic and intrinsic value of conservation, targeted marketing 

campaigns to reduce demand for wildlife products, and efficient enforcement of wildlife 

protection laws are strongly recommended to reduce hunting pressure and forest 
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encroachment. Without these continued efforts, Southeast Asia’s remaining 

mesomammals are at risk of meeting the same fate as their larger predecessors.  
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Introduction 

Tropical forests are the most species-rich biomes in the world due to a year-round 

abundance of resources and spatial and structural complexity which allows for diverse 

speciation (Barlow et al. 2007; Gibson et al., 2011). Forest conversion for agriculture and 

high-intensity logging are among the greatest drivers of tropical biodiversity loss and spe-

cies extinctions (Newbold et al. 2016; Tilman et al. 2017). Such forest degradation dis-

proportionately affects habitat specialists preferring undisturbed primary forests (Brodie, 

Giordano, and Ambu 2015; Laurance et al. 2008), and results in homogenized forests 

composed largely of habitat generalists and edge species (Tabarelli et al. 2012). 

Tropical tree-dwelling (arboreal and semi-arboreal) mammals are especially vul-

nerable to forest conversion (Whitworth et al. 2019; Laurance 1990; Laurance et al. 

2008), particularly when reliant on old growth forest structures, such as canopy height, 

complexity, and connectivity (Cannon and Leighton, 1994). Ecological traits, such as de-

gree of arboreality can also affect species-level responses to forest degradation, where 

populations of more specialized, strictly arboreal species are more vulnerable to changes 

in forest structure (Laurance & Laurance 1996; Villaseñor et al. 2014). Forests under 

moderate levels of disturbance (e.g., low-intensity selective logging) can still retain con-

servation value and high levels of species richness (Berry et al. 2010; Wearn and Glover-

Kapfer 2017; Masseloux et al. In Review). However, overharvest of targeted species, in-

cluding small carnivores, primates, and pangolins, for the bushmeat, pet, and medicine 

trade can further endanger forest-dwelling populations (Corlett 2007). The increasing 

number of “empty forests” (Sreekar et al. 2015; Wilkie et al. 2011) suggests that without 
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adequate measures for minimizing hunting and snaring, even intact forests can experience 

dramatic declines in species richness and abundance. 

Rigorous research on responses to anthropogenic disturbances by arboreal mam-

mal species is crucial for guiding informed decision-making and allocation of limited re-

sources to conservation efforts in tropical regions. However, with the exception of pri-

mates, little is known about tropical canopy mammals (Kays & Allison, 2001; Lowman, 

2009), due largely to the paucity of research and inefficient sampling methodology. Trop-

ical canopy vertebrates have historically been studied using animal-follows or line tran-

sect methods, which involve walking through a forest and counting species as they are 

detected (e.g., Nekaris, Blackham, & Nijman, 2008). These methods are however limited, 

as many canopy-dwelling species are rare, cryptic, nocturnal, or behaviorally avoid hu-

mans (Duckworth, 1998; Brooke et al., 2014), precluding accurate estimates of abun-

dance or species distribution. Camera trapping (use of automated cameras to capture ani-

mal incidences) is a well-documented and preferred method of non-invasively assessing 

terrestrial mammal populations (Tobler et al., 2008; Rovero & Marshall, 2009), but has 

rarely been applied to arboreal species. A few recent and novel studies have shown that 

arboreal camera traps can be useful in detecting species not observed by traditional 

ground-based techniques (e.g., (Whitworth et al., 2016; Bowler et al., 2017; Moore et al., 

2020). However, there is still much to be learned on how to appropriately and efficiently 

design arboreal camera trapping studies. Furthermore, jointly sampling the terrestrial and 

arboreal environments via camera traps not only provides a more complete survey of the 

entire non-volant mammal community, it allows for a new methodology for studying ar-

boreality. The degree of behavioral arboreality of semi-arboreal mammals can be related 
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to forest structure and disturbance (Mekonnen et al., 2018) as well as perceived presence 

of terrestrial threats (e.g., humans, predators; McGraw & Bshary, 2002; Makin et al., 

2012). Estimating degree of arboreality has traditionally been conducted by following 

semi-arboreal species, mostly primates, which is time and energy intensive and usually 

limited to diurnal species. Multi-method sampling designs that include arboreal and ter-

restrial camera traps, in combination with multi-scale occupancy models (Nichols et al., 

2008), could be useful to expand these types of studies to rarer and nocturnal species. 

Our study objectives were to 1) evaluate the utility of arboreal camera traps as a 

method of surveying arboreal and semi-arboreal mesomammals, particularly rare and 

cryptic species, 2) assess the effects of forest structure and anthropogenic disturbance on 

detection and occurrence of arboreal and semi-arboreal tropical mesomammals within a 

historically-disturbed protected forest, and 3) estimate degree of arboreality of semi-ar-

boreal species at paired arboreal and terrestrial camera trap sites. We hypothesized that 

arboreal camera traps will be a useful method for detecting arboreal species not detected 

on terrestrial cameras, particularly rare and nocturnal species. We also hypothesized that 

site-level arboreal and semi-arboreal species detection and occurrence would increase 

where forest structure was most intact (i.e., high absolute cover, high canopy cover, and 

high canopy connectedness) and would decrease closer to roads (a proxy for human ac-

cessibility). Given the long history of anthropogenic disturbance in and around the pro-

tected forest, we reasoned that there would be a gradient of species-specific responses. 

Finally, due to the absence of large predators and low human presence in the park, we hy-

pothesized most semi-arboreal species would display high levels of terrestrial activity. 
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Methods 

Study area  

Our study was conducted in Cat Tien National Park, located ~150 km north of Ho 

Chi Minh City in Southern Vietnam. Tropical Southeast Asia is a biodiversity hotspot 

that contains the highest proportion of globally unique (endemic) mammal species (My-

ers et al., 2000; Olson et al., 2001), but suffers from the highest rate of anthropogenic de-

forestation of any major tropical region (Sodhi et al., 2010). Cat Tien National Park is 

one of the largest (72,000 ha) and most well-funded national parks in Vietnam and is part 

of a greater UNESCO Biosphere Reserve buffer zone (https://whc.unesco.org) and Ram-

sar Site (https://rsis.ramsar.org).  

Our study occurred within the core zone of Nam Cat Tien in Dong Nai province 

(Figure 1a). Nam Cat Tien is composed of secondary mixed evergreen and deciduous 

lowland dipterocarp forest, bamboo forest, wetland, and grassland. The wide distribution 

of secondary and bamboo-dominated forest is due to a legacy of anthropogenic disturb-

ance within and around the park. This includes herbicide spraying during the U.S.-Vi-

etnam War between 1965-1970 (Stellman et al., 2003) and logging after the war and prior 

to its establishment as a protected area in 1992. While forest cover in the core of the park 

has not changed much since the 1970s, the buffer zone and areas beyond have been ex-

tensively converted for small-scale agriculture and anthropogenic development (Vogel-

mann et al., 2017). 

Seventy-six mammal species were confirmed to inhabit Cat Tien National Park 

during surveys conducted between 1993 and 2001, comprising 30% of Vietnam’s known 
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mammal species. Of these, 12 can be classified as native arboreal or semi-arboreal 

mesomammals (<50 kg; Appendix A), of which 10 (42%) are listed as threatened under 

IUCN, including Sunda pangolin (Manis javanicus) and Elliot’s silver langur 

(Trachypithecus margarita). 

Camera trapping 

We set twenty terrestrial and arboreal camera trap pairs in Nam Cat Tien from 

June 2019 to September 2020. All cameras (Browning Strikeforce Pro XD) were set in 

the eastern evergreen and deciduous secondary forest region of the park (Figure 1b). Sites 

were selected at varying proximity to anthropogenic disturbance (urban areas, park edge, 

roads), with minimum proximity between adjacent sites at 500 m. Terrestrial cameras 

were set approximately 30-70 cm off the ground on or near human trails (within 5 m) 

from June 2019 to January 2020 across three seasons: wet 2019 (June 2019 to October 

2019), dry 2020 (November 2019 to April 2020) and wet 2020 (May 2020 to September 

2020). Terrestrial cameras were moved off-trail (within 50 meters of the original site) 

from January to September 2020 due to high theft rates. Arboreal cameras were set 

within 50 m of the terrestrial camera pair, on a horizontal limb or facing a vertical trunk 

at a height between 7 and 28 m. All cameras were set to take five successive photographs 

with a delay period of 1 second and were continuously active for the duration of the study 

unless tampered with, stolen, or affected by mechanical problems. All cameras had large 

(32 GB) memory cards to limit revisits. Plans to expand the study in 2020 were annulled 

by the COVID pandemic and further limited revisits to arboreal cameras. Photos were 

tagged to species by three observers using the Digikam photo manager 
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(https://digikam.org) and all mesomammal tags were reviewed for accuracy by the lead 

author.  

Covariates 

We hypothesized that mesomammal site use would be affected by both environ-

mental and anthropogenic factors. Preliminary analyses suggest that detection rates be-

tween seasons were similar in magnitude and terrestrial site type (on vs. off trail) did not 

vary significantly (𝛼𝛼 = 0.05; Appendix B), thus we pooled our data into two methods 

(arboreal and terrestrial) per site for the following analyses.  

We conducted vegetation surveys at each camera site to quantify forest structure. 

Site-level terrestrial variables included absolute cover (basal area per hectare, strongly 

correlated with understory cover) and canopy height. Site-level arboreal variables in-

cluded focal branch slope, canopy connectivity, and tree diameter at breast height. Spatial 

variables were calculated in ArcGIS (10.8.1; ESRI 2011) and included Euclidian distance 

to grassland, water, and roads. We used roads as our metric of anthropogenic disturbance 

as all roads within the park are regularly used for a variety of human activities (tourism, 

hunting, bamboo collection) and were not correlated with landscape features. Hypothe-

ses, predictions, and data source for all variables are summarized in Appendix C. We 

tested for pair-wise correlation among covariates and highly correlated variables (r > 0.5) 

were removed or not included within the same model (Appendix B). All covariates were 

standardized at a mean of zero and a standard deviation of 1. 

Modelling framework 
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To address objective 1, we assessed the adequacy of our sampling scheme for de-

tecting all possible species using species accumulation curves, estimated in the R package 

‘vegan’ (Oksanen et al. 2020). To address objectives 2 and 3, we used occupancy model-

ing (MacKenzie et al., 2017) and generalized linear mixed models (GLMMs) for all spe-

cies with a naïve occupancy greater than 0.1. 

General Linearized Mixed Models 

 We evaluated the effects of forest structure and proximity to roads on the count of 

independent arboreal mesomammal species detections at camera trap sites using negative 

binomial generalized linear mixed models. Species-level detection rates can vary due to a 

species’ group size and sociality, activity rates, and abundance. Thus, all models included 

species as a random effect to account for differences in species-level detection rates and 

responses within the community. Each hypothesis was represented by two models: one 

with all variables as fixed effects, and one with up to two variables as random slopes 

when the slope of the effect was hypothesized to vary by species (Appendix D: Table 

D1). Models were fit using a Bayesian framework in the R programming language using 

the package ‘rstanarm’ (Goodrich, Gabry, and Brilleman 2020). We compared models 

within a model set using the expected log pointwise predictive density, which was esti-

mated using approximate leave-one-out cross-validation (package ‘loo’; Vehtari, Gelman, 

and Gabry 2017). Default weakly informative priors were used for all parameters. 

Single-species and multi-scale occupancy models 

We used single-season occupancy modeling (MacKenzie et al., 2002) to estimate 

the effects of predictor variables on species’ detection (p) and occupancy (ψ) probability 

of all arboreal and semi-arboreal species using detection/non-detection data (Appendix D 
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Table D2). Occupancy models account for imperfect detections (MacKenzie et al. 2002). 

Given the variation in range-size by our focal species, it is likely that individuals were 

able to move in and out of a site within the sampling period. Thus, we interpret our infer-

ence on occupancy as the probability a species uses a site during a primary sampling pe-

riod (asymptotic occupancy; (Mackenzie & Royle, 2005; Efford & Dawson, 2012). We 

considered differences in species occurrence across the dry and wet season using a 

stacked modeling approach, where season was a categorical variable (see (Monterroso et 

al., 2020); due to data sparsity we did not include season as a covariate on occurrence. 

We did not explicitly model the dynamic changes (i.e., site colonization and extirpation) 

in occurrence as three seasons were inappropriate to capture these dynamic processes. 

We used a Bayesian framework to fit and compare models for each arboreal species and 

estimated parameter effects on p and ψ using the software program MARK (White & 

Burnham, 1999). 

To evaluate differences in occupancy and detection between terrestrial and arbor-

eal methods for semi-arboreal mammals, we used multi-scale occupancy modeling (Nich-

ols et al., 2008). This model permits simultaneous use of data from multiple methods to 

make method- and site-level inferences about occupancy and detection without the as-

sumption of independence between methods. In our study, site refers to the larger-scale 

paired camera trap sampling unit and station refers to the method-specific camera trap 

sampling unit (arboreal or terrestrial). In a single-species multi-scale model, ψ is the 

probability that the site is occupied, 𝑝𝑝𝑡𝑡𝑠𝑠 is the probability of detection on occasion t by 

method s, given that the site is occupied and the species is present at the sample station, 

and 𝜃𝜃𝑠𝑠  is the probability that the species is present at the immediate sample station given 
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that the site is occupied. Comparing 𝜃𝜃Terrestrial  and 𝜃𝜃Arboreal  allows us to evaluate the 

degree of arboreality by a species. All parameters can be modelled as functions of site-

specific covariates, and ps and 𝜃𝜃𝑠𝑠  can be modelled as a function of method-specific co-

variates. To minimize overparameterization, we built the candidate model set for each 

species using the most supported model from our single-species arboreal occupancy anal-

yses. Specifically, we used the same variables on arboreal detection probability and 

added absolute cover as a terrestrial-level detection covariate as it was strongly (r ~ 0.96) 

correlated with understory cover, which may constrain terrestrial species’ movement and 

camera trap detection distance (Appendix C; Table C1). We also considered a categorical 

covariate for dry vs wet season across both arboreal and terrestrial detection. The sample 

station parameter (𝜃𝜃𝑠𝑠 ) was always modeled with a difference in arboreal and terrestrial 

station occurrence. Lastly, we included one of five possible covariates on ψ (Appendix D 

Table D2). We fit and compared multi-scale models in a Bayesian framework for each 

semi-arboreal species and estimated parameter effects using MARK (White & Burnham, 

1999).  

All occupancy models were fit using diffuse normally distributed priors on all 

logit-scaled effects on detection and site-level occupancy (μ = 0, σ = 1.75; Cooch and 

White, 2020). For each model, we fit two parallel Markov-chain Monte Carlo chains of 

10,000 iterations with a tuning of 4,000 and a burn in of 2,000. We assessed parameter 

convergence by visually inspecting trace plots and using the Gelman-Rubin statistic to 

ensure values were less than 1.1 (Gelman & Rubin, 1992). We compared models using 

Watanabe-Akaike Information Criterion (WAIC; Watanabe, 2013); smaller WAIC values 

indicate greater support for the model. We make inference using estimated mean effects 
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and 95% Bayesian credible intervals (BCI) from the top supported model. We quantify 

support for estimated species and community effects by reporting the probability of a 

non-zero effect, derived as the proportion of posterior samples <0 or >0; we qualitatively 

evaluate strong support as a proportion >0.9 and moderate support >0.7 and <0.9.  

Results 

We detected a total of 13 species on the arboreal cameras and 17 species on the 

terrestrial cameras (Appendix A). Six species were only detected arboreally (e.g., yellow-

cheeked gibbon Nomascus gabriellae, small-toothed palm civet Arctogalidia trivirgata), 

10 species were only detected terrestrially (e.g., lesser chevrotain Tragulus kanchil, crab-

eating mongoose Herpestes urva), and 7 species were detected both on the ground and in 

the trees (e.g., yellow-throated marten Martes flavigula, pig-tailed macaque Macaca ne-

mestrina; Appendix A). The species accumulation curves suggest all or almost all species 

were detected, although we have greater confidence for terrestrial species richness (Fig-

ure 2; Appendix B). In addition, according to the Polet and Ling (2004) and Murphy and 

Duy Thuc (2002) CTNP biodiversity list, our arboreal surveys detected all arboreal and 

semi-arboreal mesomammals previously detected in the park with the exception of bintu-

rong (which have not been sighted in the park since 2002; Murphy & Duy Thuc, 2002). 

In the following analyses, we did not include Elliot’s silver langur, Sunda pangolin, 

pygmy slow loris (Nycticebus pygmaeus), and stump-tailed macaque due to the sparsity 

of detections. 

General Linearized Mixed Models 

We fit 18 arboreal multi-species GLMM models (Appendix E: Table E2). The 

most supported model included canopy connectivity and distance to road as varying 
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across the community of species (i.e., random slopes) and distance to grassland as a fixed 

effect for the community (Figure 3a; Appendix E Table E1). There was strong support for 

the positive effect of distance to grassland across all species (𝛽𝛽= 0.52; 95% BCI = 0.34, 

0.72; Pr>0 = 1). The effect of canopy connectivity was positive with strong to moderate 

support for all species except for yellow-cheeked gibbon (Figure 3a; Appendix F Table 

F1). There was also strong to moderate support for most species displaying greater detec-

tions close to roads (e.g., black-shanked douc-langur, common palm civet). A competing 

model (Appendix E: Table E2) included camera height and focal branch slope as varying 

across the community of species with canopy connectivity as a fixed community effect 

(Figure 3b; Appendix E Table E1). Canopy connectivity had a positive effect across all 

species (𝛽𝛽 = 0.81; 95% BCI = 0.65, 0.98; Pr>0 = 1.00) while the effects of branch slope 

and camera height varied widely by species (Figure 3b; Appendix F Table F1). The num-

ber of independent detections increased at lower branch slopes for black-shanked douc-

langur and yellow-cheeked gibbon and increased at higher branch slopes for all three 

small carnivores. The macaque species and black giant squirrel did not appear to have a 

strong preference in branch slope. Species-level responses to camera height varied from a 

positive effect (e.g., black giant squirrel, yellow-cheeked gibbon), to a negative effect 

(e.g., common palm civet, long-tailed macaque) and no clear effect (e.g., small-toothed 

palm civet, black-shanked douc-langur). 

Single-species arboreal occupancy models 

We fit and compared 35 candidate models for each arboreal and semi-arboreal 

species (arboreal data only; Appendix E Table E2). Estimated mean occupancy probabili-

ties for arboreal species varied from 0.27 (yellow-cheeked gibbon) to 0.76 (pig-tailed 
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macaque; Table 1a). The most supported model varied by species, but recurring detection 

covariates were canopy connectivity, camera height, and focal branch diameter (Figure 4; 

Appendix F Table F2). Canopy connectivity and camera height had medium positive ef-

fects on most species except black giant squirrel, for which camera height had no effect, 

and yellow-throated marten, for which canopy connectivity had no effect (Figure 4). 

Larger branch size increased detection for most species except pig-tailed macaque, small-

toothed palm civet, and flying squirrel. Detection of long-tailed macaque was strongly as-

sociated with increasing distance from the canopy, and a negative effect of camera height 

(from the second most supported that included the covariate; Appendix E: Table E2d), 

suggests that long-tailed macaque detections increase in the sub-canopy. Dry season had 

a small to moderate effect (|β| <1) on detection of most species. Several model sets in-

cluded parsimonious occupancy covariates, likely due to the high naive occupancy for 

several of our species and the low number of sample sites. There was strong support for 

the positive effect of distance to water on occurrence of long-tailed macaque and canopy 

height on occurrence of gibbon and flying squirrel. There was strong support for the neg-

ative effect of absolute cover on occurrence of black-shanked douc-langur and yellow-

throated marten, and distance to road on the occurrence of black giant squirrel, pig-tailed 

macaque, and common palm civet (Figure 4; Appendix F Table F2). 

Single-species multi-scale occupancy models 

We fit 5 candidate models for each semi-arboreal species (terrestrial and arboreal 

data; Appendix E: Table E3). There was strong support for a negative difference of the 

effect between terrestrial and arboreal station-level occupancy (ϴArb) for all species (Pig-

tailed macaque: mean = -2.77, 95% BCI = -4.15, -1.5, Pr<0 = 1; long-tailed macaque: 
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mean = -1.24, 95% BCI = -2.02, -0.55, Pr<0 = 1; common palm civet: mean = -3.64, 95% 

BCI = -4.98, -2.5, Pr<0 = 1; yellow-throated marten: mean = -0.74, 95% BCI = -2.17, 

0.57, Pr<0 = 0.88). Arboreal occurrence and detection were consistently lower than ter-

restrial, but differences in probability varied widely by species. We found the pig-tailed 

macaque to be highly arboreal, but also almost equally terrestrial (Table 1b), while the 

long-tailed macaque was almost half as arboreal as terrestrial. The common palm civet 

was highly terrestrial and was more arboreal than the long-tailed macaque, but less than 

the pig-tailed macaque. Lastly, yellow-throated marten was highly terrestrial and only 

18% less arboreal. There was substantial model selection uncertainty for ψ for all species 

(all WAIC values were within a difference of 2) except the long-tailed macaque. For 

long-tailed macaque, distance to road had a large positive effect on occurrence and abso-

lute cover had a small negative effect on terrestrial detection (Figure 5; Appendix F Table 

F3). Dry season had a medium positive effect on civet detection and a medium negative 

effect on pig-tailed and long-tailed macaque detection. The effect of absolute cover on 

terrestrial detection was small and had low support for all species (Figure 5; Appendix F 

Table F3). Mean occupancy estimates using the multi-scale models were significantly 

higher than occupancy estimates from the single-species arboreal models for all species, 

and significantly higher than occupancy estimates from the single-species terrestrial mod-

els for yellow-throated marten and long-tailed macaque (Table 1a and 1b; Appendix E: 

Table E4).  

Discussion 

Environmental and anthropogenic spatial and structural characteristics can affect 

species’ use of and distribution within a landscape (Gehring & Swihart, 2003; Grelle, 
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2003). Quantifying these dynamics for arboreal species has been traditionally constrained 

to costly, time-intensive methods mostly suited for diurnal, larger bodied species. More 

cryptic, small-bodied, nocturnal, and rare species are often forgotten, resulting in data de-

ficiencies which may endanger conservation efforts for threatened species. Our study 

supports arboreal camera trapping as a promising new field technique for monitoring the 

entire community of semi- and fully-arboreal mesomammals. In addition, we highlight 

the importance of camera placement (camera height, branch placement, canopy struc-

ture), which can help guide future studies in improving detection of focal species. Fur-

ther, we offer a new method for quantifying arboreality by semi-arboreal mammals using 

multi-scale occupancy models. 

Based on our species accumulation curves and aggregated species detections from 

previous surveys, we are relatively confident that we detected most arboreal and terres-

trial mesomammal species currently known to inhabit Nam Cat Tien. Our study recorded 

8 independent detections of the endangered Elliot’s silver langur (IUCN, 2015), provid-

ing the first camera-trap evidence of these species ever recorded in Cat Tien National 

Park; a small population is known to occur, but has been rarely sighted. Surprisingly, 

Sunda pangolin were only detected once on our arboreal camera traps, compared to 15 

detections on the ground, suggesting they may be less arboreal than previously thought. 

However, their low detections precluded any formal modeling or strong conclusions. 

Such findings support how arboreal camera traps are a promising tool that still require 

further study for optimizing the passive monitoring of the presence and distribution of 

rare and cryptic species. 
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We found several structural forest characteristics can affect detections of 

mesomammals by arboreal cameras. As we hypothesized, canopy connectivity was a 

strong determinant of species detections, as trees with more connections to proximate 

trees can act as arboreal highways, facilitating movement through the canopy. Arboreal 

mammals generally prefer to move through the canopy along established routes that max-

imize revisits to known resource locations (e.g., fruiting trees) while avoiding large gaps 

in the canopy (Cannon and Leighton 1994). While no species displayed an aversion to 

roads, wide roads that create large canopy gaps can impede the movement and distribu-

tion of more strictly arboreal species, such as gibbon and black-shanked douc-langur. Re-

duced arboreal connectivity may also force arboreal and semi-arboreal species to spend 

more time moving on the ground, increasing exposure to terrestrial predators, human 

hunters, and snares (Mekonnen et al., 2018).  

The effect of tree and focal limb characteristics on species detection appears to be 

most likely explained by morphological adaptations and tree use behavior. Species which 

were predominantly detected at higher canopy height or within the emergent canopy level 

(e.g., yellow-cheeked gibbon, black-shanked douc-langur, black giant squirrel) were de-

tected more often on more vertically sloped tree limbs. These species are more likely to 

spend time climbing for access to the high canopy and may spend less time crossing or 

resting on horizontal limbs within the mid- or sub-canopy. Preference for higher canopy 

has been previously documented in gibbons and giant squirrels (Cannon & Leighton, 

1994; Datta & Goyal, 1996). Indian giant flying squirrel detections were also strongly as-

sociated with more vertical tree slopes, likely due to their primary mode of locomotion, 

which involves climbing and gliding between tree trunks. Semi-arboreal species were 
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detected more at sites with higher canopy connectivity and at lower camera heights, sug-

gesting they may spend more time in mid- and sub-canopy where access to terrestrial re-

sources is easier. This effect varied among species, suggesting a possibility of niche parti-

tioning, particularly among primates. While arboreal specialists, such as gibbons, occur 

and utilize resources more in higher canopy, semi-arboreal long-tailed and pig-tailed ma-

caques utilize resources at lower canopy levels.  

Snares, which indiscriminately capture medium-bodied mammals, are deployed in 

vast quantities within Southeast Asian forests and are likely a primary cause of the cur-

rent defaunation crisis in the region (Gray et al., 2018). The degree a species is arboreal 

may thus be a useful metric for assessing vulnerability of semi-arboreal fauna to this ter-

restrial threat. While all four of our semi-arboreal species occurred more terrestrially than 

arboreally, the degree of difference varied by species. For example, common palm civet 

was half as likely to occur arboreally than terrestrially at our sites (Table 1b). Thus, we 

could infer that common palm civet spend more time moving and foraging terrestrially 

through the forest and are thus likely to be more at risk from terrestrial snares and/or 

hunters compared to the other semi-arboreal species. This risk may be further exacer-

bated by their higher occurrence close to roads, where human accessibility is greater. 

Our study provides preliminary suggestions of important metrics for species-spe-

cific detection in tropical forests at the canopy level. Arboreal station detection rates were 

lower than terrestrial stations for almost all species. Future studies on the arboreality and 

occurrence of arboreal mesomammals should set cameras to maximize detection of the 

focal species. In addition, mean occupancy was underestimated for most semi-arboreal 

species when only one method was used. Multi-method sampling designs coupled with 
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multi-scale occupancy models may thus improve estimates of species distribution and 

habitat use, which are important for guiding management and conservation decisions. 

Our limited sample size precluded use of covariates on method-specific occupancy (𝜃𝜃𝑠𝑠), 

but future research efforts could expand on this application of the multi-scale method by 

examining changes in degree of arboreality over more explicit gradients of forest struc-

ture and anthropogenic activity. While costly and time-intensive to set up (we set an aver-

age of 1-2 arboreal cameras per day), we demonstrated that arboreal-terrestrial camera 

trapping studies can be maintained long-term with minimal revisit effort, are useful for 

detecting and monitoring rare arboreal species of conservation concern, and provide in-

ference to the entire mesomammal community. Our study demonstrates the importance of 

canopy connectivity and other mature forest characteristics, especially for highly arboreal 

species. Thus, conservation actions in the region should prioritize the protection of ma-

ture forest and mitigate terrestrial threats to ensure the persistence of arboreal and semi-

arboreal mesomammals.  
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TABLE 1. 

(a)  

  ψ   p 
Species Mean SE   Mean SE 
Black-shanked douc-langur 0.65 0.07  0.19 0.02 
Yellow-cheeked gibbon 0.27 0.09  0.05 0.02 
Pig-tailed macaque 0.76 0.06  0.26 0.02 
Long-tailed macaque 0.29 0.08  0.12 0.03 
Common palm civet 0.53 0.11  0.10 0.02 
Small-toothed palm civet 0.48 0.09  0.11 0.02 
Yellow-throated marten 0.54 0.11  0.06 0.01 
Black giant squirrel 0.36 0.07  0.18 0.02 
Indian giant flying squirrel 0.44 0.08   0.13 0.02 

 

(b) 
 

ψ  𝜃𝜃Terrestrial  𝜃𝜃Arboreal  
Species Mean SE  Mean SE  Mean SE  
Pig-tailed macaque 0.99 0.01  0.98 0.01  0.77 0.04  
Long-tailed macaque 0.85 0.08  0.61 0.08  0.31 0.06  
Common palm civet 0.98 0.01  0.97 0.02  0.51 0.06  
Yellow-throated marten  0.90 0.06  0.78 0.09  0.64 0.10   

 pTerrestrial  pArboreal 
Species  Mean SE  Mean SE 
Pig-tailed macaque  0.43 0.01  0.43 0.01 
Long-tailed macaque  0.17 0.02  0.17 0.02 
Common palm civet   0.33 0.01   0.33 0.01 
Yellow-throated marten  0.08 0.01  0.08 0.01 
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FIGURE 1. 
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FIGURE 2. 
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FIGURE 3. 
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FIGURE 3. 
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FIGURE 4.  
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FIGURE 5.  
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FIGURE 6. 
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FIGURE 7. 
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FIGURE 8. 
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APPENDICES 

APPENDIX S1 
 
Table 1: Variable information and estimation methods used for all covariates included in the mesomammal occupancy models. 
 

Covariate Data type Literature Resolution Measurement method Estimation method 
Environmental      

Understory cover Continuous Weller 2019 50m x 50m Point centered quarter 
estimator (Pollard 1971) 

A Photograph of a red 2x1-meter tarp was taken five 
meters from each PCQ interval point (0m, 17m, 35m) for a 
total of 9 photos per site. For each photo, we estimated the 
proportion of vegetation obstructing the red tarp by using 
the CountColors package in R to calculate the proportion 
of green color pixels (Weller 2019). The mode across all 
photos at a site was used for site-level covariate. 

Basal area Continuous Mitchell 2007 50m x 50m Point centered quarter 
estimator (Pollard 1971) 

We measured nearest tree distances, height, and diameter 
at breast height (DBH >30 cm) at each PCQ interval 
location to estimate basal area and used Mitchell 2007's 
PCQ method to correct for missing values where trees 
were inaccessible or >200m away 

Absolute cover Continuous Mitchell 2007 50m x 50m Point centered quarter 
estimator (Pollard 1971) 

We measured nearest tree distances, height, and diameter 
at breast height (DBH >30 cm) at each PCQ interval 
location to estimate absolute cover (basal area/ha) and used 
Mitchell 2007's PCQ method to correct for missing values 
where trees were inaccessible or >200m away 

Distance to 
grassland Continuous Duong 2018 10m ArcGIS analysis 

Proximity to grassland was measured from high-resolution 
remote-sensing Geographic Information Systems data 
(Duong 2018) and geospatial vectors using the Near tool in 
ArcGIS and constrained to within park boundaries to 
reduce confounding with crop or grazing land 
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Distance to water Continuous Duong 2018 10m ArcGIS analysis 

Proximity to water was measured from high-resolution 
remote-sensing Geographic Information Systems data 
(Duong 2018) and geospatial vectors using the Near tool in 
ArcGIS 

Latitude Continuous NA NA NA Site latitude was obtained from geographic coordinates 

Percent high 
canopy Continuous NA 50m x 50m Point centered quarter 

estimator (Pollard 1971) 

The percent of canopy above 15m in height was estimated 
by eye in 20% increments at each PCQ interval. The mode 
across all estimates was used for the site-level covariate. 

Bamboo forest Categorical NA 50m x 50m Point centered quarter 
estimator (Pollard 1971) 

Landcover classifications were assigned to each camera 
site during vegetation surveys; bamboo forest was defined 
as secondary forest dominated by Bambusoideae 

Season Categorical NA Regional Online historical database 

Seasons were determined from changes in daily 
precipitation in Ho Chi Minh City (from World Weather 
Online). This was calculated from monthly rainfall divided 
by number of rain days, whereby the wet season had higher 
average daily precipitation (12.7-15.2 cm) and dry season 
had lower average daily precipitation (0.25-8.25). 

Anthropogenic      

Pathcost to urban 
area Continuous Duong 2018 10m ArcGIS analysis 

A least-cost path analysis was used to determine path cost 
from each site to the nearest urban landcover classification 
cell (defined as land covered by buildings and other man-
made structures; Duong 2018) using a cost raster which 
incorporated roads and urban build up (cost = 1), forest 
and other (cost = 10), and large water bodies (cost = 30) 
which could be easily traversed by boat. Final cost paths 
were validated by national park staff.   
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Human count Continuous NA NA Camera trap 

The count of independent (>30 minute) camera trap 
detections of humans was summed across surveys within a 
season (wet and dry) for each site. Counts were strongly 
(99.9%) correlated with counts scaled for effort. 
  

Protection effort Continuous NA 300m Tracklog data 

Protection effort was calculated by performing a kernal 
density analysis in ArcGIS using ranger tracklog data from 
2017 to 2020 converted into points with a 100m search 
radius (assumed to be a realistic detection zone of humans 
by rangers). Points within 50m of a ranger station or road 
were removed, as these areas tended to over-accumulate 
points and would skew true patrol densities. The mean 
kernal density within a 300m buffer zone around each 
camera trap site was used as a metric of protection effort 
by rangers. 
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APPENDIX S2 

Table S1. Hypotheses and predictions of candidate models describing how habitat and anthropogenic disturbance affects occurrence of 

small carnivores and mesomammals in Cat Tien National Park, Vietnam. Note that the first row indicates the hypotheses and 

predictions for the sub-model on detection probability (p), while all other rows indicate the sub-model on occupancy (𝜓𝜓).  

Name Model Hypothesis Prediction 

All 
Models p(UC + HUM + SE) 

Understory cover may restrict species’ terrestrial movement 
or, alternatively, increase use of human trails to facilitate 
movement; human use of trails may have a deterring effect on 
shy and/or hunted species, reducing detection rates at the 
camera site; rainfall may affect species’ daily activity rates 

Detection will decrease with understory 
cover, human counts, and wet season 

Model 1 𝜓𝜓(AC + SE) 

Absolute cover is a  measure of basal area per hectare, or a  
combination of tree size and density within the landscape, and 
is likely to be a strong predictor of occurrence for species 
reliant on tree cover and spatial complexity (e.g. semi-
arboreal species). In addition, seasonal flooding may affect 
site-level occurrence as individuals move out of inundated 
areas or increase arboreal activity levels. 

Occurrence will increase as absolute cover 
increases and during the dry season. 

Model 2 𝜓𝜓(AC + UR + LAT + SE) 

Due to the east-to-west gradient of landscape-level differences 
in forest structure and anthropogenic disturbance, there may 
be a latitudinal difference in occurrence within the park not 
explained by other variables included in our models. 

Occurrence will increase eastward in 
latitude given changes in absolute cover 
and site-level accessibility to urban areas. 

Model 3 𝜓𝜓(AC + UC + GR + SE) 
Habitat 1: Dense understory cover is associated with 
secondary and degraded forests, which may be avoided by 
species preferring intact forest structure. Absolute cover, 
understory cover, and distance to grassland therefore 

Occurrence will increase with higher 
absolute cover, lower understory cover, 
and greater distance from grassland 
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encompass numerous levels of forest intactness that may 
affect species site use.  

Model 4 𝜓𝜓(AC + UC + WA + SE) 

Habitat 2: In addition to spatial habitat characteristics such as 
absolute cover and understory cover, reliable year-round 
water sources such as rivers and wetlands are important for 
wildlife especially during the dry season when seasonal water 
sources (creeks, waterholes) dry up. 

Occurrence will increase with higher 
absolute cover, lower understory cover, 
and greater proximity to water 

Model 5 𝜓𝜓(AC + UC + FB + SE) 
Habitat 3: Bamboo forest is a  broad-scale habitat 
classification for a  degraded and often homogenized forest 
type that may be avoided by species which prefer intact forest 

Occurrence will be lower in bamboo 
habitat compared to non-bamboo habitat, 
given the additional effects of absolute 
cover and understory cover.  

Model 6 𝜓𝜓(BA + UC + WA + SE) 

Habitat 4: Basal area is a  metric of average tree size at a  site. 
Sites with larger trees and lower understory cover are more 
indicative of unlogged or moderately logged forests preferred 
by disturbance-sensitive species. 

Occurrence will increase as basal area and 
proximity to water increases and 
understory cover decreases. 

Model 7 𝜓𝜓(AC + GR + GR*AC + SE) 

Habitat 5: The effect of absolute cover on species occurrence 
may differ depending on proximity to grassland, as forest 
quality will be more important when close to forest edges 
compared to within the forest interior. 

Occurrence will increase in areas closer to 
grassland with higher absolute cover, but 
the effect of absolute cover will be 
marginal when far from grassland (within 
more interior parts of the park). 

Model 8 𝜓𝜓(AC + WA + WA*SE + SE) 
Habitat 7. The importance of year-round water sources for 
species occurrence varies seasonally as the availability of 
other water sources fluctuates.  

Occurrence will increase at sites in 
proximity to water during the dry season, 
but the effect will be marginal or negative 
during the wet season. 

Model 9 𝜓𝜓(AC + WA + SE + AC*SE) 

Habitat 8: Given the topography and seasonal flooding 
schemes in Nam Cat Tien, use of habitat with high absolute 
cover may change seasonally as species move westward or 
vertically into the canopy 

Occurrence will increase at areas with 
higher absolute cover during the wet 
season with seasonal flooding, but the 
effect of season on absolute cover will be 
marginal during the dry season. 
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Model 10 𝜓𝜓(AC + WA + UC + HC + SE) 

Habitat 9: Fine-scale habitat variables that incorporate vertical 
complexity, such as understory cover and percent high 
canopy, are likely to affect site use by arboreal and semi-
arboreal species. 

Occurrence will increase with greater 
absolute cover and percent canopy and 
lower understory cover  

Model 11 𝜓𝜓(AC + UC + WA + AC*UC + 
SE) 

Habitat 10: Density of understory cover may preclude use of 
forest sites despite higher absolute cover, indicating more 
recently disturbed forest and lower quality habitat. 

The positive effect of absolute cover on 
species occurrence will be stronger when  
understory cover is low than when 
understory cover is high.  

Model 12 𝜓𝜓(AC + UR + HUM + SE) 

Anthropogenic 1: Accessibility of sites from urban areas 
surrounding the park in combination with direct counts from 
camera traps provide a metric of human risk levels which may 
affect species detection and occurrence due to behavioral 
avoidance or direct population removal. 

Occurrence will decrease with higher 
human presence and accessibility from 
urban areas. Detection will also decrease 
at sites with high human counts as 
individuals may avoid using trails or 
occupy a more arboreal niche as a method 
of risk avoidance. 

Model 13 𝜓𝜓(AC + GR + HUM + SE) Anthropogenic 2: Human activity may affect site use due to 
behavioral avoidance or direct removal of individuals 

Occurrence will increase as human count 
decreases and proximity to grassland and 
absolute cover increases. 

Model 14 𝜓𝜓(AC + WA + UR + SE) 
Anthropogenic 3: Human risk levels are likely to compromise 
habitat use that would otherwise be driven largely by forest 
structure and resource availability. 

Occurrence will increase as accessibility 
from urban areas decreases and proximity 
to water increases. 

Model 15 𝜓𝜓(AC + UR + PE + UR*PE + 
SE) 

Anthropogenic 4: Human accessibility to urban areas are 
likely to be a large risk factor that reduces species occurrence 
only if protection effort by rangers is low. 

Occurrence will decrease at sites with 
higher accessibility from urban areas when 
protection effort is low, but will be higher 
at those sites when protection effort is 
high. 

Model 16 𝜓𝜓(AC + UR + AC*UR + SE) Anthropogenic 5: Human risk is likely to compromise species 
occurrence in otherwise suitable intact forest habitat 

At sites with high absolute cover, 
occurrence will increase at sites less 
accessible from urban areas but will 
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decrease at sites more accessible from 
urban areas.  

Model 17 𝜓𝜓(AC + UR + UR*SE + SE) 
Anthropogenic 6: Seasonal flooding and rainfall will impede 
human use and thus anthropogenic risk during the wet season 
compared to the dry season    

Occurrence will decrease at sites more 
accessible from urban areas, with the 
effect being greater during the dry season. 

Model 18 𝜓𝜓(AC + HUM + HUM*AC + 
SE) 

Anthropogenic 7: Human activity is likely to compromise site 
use that would otherwise be driven largely by forest structure 
and resource availability especially as hunters may actively 
target areas of high absolute cover where species richness and 
abundance is assumed to be higher 

Occurrence will increase as absolute cover 
increases when human counts are low, but 
will decrease when human counts are high 
 

Covariates: AC = absolute cover, FB = Forest bamboo, GR = distance to grassland, HC = % high canopy, HUM = count of site-level human detections, LAT = 
latitude, PE = protection effort, SE = season, UC = understory cover, UR = pathcost to urban area, WA = distance to water 
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Appendix S3 

Table S1. Body mass and diet classification of mesomammal species confirmed to occur within Cat Tien National park (Vietnam) in 

2001 (Polet and Ling 2004) and 2019. 

Species name 
2001 Status 
in CTNP† 

2019 Status 
in CTNP 

Diet 
Classification‡ 

Body 
Mass 
(kg)§ 

IUCN 
Red List 
status 

Disturbance 
tolerance¶ Diel activity 

Pangolins (Pholidota, Manidae)        

   Sunda pangolin Manis javanica Confirmed Confirmed Insectivore [1] 5.15 CR Medium [2] Nocturnal [2] 

Bears (Ursidae)        

   Sun bear Helarctos malayanus Confirmed Not detected Omnivore [3] 46.00 VU Medium [4,5] Diurnal [6] 
Weasels, otters (Mustelidae)        

   Yellow-throated marten Martes 
flavigula 

Confirmed Confirmed Carnivore [7] 2.50 LC High [8,9] Diurnal [9] 

   Greater hog badger Arctonyx collaris Confirmed Not detected Omnivore [10] 6.36 VU High [11] Diurnal [11] 

   Ferret badger Melogale spp. Confirmed Confirmed Omnivore [12] 3.23 LC High [11] 
Nocturnal 
[13] 

   Asian small-clawed otter Aonyx 
cinerea 

Confirmed Confirmed Carnivore [14,15] 3.60 VU High [11,16] Diurnal [17] 

Civets (Viverridae)        

   Large Indian civet Viverra zibetha Confirmed Not detected Omnivore [17] 3.95 LC Medium [18] 
Nocturnal 
[19,20] 

   Small Indian civet Viverricula indica Confirmed Confirmed Omnivore [12] 2.98 LC High [11,18] 
Nocturnal 
[19,20] 

   Common palm civet Paradoxurus 
hermaphroditus 

Confirmed Confirmed Omnivore [21] 3.20 LC High [11,19] 
Nocturnal 
[19,20] 

   Binturong Arctictis binturong Confirmed Not detected Frugivore [22] 13.00 VU Medium 
[11,19,22] 

Cathemeral 
[9,19] 

Mongooses (Herpestidae)        
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   Small Asian mongoose Herpestes 
javanicus 

Confirmed Confirmed Carnivore [23] 0.75 LC 
High 
[11,18,24] 

Diurnal [17] 

Crab-eating mongoose Herpestes urva Confirmed Confirmed Carnivore [12] 1.86 LC Medium [18] Diurnal [19] 
Cats (Felidae)        

   Leopard cat Prionailurus bengalensis Confirmed Confirmed Carnivore [25,26] 3.30 LC High [25–28] 
Cathemeral 
[25,27,29] 

Old-world monkeys 
(Cercopithecidae) 

       

   Northern pig-tailed macaque Macaca 
nemestrina Confirmed Confirmed Frugivore [30] 6.09 VU High [30–32] 

Diurnal [30–
32] 

   Rhesus macaque Macaca mulatta Confirmed Not detected Frugivore [33]  LC High [34] Diurnal [17] 
   Long-tailed macaque Macaca 
fascicularis 

Confirmed Confirmed Frugivore [35] 3.23 LC High [36,37] Diurnal [17] 

   Stump-tailed macaque Macaca 
arctoides 

Confirmed Confirmed Frugivore [38,39] 5.00 VU Medium [39] Diurnal [39] 

Pigs (Suidae)        

   Eurasian wild pig Sus scrofa Confirmed Confirmed Omnivore [40] 117.29 LC High 
[17,40,41] 

Cathemeral 
[31,32] 

Chrevotains (Tragulidae)        

   Lesser oriental chevrotain Tragulus 
kanchil Confirmed Confirmed Herbivore [42] 3.30 LC High [42,43] 

Cathemeral 
[42] 

Deer (Cervidae)        

   Sambar Rusa unicolor Confirmed Confirmed Herbivore [44] 211.62 VU High [45] 
Cathemeral 
[32] 

   Northern red muntjac Muntiacus 
vaginalis 

Confirmed Confirmed Herbivore [46] 14.00 LC High [31,45] 
Cathemeral 
[31] 

Porcupines (Hystricidae)        

   Malayan porcupine Hystrix 
brachyura 

Confirmed Confirmed Herbivore [17] 8.00 LC High 
[31,47,48] 

Nocturnal 
[31] 

   Asiatic brush-tailed porcupine 
Atherurus macrourus 

Confirmed Confirmed Herbivore [17] 2.00 LC Medium [48] 
Nocturnal 
[32] 
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† 2001 status from Polet and Ling 2004        

‡ Diet classifications: Herbivore: >50% of diet composed of fruits, seeds, and vegetation; Carnivore: >50% of diet composed of vertebrates and 
carrion; Insectivore: >50% of diet composed of invertibrates; Omnivore: Diet opportunistically composed of available resources 
§ Adult body mass averaged across males and females and geographic locations; estimates obtained from Macroecological database of mammalian 
body mass, Smith et al. 2003 
¶ Disturbance tolerance based on habitat distributions: low = only occur in undisturbed primary forest; medium = occur in primary and secondary 
forest; high = occur in primary and secondary forest as well as forest edges and plantations 
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Supporting information S1. Previously confirmed species undetected during our study 

Four mesomammal species previously confirmed to inhabit Nam Cat Tien were not detected in our study: sun bear, hog badger, 

large Indian civet, and binturong. Non-native captive-bred rhesus macaque (Macaca mulatta) were released in CTNP in 1999 but 

rhesus macaque were not detected on our cameras, suggesting removal efforts in 2003 and 2004 may have been effective at extirpating 

or reducing the population. In December of 2020, a sun bear was caught on a baited camera trap set by the national park in western 

Nam Cat Tien. This is the most recent sighting since fresh sign and sightings of wild sun bear were reported in the park in 2009 by 

Scotson et al. 2009, The low frequency of fresh bear sign and recent sightings suggests that the remaining wild sun bear population is 

very small and may not be a viable population. Sun bear are hunted for their meat and body parts for use in traditional medicine and 

thus have low occurrence despite their generalist habits. Hog badger sightings were last reported in 2002 by park visitors (Murphy and 

Duy Thuc 2002), but have not subsequently been captured by camera traps, also suggesting a small or extirpated population. Cat Tien 

has previously been described as the southern-most extent of the hog badger’s range in Vietnam due to lack of suitable forest habitat 

in the region. Large Indian civet were last reported in 2002 by Polet and Ling, and their greater body size and largely terrestrial nature 

compared to other civets may make them more vulnerable to snaring and hunting. There was one possible binturong sighting in Nam 

Cat Tien in 2002 (Murphy and Duy Thuc), but no confirmed sightings since. As binturong are highly arboreal and prefer tall trees and 

intact forest, they are less tolerant to disturbance and may be limited to patches of less degraded forest. Their arboreal and nocturnal 

nature also make them difficult to detect on terrestrial camera traps or by diurnal ranger patrols and tourists. Binturong were also 
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reported to occur in the northern Cat Loc region of the park, so extending a camera trap survey to this region may increase likelihood 

of detection if the species persists. 

 

 Scotson, L., Downie, A., Hai, B.T., Morkel, B., Nguyen, T.L., 2009. Wild bear population status, Cat Tien National Park, Vi-

etnam Asiatic black bear (Ursus thibetanus) and Malayan sun bear (Helarctos malayanus). 
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APPENDIX S4 
 

Figure S1. Estimated site-level mode mesomammal richness in Nam Cat Tien National 

Park during the dry (left, red circles) and wet  (right, green circles) seasons. 
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Figure S2. Map of median estimated species richness in Nam Cat Tien National Park 

from the top community occupancy model. The regions in dark brown indicate higher 

species richness and regions in yellow indicate lower species richness. We applied mean 

estimated absolute cover to five land cover types (grassland, bamboo, secondary forest, 

and mixed bamboo and secondary forest). Mean absolute cover and distance to 

grassland was calculated at a 100x100m resolution within Nam Cat Tien and used to 

predict species richness. 
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APPENDIX S5 
 

Table S1. Model comparison of mesomammal community occupancy models using 10-fold cross validation and a logarithmic scoring 

rule based on predicted deviances. UC = understory cover; HUM = human count; SE = season; AC = absolute cover; GR = distance to 

grassland, WA = distance to water, UR = pathcost distance to urban area, LAT = latitude, FB = bamboo forest. 

Name Model Log Score Delta Log Score 
Model 7 p(UC + HUM + SE) 𝜓𝜓(AC + GR + AC*GR + SE) 994.35 0.00 
Model 1 p(UC + HUM + SE) 𝜓𝜓(AC + SE) 998.57 4.22 
Model 4 p(UC + HUM + SE) 𝜓𝜓(AC + UC + WA + SE) 999.11 4.76 
Model 6 p(UC + HUM + SE) 𝜓𝜓(BA + UC + WA + SE) 999.61 5.27 
Model 8 p(UC + HUM +  SE) 𝜓𝜓(AC + WA + WA*SE + SE) 999.76 5.41 
Model 3 p(UC + HUM + SE) 𝜓𝜓(AC + UC + GR + SE) 1000.00 5.66 
Model 17 p(UC + HUM + SE) 𝜓𝜓(AC + UR + UR*SE + SE) 1000.13 5.79 
Model 13 p(UC + HUM + SE) 𝜓𝜓(AC + GR + HUM + SE) 1000.15 5.81 
Model 16 p(UC + HUM + SE) 𝜓𝜓(AC + UR + AC*UR + SE) 1000.18 5.84 
Model 10 p(UC + HUM +  SE) 𝜓𝜓(AC + GR + UC + HC + SE) 1000.30 5.95 
Model 14 p(UC + HUM + SE) 𝜓𝜓(AC + UC + WA + UR + SE) 1000.45 6.10 
Model 9 p(UC + HUM + SE) 𝜓𝜓(AC + WA + SE + AC*SE) 1000.63 6.28 
Model 11 p(UC + HUM + SE) 𝜓𝜓(AC + UC + WA + AC*UC + SE) 1000.86 6.52 
Model 5 p(UC + HUM + SE) 𝜓𝜓(AC + UC + FB + SE) 1001.79 7.44 
Model 12 p(UC + HUM + SE) 𝜓𝜓(AC + UC + UR + HUM + SE) 1003.10 8.76 
Model 2 p(UC + HUM + SE) 𝜓𝜓(AC + UR + LAT + SE) 1003.70 9.36 
Model 15 p(UC + HUM + SE) 𝜓𝜓(AC + UR + PE + UR*PE + SE) 1004.92 10.58 
Model 18 p(UC + HUM + SE) 𝜓𝜓(AC + UC + HUM + AC*HUM + SE) 1009.60 15.25 
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APPENDIX S6 

Table S1. Posterior mean effects of detection and occupancy covariates from the top model by species and for the community. Bold 

values indicate strong support (probability of an effect is greater than 0.9), italicized values indicate moderate support (probability of 

an effect is between 0.7 and 0.9), and remaining values indicate low support (probability of an effect is below 0.7). UC = understory 

cover; HUM = human count; SE = season; AC = absolute cover; GR = distance to grassland. 

Species Covariate effects 
 Detection Probability Variables Occupancy Probability Variables 
 UC HUM SE AC GR AC*GR SE 
Common palm civet -0.963 0.966 -0.960 0.957 -0.983 -0.968 0.911 
Leopard cat -0.933 0.543 -0.597 0.944 -0.935 -0.991 0.946 
Small-clawed otter -0.981 -0.655 -0.617 0.830 -0.999 -0.977 0.931 
Small Indian civet -0.929 0.598 -0.541 0.921 -0.902 -0.952 0.868 
Ferret badger -0.919 0.696 0.622 0.947 -0.953 -0.989 0.828 
Crab-eating mongoose -0.964 -0.542 -0.932 0.924 -0.974 -0.928 0.890 
Sunda pangolin -0.855 0.545 -0.785 0.813 -0.945 -0.963 0.853 
Small Asian mongoose -0.926 0.600 -0.704 0.859 -0.925 -0.917 0.823 
Yellow-throated marten -0.860 0.555 -0.924 0.964 -0.759 -0.967 0.760 
Brush-tailed porcupine -0.992 0.601 0.922 0.877 -0.794 -0.992 0.840 
Eurasian wild pig -0.965 -0.563 0.983 0.921 -0.600 -0.977 0.897 
Lesser chevrotain -0.974 0.676 0.842 0.917 -0.897 -0.996 0.943 
Long-tailed macaque -0.976 0.519 0.549 0.833 -0.973 -0.903 0.915 
Pig-tailed macaque -0.996 0.925 -0.966 0.987 -0.830 -0.981 0.937 
Red muntjac -0.764 0.623 0.666 0.971 -0.957 -0.957 0.910 
Malaysian porcupine -0.983 0.797 -0.550 0.969 -0.616 -0.948 0.938 
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Sambar -0.996 0.682 0.803 0.855 -0.994 -0.895 0.779 
Stump-tailed macaque -0.962 0.593 0.853 0.935 -0.621 -0.969 0.836 
Community -0.999 0.650 -0.559 0.991 -0.996 -0.998 0.960 
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APPENDIX S7 

 

 

Figure S1. Map of ranger stations, jurisdictions, urban areas, and the Crocodile Lake 

RAMSAR site at Cat Tien National Park, Vietnam in 2019. 
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APPENDIX S8 

1. Description of covariates 
Site-level: Measured at camera site by field researchers 

cc_wet = canopy cover wet season 

cc_dry = canopy cover dry season 

uc_wet = understory cover wet season 

uc_dry = understory cover dry season 

tree_dens = mean absolute tree density (#trees/ha) corrected using Mitchell 2007 correction factor* 

basal_area = mean basal area (cm^2)* 

absolute_cover = mean basal area by hectare (m^2/ha)* 

tree_height = mean tree height (m) 

hum_dry = Dry season human frequency of occurrence** 

hum_wet = Dry season human frequency of occurrence** 

rod_dry = Dry season rodent frequency of occurrence** 

rod_wet = Wet season rodent frequency of occurrence** 

sm_dry = Dry season small mammal frequency of occurrence** 

sm_wet = Wet season small mammal frequency of occurrence** 

• Calculated using Point-Centered Quarter Method (Pollard 1971) 

** Calculated as the sum of independent detections (>30 min) at each site using a CamtrapR detection 
history matrix 

Spatial: Calculated using spatial analysis methods in ArcGIS and the 2017 Land Use and Land Cover 
maps for southern Vietnam from ALOS. Distances in meters. 

NEAR_RANGER = Euclidian distance to park ranger station 

NEAR_EDGE = Euclidian distance to park edge, spatially delimited as grassland, rice field, agricul-
ture, or urban area 

NEAR_WATER = Euclidian distance to year-round water source 

NEAR_URBAN = Euclidian distance to urban development 

NEAR_ROAD = Euclidian distance to vehicle-access road 

COST_DIST_URBAN = Cost distance to urban area 

PATHCOST_EDGE = Path cost to edge 

PATHCOST_URBAN = Path cost to urban development 

point_mean = Index of protection effort by rangers calculated as mean point density within a 100m 
buffer around each site 

https://www.eorc.jaxa.jp/ALOS/en/lulc/lulc_vnm_2015to2018period.htm
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point_sum = Index of protection effort by rangers calculated as mean point density within a 100m 
buffer around each site 

See Appendix A.1 for details on measurement methods. 

2. Identifying and parsing through correlated covariates 
Categorical habitat variable 

We tested whether absolute cover could accurately capture broad-scale changes in habitat classifica-
tion by plotting site-level absolute cover estimates against habitat classifications. 

 
Absolute cover estimates appear to match habitat classifications as predicted, with higher AC values 
in more intact secondary evergreen forest and lower AC values in the more degraded mixed bamboo 
and bamboo forest, with lowest values in open grassland habitat. There does appear to be overlap be-
tween evergreen forest types (Forest Evergreen Open Understory (FEOU), Forest Evergreen Closed 
Understory (FECU)) and bamboo forest types (Forest Bamboo Mixed (FBM), Forest Bamboo (FB)). 

We clumped habitat into FB (Forest Bamboo), FS (Forest Secondary), and GR (Grassland) and tested 
for differences in absolute cover. 

 

##  

## Call: 

## lm(formula = allcov$absolute_cover ~ allcov$hab_class) 

##  

## Residuals: 

##     Min      1Q  Median      3Q     Max  
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Absolute cover for forest bamboo and forest grassland are not significantly different, meaning the ab-
solute cover covariate cannot differentiate between the two, but there are only 2 grassland sites and no 
grassland obligate species in our species list so we decided only to include bamboo forest as a possible 
habitat classification covariate to determine whether species actively avoided bamboo forest. 

Selecting spatial variables 

Spatial index for proximity to human development 

All correlated, so selected PATHCOST_URBAN as it is likely to be a more accurate and informative 
index of proximity to human development. 

Checking remaining spatial variables 

 

## -0.9449 -0.3532 -0.0693  0.1362  4.4381  

##  

## Coefficients: 

##                    Estimate Std. Error t value Pr(>|t|)     

## (Intercept)         -0.6009     0.1384  -4.343 5.83e-05 *** 

## allcov$hab_classFS   1.3196     0.1974   6.684 1.07e-08 *** 

## allcov$hab_classGR  -0.2974     0.4519  -0.658    0.513     

## --- 

## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

##  

## Residual standard error: 0.7451 on 57 degrees of freedom 

## Multiple R-squared:  0.4636, Adjusted R-squared:  0.4448  

## F-statistic: 24.64 on 2 and 57 DF,  p-value: 1.948e-08 

cor(allcov[,c(10,12,14:16,23)], method = "pearson", use="pairwise.complete.obs") 

##                 NEAR_EDGE NEAR_URBAN COST_DIST_URBAN Pathcost_Edge 

## NEAR_EDGE       1.0000000  0.8285310       0.8474273     0.6325362 

## NEAR_URBAN      0.8285310  1.0000000       0.9200033     0.6458111 

## COST_DIST_URBAN 0.8474273  0.9200033       1.0000000     0.6696788 

## Pathcost_Edge   0.6325362  0.6458111       0.6696788     1.0000000 

## Pathcost_Urban  0.5392586  0.5818029       0.5703571     0.7958445 

## Pathcost_Pop    0.5321717  0.6826670       0.6378666     0.7486116 

##                 Pathcost_Urban Pathcost_Pop 

## NEAR_EDGE            0.5392586    0.5321717 

## NEAR_URBAN           0.5818029    0.6826670 

## COST_DIST_URBAN      0.5703571    0.6378666 

## Pathcost_Edge        0.7958445    0.7486116 

## Pathcost_Urban       1.0000000    0.7804354 

## Pathcost_Pop         0.7804354    1.0000000 
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Distance to year-round water source may be an important seasonal variable as a resource during the 
dry season and an index of flooding with potential for affecting species displacement during the wet 
season. Grassland is also a possible index of habitat quality and resource availability, especially due to 
the presence of a large, intact wetland ecosystem (Crocodile Lake) in the center of the park. However, 
distance to water and distance to grassland are moderately correlated due to the geographical layout of 
the park, so we chose to keep both covariates but not include them together in our analyses to deter-
mine which covariate has the strongest effect on species occurrence. 

Distance to ranger station was strongly correlated with proximity to grassland and water, so we chose 
to remove it. 

Point sum and point mean are strongly correlated and very similar so chose to use the mean as our 
measure of protection effort. Neither were correlated with distance to ranger station, suggesting rang-
ers do a good job of focusing patrol efforts away from the ranger station. 

Selecting site-level variables 

 

##                NEAR_RANGER NEAR_WATER  NEAR_ROAD Pathcost_Urban   KDA_mean 

## NEAR_RANGER      1.0000000  0.7654142  0.2491036      0.4872942 -0.3135698 

## NEAR_WATER       0.7654142  1.0000000  0.2398261      0.4543684 -0.3494721 

## NEAR_ROAD        0.2491036  0.2398261  1.0000000      0.2818653 -0.2046265 

## Pathcost_Urban   0.4872942  0.4543684  0.2818653      1.0000000 -0.2130982 

## KDA_mean        -0.3135698 -0.3494721 -0.2046265     -0.2130982  1.0000000 

## KDA_sum         -0.3203925 -0.3588953 -0.2169800     -0.2048574  0.9964933 

##                   KDA_sum 

## NEAR_RANGER    -0.3203925 

## NEAR_WATER     -0.3588953 

## NEAR_ROAD      -0.2169800 

## Pathcost_Urban -0.2048574 

## KDA_mean        0.9964933 

## KDA_sum         1.0000000 

cor.mat=cor(allcov[,c(5:8)], method = "pearson", use="pairwise.complete.obs") 

index=which(abs(cor.mat)>0.5,arr.ind=TRUE) 

index=index[-which(index[,1]==index[,2]),] 

R = cor.mat[index] 

var = paste(rownames(cor.mat)[index[,1]],"vs",rownames(cor.mat)[index[,2]]) 

cor.var = cbind(var, R) 

cor.var[-which(duplicated(cor.var[,2])),] 

##      var                           R                   

## [1,] "absolute_cover vs tree_dens" "0.807719324473719" 

## [2,] "tree_height vs basal_area"   "0.733378380000579" 
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Absolute cover is correlated with tree density (unsurprisingly, as it is calculated from tree density and 
basal area). We parsed out tree density, as absolute cover is more indicative of total tree cover which 
is relevant to microhabitat selection by mesomammals. 

Basal area and tree height are also correlated, so we parsed out tree height as it is likely less relevant 
to the terrestrial dataset. 

Checking for correlation between remaining variables 

 
Elevation is correlated with distance to grassland and distance to water, and the variation in elevation 
is low so we elected to remove it. 

Absolute cover is positively correlated with number of tree hollows. This is a reasonable association 
as absolute cover is generally indicative of greater size and density of trees, and thus greater availabil-
ity of denning/nesting sites for semi-arboreal wildlife. 

Head of the final covariate matrix, standardized and stacked by season for multi-season occu-
pancy modeling 

 
 

 

 

##      var                              R        

## [1,] "tree_hollows vs absolute_cover" "0.621"  

## [2,] "NEAR_GRASS vs NEAR_WATER"       "0.674"  

## [3,] "Elevation vs NEAR_WATER"        "0.612"  

## [4,] "Latitude vs Pathcost_Urban"     "-0.517" 

## [5,] "Elevation vs NEAR_GRASS"        "0.783" 

##             CC         UC         BA         AC      Water      Road      Urban 

## S001 0.7483906 -0.4010423  1.2726134 -0.5176633 -0.3898020  1.912235 -1.0067690 

## S004 0.4686184 -0.1423053 -0.8648979 -0.2935697  1.1317618  3.209394  0.3526633 

## S005 0.5385614  1.9275904 -0.6306501 -0.9007365 -0.3802027  1.500597 -0.7299421 

## S006 0.6784475  1.7723482 -0.6306501 -0.9421727  0.5748816  2.283454  0.2103722 

## S007 0.6085045 -0.1940527 -1.3813079 -0.8686023  0.8065975  2.909994  1.3345743 

## S008 0.4686184  0.9961373  0.4740413  0.2307248 -0.9439954 -1.224294 -0.9723944 

##               PE     Human       Grass        Canopy  Latitude FB 

## S001  0.27243893 0.3059050 -0.52469235 -0.3802041520 1.2319593  1 

## S004 -0.05718795 0.5798497 -0.03222153 -0.7025955081 0.5921481  1 

## S005 -0.58032488 1.9495734 -0.64693227 -1.5759088018 1.1730101  1 

## S006 -0.05617754 0.7624795  0.24752355 -1.5799897050 0.8110049  1 

## S007 -0.65120007 0.5798497  0.65920001 -0.0006801505 0.4684447  1 

## S008  0.34805342 1.0364243 -0.90109441  1.7010565012 0.7344528  0 
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Plot of variation within standardized covariates 
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APPENDIX S8 

Figure S1. Radial plot of hunter activity detected by camera traps in Cat Tien 

National Park displayed on a 24 hour clockface from 20 detections between June 

2019 and January 2020.   
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Figure 2 Radial plot of non-timber forest product user activity detected by camera traps in 

Cat Tien National Park displayed on a 24 hour clockface from 242 detections between 

June 2019 and January 2020.   
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Figure 3. Radial plot of ranger activity detected by camera traps in Cat Tien National 

Park displayed on a 24 hour clockface from 287 detections between June 2019 and 

January 2020.   
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Supplemental information 1. Hunter activity within Nam Cat Tien 

Hunter activity detected by our cameras was exclusively nocturnal and highest around the 

east and south near Sa Mach and Ta Lai villages, with some activity near the park 

headquarters in Nui Tuong (see Appendix S13). This overlaps strongly with the nocturnal 

nature of several mesomammals targeted by the wildlife trade including Sunda pangolin, 

common palm civet, and Eurasian wild pig. The high occurrence of these species at sites 

easily accessible from urban areas suggests a continued risk to these species from 

hunters. Patrol effort by park rangers, contrarily, is concentrated in the eastern part of the 

park and is primarily diurnal. This may preclude detection of hunters by rangers even 

where they spatially overlap since their temporal activity differs. 
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APPENDIX S10 

Table S1. Habitat, diet, disturbance tolerance, and diel activity classifications of mesomammal species detected within Cat Tien 

National park in 2019 by arboreal and terrestrial camera traps. 

Species name Diet 
classification 

Spatial 
habitat 

classification 

Body mass 
(kg) 

IUCN 
Red List 

status 

Disturbance 
tolerance Diel activity 

Pangolins (Pholidota, Manidae)       

Sunda pangolin Manis javanica Insectivore[1] Semi-
arboreal 5.15 CR Medium[2] Nocturnal[2] 

Weasels, otters (Mustelidae)       

Yellow-throated marten Martes flavigula Carnivore[3] Semi-
arboreal 2.50 LC High[4,5] Diurnal[5] 

Ferret badger Melogale spp. Omnivore[6] Terrestrial 3.23 LC High[7] Nocturnal[8] 
Asian small-clawed otter Aonyx cinerea Carnivore[9,10] Terrestrial 3.60 VU Low[7,11] Diurnal[12] 

Civets (Viverridae)       

Small Indian civet Viverricula indica Omnivore[6] Terrestrial 2.98 LC High[7,13] Nocturnal[14,15] 
Small-toothed palm civet Arctogalidia trivirgata Frugivore[16] Arboreal 2.25 LC High[17,18] Nocturnal[16,17] 
Common palm civet Paradoxurus 
hermaphroditus Omnivore[19] Semi-

arboreal 3.20 LC High[7,14] Nocturnal[14,15] 

Mongooses (Herpestidae)       

Small Asian mongoose Herpestes javanicus Carnivore[20] Terrestrial 0.75 LC High[7,13,21] Diurnal[12] 

Crab-eating mongoose Herpestes urva Carnivore[6] Terrestrial 1.86 LC Medium[13] Diurnal[14] 
Cats (Felidae)       

Leopard cat Prionailurus bengalensis Carnivore[22,23] Terrestrial 3.30 LC High[22–25] Cathemeral[22,24,26] 
Old-world monkeys (Cercopithecidae)       

Northern pig-tailed macaque Macaca leonina Frugivore[27] Semi-
arboreal 6.09 VU High[27–29] Diurnal[27–29] 
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Long-tailed macaque Macaca fascicularis Frugivore[30] Semi-
arboreal 3.23 LC High[31,32] Diurnal[12] 

Stump-tailed macaque Macaca arctoides Frugivore[33,34] Semi-
arboreal 5.00 VU Medium[34] Diurnal[34] 

Langurs (Colubridae)       

Elliot’s silver langur Trachypithecus margarita Herbivore[35] Arboreal 8.35 EN High[36] Diurnal[36] 

Black-shanked douc-langur Pygathrix nigripes Herbivore[37] Arboreal N/A CR Medium[38] Diurnal[38] 
Gibbons (Hylobatidae)       

Yellow-cheeked gibbon Nomascus gabriellae Herbivore[39] Arboreal N/A EN Medium[40] Diurnal[40] 
Lorises (Loridae)       

Pygmy slow loris Nycticebus pygmaeus Omnivore[41] Arboreal 0.9 EN Medium[42,43] Nocturnal[42] 

Pigs (Suidae)       

Eurasian wild pig Sus scrofa Omnivore[44] Terrestrial 117.29 LC High[12,44,45] Cathemeral[28,29] 

Chrevotains (Tragulidae)       

Lesser oriental chevrotain Tragulus kanchil Herbivore[46] Terrestrial 3.30 LC High[46,47] Cathemeral[46] 

Deer (Cervidae)       

Sambar Cervus unicolor Herbivore[48] Terrestrial 211.62 VU High[49] Cathemeral[29] 
Northern red muntjac Muntiacus muntjak Herbivore[50] Terrestrial 14.00 LC High[28,49] Cathemeral[28] 

Porcupines (Hystricidae)       

Malayan porcupine Hystrix brachyura Herbivore[12] Terrestrial 8.00 LC High[28,51,52] Nocturnal[28] 
Asiatic brush-tailed porcupine Atherurus 
macrourus Herbivore[12] Terrestrial 2.00 LC Medium [52] Nocturnal[29] 

Squirrels (Sciuridae)       
Black giant squirrel Ratufa bicolor Herbivore[53] Arboreal 0.9 NT Medium[54] Nocturnal[55] 

Flying squirrels (Pteromyidae)       
Indian giant flying squirrel Petaurista 
philippensis Herbivore[56] Arboreal 2.05 LC Medium[56,57] Diurnal[58] 

2019 status compared to status from Polet and Ling 2004 
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APPENDIX S11 

References 
Species list 

• Black-shanked douc-langur (BSDL) 
• Elliot’s silver langur (ISLA) 
• Yellow-cheeked gibbon (YCGI) 
• Pig-tailed macaque (PTMA) 
• Long-tailed macaque (LTMA) 
• Stump-tailed macaque (STMA) 
• Pygmy slow loris (LORI) 
• Leopard cat (LECA) 
• Common palm civet (CPCI) 
• Small-toothed palm civet (STPC) 
• Small Indian civet (SICI) 
• Crab-eating mongoose (CEMO) 
• Ferret-badger (FEBA) 
• Yellow-throated marten (YTMA) 
• Sunda pangolin (SUPA) 
• Black giant squirrel (BGSQ) 
• Indian giant flying squirrel (IGFS) 
• Brush-tailed porcupine (BTPO) 
• Malayan Porcupine (MAPO) 
• Lesser oriental chevrotain (LEMA) 
• Red muntjac (REMU) 
• Sambar (SAMB) 
• Eurasian wild pig (EWPI) 

Sites 

• Arboreal (June 2019 to September 2020) 
• Terrestrial 2019 - on-trail (June 2019 to January 2020) 
• Terrestrial 2020 - off-trail (January to September 2020) 

Seasons 

• Wet Season 2019: June to October 2019 
• Dry Season: November 2019 to April 2020 
• Wet Season 2020: May to September 2020 
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1 Examining the data 
Number of independent species detections (> 30 minutes apart) at differ-
ent site types 
 

 

 
We detected a total of 13 species on the arboreal cameras and 17 species on the terrestrial 
cameras. 6 species were only detected arboreally (eg. yellow-cheeked gibbon, small-toothed 
palm civet), 10 species were only detected terrestrially (eg. lesser oriental chevrotain, crab-
eating mongoose), and 7 species were detected both on the ground and in the trees 
(e.g. yellow-throated marted, Sunda pangolin). 

##                  BSDL ISLA YCGI PTMA LTMA STMA LORI LECA CPCI STPC SICI CE
MO 

## Arboreal          168    8   31  206   54    4    9    0   65   70    0    
0 

## Terrestrial 2019    0    0    0  179   34    8    0   23  113    0   20   
19 

## Terrestrial 2020    4    0    0  166   31   12    0    9  162    0    7   
17 

##                  FEBA YTMA SUPA BGSQ IGFS BTPO MAPO LEMO REMU SAMB EWPI 

## Arboreal            0   33    1   60   77    0    0    0    0    0    0 

## Terrestrial 2019   33   19    5    0    0   27   25   71   38   13   68 

## Terrestrial 2020  103   34   10    0    0   11   33   89   40   12   38 
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Comparison of effort (# of surveys) between paired cameras at each sta-
tion 

 

length(which(mat_all[1,] >= 1)) #Total arboreal 

## [1] 13 

length(which(mat_all[2,] >= 1)) #Total terrestrial 2019 

## [1] 16 

length(which(mat_all[3,] >= 1)) #Total terrestrial 2020 

## [1] 17 

#Species only detected arboreally 

 

which(mat_all[1,] >= 1 & mat_all[2,] == 0 & mat_all[3,] == 0) 

## ISLA YCGI LORI STPC BGSQ IGFS  

##    2    3    7   10   16   17 

#Species only detected terrestrially 

 

which(mat_all[1,] == 0 & mat_all[2,] >= 1 & mat_all[3,] >= 1) 

## LECA SICI CEMO FEBA BTPO MAPO LEMO REMU SAMB EWPI  

##    8   11   12   13   18   19   20   21   22   23 

#Species detected both arboreally and terrestrally  

 

which(mat_all[1,] >= 1 & mat_all[2,] >= 1) 

## PTMA LTMA STMA CPCI YTMA SUPA  

##    4    5    6    9   14   15 

which(mat_all[1,] >= 1 & mat_all[3,] >= 1) 

## BSDL PTMA LTMA STMA CPCI YTMA SUPA  

##    1    4    5    6    9   14   15 

##      Arboreal Terrestrial_2020 Terrestrial_2019 

## A100       63               16                7 

## A101       43               28               21 

## A102       21                0               21 

## A103       59               25               23 

## A104       58               37               18 

## A105       63               33               22 

## A106       22                0                9 

## A107       22                0                0 

## A108       59               37               31 



 
 

95 
 

 
Direct arboreal-terrestrial comparisons may be diff icult given the gaps in terrestrial data for 
several stations (eg. A102, A106, A107). May combine terrestrial data if the difference be-
tween site type (on vs. off trail) does not significantly affect detection. 

## A109       59               17               31 

## A110       32                3               19 

## A111       42               36               12 

## A112       28               10               17 

## A113       62               18               17 

## A114       55               36               13 

## A115       62               11               29 

## A116       54               24               24 

## A117       22               31                0 

## A118       58               24               11 

## A119       59               37                0 

## A120       35               35                0 
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2 Species accumulation curves 
Species accumulation curves by station 

• Require 21 stations to detect 13 arboreal species, and 24 stations to detect 17 ter-
restrial species 

 

Species accumulation curve by survey (~7 camera trap days per survey) 

• Require 63 surveys to detect 13 arboreal species, and 47 surveys to detect 17 ter-
restrial species 
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Extrapolated species accumulation by station 
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Extrapolated species accumulation by surveys 

 
From the curves above we can see that we have greater confidence in having arrived at the 
true species terrestrial richness estimate within the sampling period than for arboreal species 
richness, which has greater uncertainty around the extrapolated estimates. Both terrestrial 
and arboreal richness curves did begin to plateau, however, for both the stations and sur-
veys, so there is room to assume that to true species richness was not very different from 
our final estimates. In addition, according to the Polet and Ling (2004) and Murphy and Phan 
(2002) CTNP biodiversity list, our arboreal surveys detected all arboreal and semi-arboreal 
mesomammals previously detected in the park with the exception of binturong (which have 
not been sighted in the park since 2002). 

3 Generalized Linear Models 
Modeling the effects of site type and season on naive detection rates 

 

#Negative binomial GLM for the effect of site on detections (count) offset by 
effort (number of active camera trap days) 

 

glm.site.nb <- glm.nb(count ~ site + offset(log(mat.effort)), data = mat.anov
a) 

summary(glm.site.nb) 

##  

## Call: 
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mat.anova.rl$site = relevel(mat.anova$site, ref = "Terrestrial_19") 

 

glm.site.nb.rl <- glm.nb(count ~ site + offset(log(mat.effort)), data = mat.a
nova.rl) 

summary(glm.site.nb.rl) 

##  

## Call: 

## glm.nb(formula = count ~ site + offset(log(mat.effort)), data = mat.anova.
rl,  

##     init.theta = 0.1433948764, link = log) 

##  

## Deviance Residuals:  

##     Min       1Q   Median       3Q      Max   

## -0.8345  -0.7270  -0.6838  -0.5269   2.5967   

##  

## Coefficients: 

##                    Estimate Std. Error z value Pr(>|z|)     

## (Intercept)         -4.9723     0.1028 -48.368   <2e-16 *** 

## siteArboreal        -1.4769     0.1298 -11.377   <2e-16 *** 

## siteTerrestrial_20  -0.2453     0.1437  -1.706   0.0879 .   

## --- 

## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

##  

## (Dispersion parameter for Negative Binomial(0.1434) family taken to be 1) 

##  

##     Null deviance: 1728.7  on 3058  degrees of freedom 

## Residual deviance: 1572.4  on 3056  degrees of freedom 

## AIC: 5829.7 

##  

## Number of Fisher Scoring iterations: 1 

##  

##  

##               Theta:  0.14339  

##           Std. Err.:  0.00804  

##  
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## glm.nb(formula = count ~ site + offset(log(mat.effort)), data = mat.anova,  

##     init.theta = 0.1433948764, link = log) 

##  

## Deviance Residuals:  

##     Min       1Q   Median       3Q      Max   

## -0.8345  -0.7270  -0.6838  -0.5269   2.5967   

##  

## Coefficients: 

##                    Estimate Std. Error z value Pr(>|z|)     

## (Intercept)        -6.44925    0.07927 -81.353   <2e-16 *** 

## siteTerrestrial_19  1.47690    0.12982  11.377   <2e-16 *** 

## siteTerrestrial_20  1.23160    0.12798   9.624   <2e-16 *** 

## --- 

## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

##  

## (Dispersion parameter for Negative Binomial(0.1434) family taken to be 1) 

##  

##     Null deviance: 1728.7  on 3058  degrees of freedom 

## Residual deviance: 1572.4  on 3056  degrees of freedom 

## AIC: 5829.7 

##  

## Number of Fisher Scoring iterations: 1 

##  

##               Theta:  0.14339  

##           Std. Err.:  0.00804  

##  

##  2 x log-likelihood:  -5821.66500 

#Relevel to compare differences between wet seasons 

 

mat.anova$site = as.factor(mat.anova$site) 

 

mat.anova.rl = mat.anova 
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There appears to be a significant difference between arboreal and terrestrial, but not be-
tween on- and off-trail terrestrial survey methods. In addition, the coefficients are similar in 
size and direction which suggests the effect on detection is similar across site types. 

Residuals are close to 1, indicating that a negative binomial GLM does a good job of ac-
counting for any overdispersion potentially caused by zero-inflation. 

 

glm.site.nb.coef <- glm.nb(count ~ site - 1 + offset(log(mat.effort)), data = 
mat.anova) 

glm.site.nb.coef$coefficients 

##       siteArboreal siteTerrestrial_19 siteTerrestrial_20  

##          -6.449245          -4.972347          -5.217642 

#Checking residuals 

 

simulationOutput <- simulateResiduals(fittedModel = glm.site.nb, plot = T) 

#Negative binomial GLM for the effect of season on detections (count) offset 
by effort (number of active camera trap days) 

 

#glm.season.nb <- glm.nb(count ~ season + offset(log(mat.effort)), data = mat
.anova) 

#summary(glm.season.nb) 
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#Relevel to compare differences between wet seasons 

 

mat.anova$season = as.factor(mat.anova$season) 

 

mat.anova.rl$season = relevel(mat.anova$season, ref = "Wet.19") 

 

glm.season.nb.rl <- glm.nb(count ~ season + offset(log(mat.effort)), data = m
at.anova.rl) 

summary(glm.season.nb.rl) 

##  

## Call: 

## glm.nb(formula = count ~ season + offset(log(mat.effort)), data = mat.anov
a.rl,  

##     init.theta = 0.1216694866, link = log) 

##  

## Deviance Residuals:  

##     Min       1Q   Median       3Q      Max   

## -0.8506  -0.7524  -0.6634  -0.4913   2.3660   

##  

## Coefficients: 

##              Estimate Std. Error z value Pr(>|z|)     

## (Intercept)   -5.2727     0.1006 -52.412  < 2e-16 *** 

## seasonDry.20  -0.3659     0.1325  -2.761  0.00577 **  

## seasonWet.20  -0.5863     0.1503  -3.901 9.58e-05 *** 

## --- 

## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

##  

## (Dispersion parameter for Negative Binomial(0.1217) family taken to be 1) 

##  

##     Null deviance: 1555.1  on 3058  degrees of freedom 

## Residual deviance: 1539.2  on 3056  degrees of freedom 

## AIC: 5958.6 

##  

## Number of Fisher Scoring iterations: 1 
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There is a significant effect of dry season on detection, as well as Wet season 2019 though 
the effect size is small. The coefficients are also similar in size and direction which suggests 
the effect on detection is similar across seasons. We thus created a model that includes both 
season and site. 

 
 

 

##               Theta:  0.12167  

##           Std. Err.:  0.00653  

##  

##  2 x log-likelihood:  -5950.63600 

#Coefficient estimates for all seasons  

 

glm.season.nb.coef <- glm.nb(count ~ season - 1 + offset(log(mat.effort)), da
ta = mat.anova) 

glm.season.nb.coef$coefficients 

## seasonDry.20 seasonWet.19 seasonWet.20  

##    -5.638561    -5.272666    -5.858920 

#Checking residuals 

 

#simulationOutput <- simulateResiduals(fittedModel = glm.season.nb, plot = T) 

 

#Some underdispersion 

#Negative binomial GLM for the effect of season and site on detections (count
) offset by effort (number of active camera trap days) 

 

glm.site.season.nb <- glm.nb(count ~ site + season + offset(log(mat.effort)), 
data = mat.anova) 

summary(glm.site.season.nb) 

##  

## Call: 

## glm.nb(formula = count ~ site + season + offset(log(mat.effort)),  

##     data = mat.anova, init.theta = 0.1455718947, link = log) 

##  

## Deviance Residuals:  

##     Min       1Q   Median       3Q      Max   

## -0.8583  -0.7536  -0.6623  -0.4843   2.7252   

##  

## Coefficients: 
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We accounted for inter-species variation in responses by adding species as a random varia-
ble in a GLMM with the site-only and site + season models. 

 

##                    Estimate Std. Error z value Pr(>|z|)     

## (Intercept)         -6.5302     0.1054 -61.938  < 2e-16 *** 

## siteTerrestrial_19   1.2831     0.1341   9.565  < 2e-16 *** 

## siteTerrestrial_20   1.4130     0.1381  10.234  < 2e-16 *** 

## seasonWet.19         0.4016     0.1320   3.042  0.00235 **  

## seasonWet.20        -0.2136     0.1397  -1.529  0.12619     

## --- 

## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

##  

## (Dispersion parameter for Negative Binomial(0.1456) family taken to be 1) 

##  

##     Null deviance: 1745.3  on 3058  degrees of freedom 

## Residual deviance: 1573.1  on 3054  degrees of freedom 

## AIC: 5819.7 

##  

## Number of Fisher Scoring iterations: 1 

##  

##  

##               Theta:  0.14557  

##           Std. Err.:  0.00818  

##  

##  2 x log-likelihood:  -5807.68500 

#Site only 

 

glmm.site <- glmer.nb(count ~ site + offset(log(mat.effort)) + (1|species), d
ata = mat.anova) 

 

#Site + season 

 

glmm.site.season <- glmer.nb(count ~ site + season + offset(log(mat.effort)) 
+ (1|species), data = mat.anova) 
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Compare AIC for model selection 

 
The GLMM models performed significantly better than the GLM models, with the site + sea-
son GLMM model performing best. 

Predicted rate of new detections at a fixed effort of 1000 camera trap days 
Examining site and season in the top model (glmm.site.season) by fixing effort at 1000 cam-
era trap days: 

 

 

##                    df      AIC 

## glmm.site.season    7 5472.111 

## glmm.site           5 5484.460 

## glm.site.season.nb  6 5819.685 

## glm.site.nb         4 5829.665 

##   count     site season species station effort count.effort 

## 1     2 Arboreal Wet.19    BSDL    A100    440  0.004545455 

## 2     9 Arboreal Wet.19    BSDL    A101    292  0.030821918 

## 3     6 Arboreal Wet.19    BSDL    A102    146  0.041095890 

## 4    16 Arboreal Wet.19    BSDL    A103    412  0.038834951 

## 5     1 Arboreal Wet.19    BSDL    A104    403  0.002481390 

## 6     3 Arboreal Wet.19    BSDL    A105    439  0.006833713 
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The site + season model appears to best account for naive differences in detection. How-
ever, there is no significant difference between terrestrial sampling methods, and the boxplot 
shows a lot of overlap outside of outliers in predicted number of detections. The difference 
between arboreal and terrestrial methods is greater and known differences in detection rate 
between these sampling methods merits separation. Differences across seasons were statis-
tically significant between all seasons, however the unit of difference between seasons is not 
large with a lot of overlap in the plots. We thus decided to combine wet season data to mini-
mize overparameterization for a single categorical dry-season covariate and separate only 
by arboreal and terrestrial stations. 

4 Covariates 
Detection 

• CC Canopy connections 
• FBS Focal branch slope 
• FBD Focal branch diameter 
• DBH Tree DBH 
• CAM Camera height 
• CD Canopy level 

Occurrence 

• CAN Canopy height 
• AC Absolute cover 
• GRA Distance to grassland 
• WA Distance to water 
• RO Distance to road 

See Arboreal candidate models excel f ile for a description of all the covariates (Appendix 
S1). 

In a few cases, missing covariate values were assigned the mean value, which has little ef-
fect on estimated coefficients, but does decrease the associated variances. 

Checking correlation 

 
• Tree DBH is correlated with focal branch diameter (r = 0.51), which makes sense, but 

due to the relatively low correlation value I have decided to keep both and not use 
them in the same models 

• Camera height is correlated with canopy level. We opted to keep both covariates as 
they may potentially explain detection and site use differently, but will not include the 
covariates in the same model. 

##      var          R        

## [1,] "WA vs FBD"  "0.618"  

## [2,] "GRA vs FBD" "0.537"  

## [3,] "WA vs DBH"  "0.509"  

## [4,] "CD vs CAM"  "-0.557" 
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• FBD is correlated with distance to water and grassland, suggesting that trees se-
lected closer to water were generally smaller. This is likely due to chance selection of 
trees, given that absolute cover, a more robust index of overall site-level basal area, 
was not correlated with distance to water or grassland. Thus we elected to keep all 
covariates. 

• Understory cover was highly correlated with absolute cover (r = 0.93) so we elected 
to keep AC and use it as a terrestrial detection covariate in place of understory cover. 

Plot of variation within covariates 
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APPENDIX S12 
 

Table S1. Hypotheses and predictions of candidate variables describing how vegetation characteristics and anthropogenic disturbance 

affects detection and occurrence of mesomammals in Cat Tien National Park, Vietnam. Detection and occupancy variables were com-

bined for GLMM analyses. 

Variable Name Hypothesis Prediction 
Detection    

CC Canopy connections 
Canopy connectedness can increase accessibility and movement 
within the canopy for arboreal mammals, thereby affecting likeli-
hood of detection on the focal branch 

Detection will increase with 
higher number of canopy con-
nections 

FBS Focal branch slope Depending on vertical and horizontal movement patterns, species 
may prefer particular limb slopes which can affect detection rates 

Detection will increase with 
higher branch slope 

FBD Focal branch diameter Focal branch size may affect time spent on a particular branch, or 
behavior, which can affect use (and thereby detection) patterns 

Detection will increase with 
larger focal branch diameter 

DBH Tree DBH 

Larger trees are more likely to provide access to canopy resources, 
and animals may spend more time resting in larger trees; larger 
trees may also hold more individuals, thereby increasing detection 
probability 

Detections will increase with 
larger tree DBH 

CAM Camera height 
Camera height is correlated with position in the canopy. Different 
parts of the canopy have different levels of access to resources, 
forage, and connectedness to other trees for horizontal movement 

Detection will increase at higher 
camera height 

CD Canopy difference Position of the focal limb in relation to the rest of the canopy is an 
index of canopy access and thus use of the focal tree and limb 

Detection will decrease as the 
difference between the focal 
branch and canopy increases 
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SE Dry season 

Rainfall can reduce species detections by cameras simply due to 
technical errors such as mud and humidity obscuring the lens, but 
also by reducing movement of individuals. However, seasonal 
flooding may also increase utilization of trees for movement 
through the landscape, and seasonal availability of fruit during the 
wet season may alter movement rates between resource patches. 

Detection will increase in the dry 
season as high quality forage is 
more sparsely distributed 

AC Absolute cover 

(Terrestrial only). Absolute cover was strongly (r ~ 0.96) corre-
lated with understory cover, a metric of underbrush density 
which may constrain a species’ movement through a land-
scape as well as the detection distance of the terrestrial cam-
era trap.  

Terrestrial detection will de-
clined with greater absolute 
cover. 

    

Occurrence    

CAN Canopy height 
Canopy height may be a measure of tree type and resource availa-
bility, such as fruit and insects, refuge from predators, den availa-
bility, etc. 

Occurrence will increase with 
canopy height 

AC Absolute cover 

Absolute cover is a measure of basal area per hectare, or a combi-
nation of tree size and density within the landscape Species reliant 
on tree cover and spatial complexity, especially semi-arboreal spe-
cies, are more likely to use sites with high absolute cover 

Occurrence will increase as ab-
solute cover increases 

WA Distance to water 
Reliable water sources, such as rivers and wetlands, are important 
for wildlife especially during the dry season when seasonal water 
sources dry up 

Occurrence will increase with 
proximity to water 

GR Distance to grassland 

Seasonally inundated grasslands and wetlands can provide im-
portant resources for many species of wildlife, and have proven to 
be and important determinant of species occurrence in previous 
studies 

Occurrence will increase with 
proximity to grassland 
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RO Distance to road 

Roads facilitate accessibility to the forest by humans and can prox-
imity to roads can thus act as a metric for perceived and real levels 
of human risk and other disturbances (eg. vehicles, anthropogenic 
noise, etc.) 

Occurrence will decrease at sites 
closer to roads 

 

 

Table S2. Variable information and estimation methods used for all covariates included in the mesomammal GLMM and occupancy 
models 

Covariate Data type Data Source Resolution Estimation method 

Canopy connectivity Continuous Vegetation survey Station 
Canopy connectivity was measured as the number of 
branches and trunks from proximate trees within 2m (easily 
traversable for most focal mesomammals) of the focal tree.  

Focal branch slope Continuous Vegetation survey Station 
Focal branch slope was estimated by eye as the angle differ-
ence from a straight vertical line (0 degrees) to a straight 
horizontal line (90 degrees).  

Focal branch diameter Continuous Vegetation survey Station 

Focal branch diameter was collected by measuring the cir-
cumference of the largest branch facing the camera and con-
verting to diameter by dividing by π. If the focal branch was 
out of reach, diameter was estimated by eye to the nearest 
5cm.  

Tree DBH Continuous Vegetation survey Station 

Tree diameter was collected by measuring the circumference 
of the focal tree at approximately 150 cm and converted to 
diameter by dividing by π. For trees with wide buttresses, di-
ameter of the main trunk was estimated by eye using a hori-
zontal measuring tape.  

Camera height Continuous Vegetation survey Station 
Arboreal camera height was measured as the straight-line 
distance from the camera trap sensor to the ground using a 
50m measuring tape 
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Canopy height Continuous Vegetation survey Station 

Canopy height was estimated with a rangefinder by measur-
ing the heights of five trees whose crowns were at height 
with the contiguous site-level canopy and were within 20 
meters of the focal tree. The mean across all estimates was 
used for the site-level covariate. 

Canopy level Continuous Vegetation survey Station 
The position of the focal limb in relation to the rest of the 
canopy was measured by calculating the absolute value of 
the difference between camera height and canopy height. 

Understory cover Continuous Vegetation survey 50m x 50m 

A Photograph of a red 2x1-meter tarp was taken five meters 
from each PCQ interval point (0m, 17m, 35m) for a total of 
9 photos per site. For each photo, we estimated the propor-
tion of vegetation obstructing the red tarp by using the 
CountColors package in R to calculate the proportion of 
green color pixels (Weller 2019). The mode across all photos 
at a site was used for site-level covariate. 

Absolute cover Continuous Vegetation survey 50m x 50m 

We measured nearest tree distances, height, and diameter at 
breast height (DBH >30 cm) at each PCQ interval location to 
estimate absolute cover (basal area/ha) and used Mitchell 
2007's PCQ method to correct for missing values where trees 
were inaccessible or >200m away 

Distance to grassland Continuous Remote sensing 10m 

Proximity to grassland was measured from high-resolution 
remote-sensing Geographic Information Systems data (Phan 
2018) and geospatial vectors using the Near tool in ArcGIS 
and constrained to within park boundaries to reduce con-
founding with crop or grazing land 

Distance to water Continuous Remote sensing 10m 
Proximity to water was measured from high-resolution re-
mote-sensing Geographic Information Systems data (Phan 
2018) and geospatial vectors using the Near tool in ArcGIS 
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Distance to road Continuous Remote sensing 10m 

Proximity to road was measured from high-resolution re-
mote-sensing Geographic Information Systems data (Phan 
2018) and geospatial vectors using the Near tool in ArcGIS. 
All roads were at least 5m across and created significant can-
opy gaps though traffic levels vary from high (road bisecting 
the park) to low (road following the eastern park boundary; 
Figure 2). 

Season Categorical Online historical 
database 

 

Seasons were determined from changes in daily precipitation 
in Ho Chi Minh City (from World Weather Online). This 
was calculated from monthly rainfall divided by number of 
rain days, whereby the wet season had higher average daily 
precipitation (12.7-15.2 cm) and dry season had lower aver-
age daily precipitation (0.3-8.3 cm). We used one seasonal 
categorical covariate which encompassed two seasons; the 
intercept (wet season, June-November 2019 and June-Sep-
tember 2020) and SE (dry season, December-May 2020). 

 
Citations: Hannah Weller (2019). countcolors: Locates and Counts Pixels Within Color Range(s) in Images. R package version 0.9.1. 

https://CRAN.R-project.org/package=countcolors 

Duong, P., Trung, T., Nasahara, K., Tadono, T., 2018. JAXA High-Resolution Land Use/Land Cover Map for Central Vietnam in 2007 and 2017. 

Remote Sens. 10, 1406. 

Mitchell, K., 2007. Quantitative Analysis by the Point-Centered Quarter Method. Mater. Methods 34. 

Pollard, J.H., 1971. On Distance Estimators of Density in Randomly Distributed Forests. Biometrics 27, 991. 
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APPENDIX S13 
 

Table S1. Hypotheses and predictions of candidate GLMM models describing how metrics of forest structure and anthropogenic dis-

turbance affect count of detections of arboreal mesomammals in Cat Tien National Park, Vietnam. Models with variables as fixed 

effects denoted by the letter a and models with variables described as varying by species denoted by the letter b. AC = absolute cover, 

CAM = camera height, CAN = canopy height, CC = Canopy connectivity, CD = canopy difference, DBH = focal tree DBH, FBD = 

focal branch diameter, FBS = focal branch slope, GRA = distance to grassland, RO = distance to road, WA = distance to water. 

Name Model Hypothesis Prediction 

Model 1a count ~ CC + FBD + FBS + (1 | species) 

Focal branch characteristics such as the slope and size of the 
focal branch as well as connectedness to nearby trees can af-
fect type and length of use (resting vs. foraging vs. movement) 
and thereby detection rates. 

Count of species detections will increase 
with higher canopy connectivity, focal 
branch diameter, and focal branch slope. 

Model 1b count ~ CC + (FBD + FBS | species) 
The effect of branch slope and branch diameter will vary by 
species depending largely on the preferred mode of locomo-
tion. 

Count of species detections will increase 
with lower branch slope and branch di-
ameter for brachiators, gliders, and 
climbers while detections will increase 
with higher branch slope and diameter for 
arboreal quadrupeds. 

Model 2a count ~ CC + CAM + FBS + (1 | species) 

Different heights within the canopy can vary in access to re-
sources. Branch slope and canopy connectedness can increase 
accessibility and movement within the canopy and use of that 
particular tree by arboreal mammals. 

Count of species detections will increase 
with higher canopy connections, focal 
branch slope, and camera height. 

Model 2b count ~ CC + (FBS + CAM | species) 
The effect of branch slope and camera height will vary by spe-
cies depending largely on the preferred mode of locomotion 
and resource niche. 

Detections of canopy-crown foraging 
species will increase with focal branch 
slope and camera height. 
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Model 3a count ~ CC + DBH + CAM + (1 | species) 

Larger trees are more likely to provide access to canopy re-
sources, and animals may spend more time resting in larger 
trees; larger trees may also hold more individuals, and in com-
bination with canopy connectivity to proximate trees may in-
crease detection probability. 

Count of species detections will increase 
with higher canopy connectivity, tree 
DBH, and camera height. 

Model 3b count ~ DBH + (CC + CAM| species) 
The effect of canopy connectivity and camera height will vary 
by species based on reliance on horizontal arboreal movement 
and spatial niche. 

The effect of canopy connectivity and 
camera height on detection rate will be 
greater on more specialized arboreal spe-
cies while the effect will be smaller for 
semi-arboreal species. 

Model 4a count ~ CC + CD + CAN + (1 | species) 

Canopy difference is a quantitative measure of relative posi-
tion of the camera in the canopy and an index of accessibility 
to the surrounding mid-canopy. Low canopy difference (little 
difference between the canopy and camera height) and high 
canopy connectivity suggests a high level of accessibility of 
the focal tree and thereby detection. 

Count of species detections will increase 
at sites with lower canopy difference, 
higher canopy connectivity, and greater 
canopy height. 

Model 4b count ~ CAN + CD + (CC | species) The effect of canopy connectivity will vary by species. 

The effect of canopy connectivity on de-
tection rate will be greater on more spe-
cialized arboreal species while the effect 
will be smaller for semi-arboreal species. 

Model 5a count ~ CC + WA + CAN + (1 | species) 

In combination with forest maturity, reliable water sources, 
such as rivers and wetlands, are important for wildlife espe-
cially during the dry season when seasonal water sources dry 
up. 

Count of species detections will increase 
in more mature forest with high connec-
tivity, high canopy, higher DBH, and 
close to water. 

Model 5b count ~ WA + CAN + (CC | species) The effect of canopy connectivity will vary by species. 

The effect of canopy connectivity on de-
tection rate will be greater on more spe-
cialized arboreal species while the effect 
will be smaller for semi-arboreal species. 

Model 6a count ~ CC + GRA + DBH + (1 | species) 
Distance to grassland can act as a proxy for the linear effect of 
forest succession and maturity, which may affect the likeli-
hood and frequency of use of that site by a species. 

Count of species detections will increase 
with canopy connectivity, absolute cover, 
distance to grassland, and canopy height. 
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Model 6b count ~ DBH + (CC + GRA | species) The effect of canopy connectivity and distance to grassland 
will vary by species. 

Grasslands can be an important resource 
for some species, especially semi-arbor-
eal species, but the edge effects of early 
successional habitat may deter more ar-
boreal species.  

Model 7a count ~ AC + CC + CAN + (1 | species) 
Absolute cover, canopy connectivity, and canopy height are all 
metrics of forest integrity and maturity which are likely to af-
fect site-level use and detections of arboreal species. 

Count of species detections will increase 
with absolute cover, canopy connectivity, 
and canopy height. 

Model 7b count ~ AC + (CC + CAN | species) 

Thus, proximity to roads can act as a metric for perceived and 
real levels of human risk and other disturbances (i.e. vehicles, 
anthropogenic noise). Grasslands may also indicate degraded 
or edge forest which can affect species’ use of a site. 

Count of species detections will decline 
with proximity to roads and grassland. 

Model 8a count ~ CC + GRA + RO + (1 | species) 

Roads can act as barriers to movement for highly arboreal spe-
cies and facilitate accessibility to the forest by humans. Thus, 
proximity to roads can act as a metric for perceived and real 
levels of human risk and other disturbances (i.e. vehicles, an-
thropogenic noise). Grasslands may also indicate degraded or 
edge forest which can affect species’ use of a site. 

Count of species detections will decline 
with proximity to roads and grassland 
and increase with canopy connectivity 

Model 8b count ~ GRA + (CC + RO | species) The effect of canopy connectivity and distance to road will 
vary by species. 

The effect of roads on count of species 
detections will be higher for more dis-
turbance sensitive and arboreal species 
whose movement and thus range may be 
limited by large roads and who may be 
more sensitive to anthropogenic disturb-
ance. 

Model 9a count ~ AC + CAN + RO + (1 | species) 

Absolute cover and canopy connectivity are metrics for forest 
maturity which may influence species' use of and activity lev-
els at a particular site in combination with proximity to human 
disturbance. 

Count of species detections will increase 
at sites with high canopy connectivity, 
higher canopy, and further from roads. 

Model 9b count ~ CAN + (AC + RO | species) The effect of absolute cover and distance to road will vary by 
species. 

The effect of roads on count of species 
detections will be negative for more dis-
turbance sensitive and arboreal species 
while the effect of absolute cover will be 
positive for those species. 
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Table S2. Hypotheses and predictions of candidate occupancy models describing how metrics of forest structure and anthropogenic 
disturbance affect detection and occupancy (site use) of arboreal and semi-arboreal mesomammals in Cat Tien National Park, Vi-
etnam. AC = absolute cover, CAM = camera height, CAN = canopy height, CC = Canopy connectivity, CD = canopy difference, DBH 
= focal tree DBH, FBD = focal branch diameter, FBS = focal branch slope, GRA = distance to grassland, RO = distance to road, WA 
= distance to water. 

 
Model Hypothesis Prediction 

Detection   

p(CAM + CC +  FBS + SE) 

Canopy connectedness can increase accessibility and movement within the 
canopy, thereby affecting likelihood of detection on the focal branch. Camera 
height is correlated with position in the canopy. Different parts of the canopy 
have different levels of access to resources, forage, and connectedness to 
other trees for horizontal movement, so individuals may utilize different parts 
of the canopy at different rates; the slope of the focal branch can also affect 
type and length of use (resting vs. foraging vs. movement). 

Detection will increase with higher camera 
height, canopy connectedness, and branch slope 

p(CC + CD + SE) 

Canopy difference is a quantitative measure of relative position of the camera 
in the canopy and would coarsely indicate accessibility to the surrounding 
mid-canopy. Low canopy level (little difference between the canopy and cam-
era height) and high canopy connectivity suggests a high level of accessibility 
of the focal tree and thereby detection. 

Detection will increase with higher number of 
canopy connections and canopy level 

p(FBD + CC + SE) 

Focal branch size (diameter) may affect time spent on a particular branch, or 
behavior, which can affect use (and thereby detection) patterns;  Canopy con-
nectedness can increase accessibility to surrounding canopy and thus likeli-
hood of use of the focal branch for arboreal travel and use. 

Detection will increase with higher number of 
canopy connections and branch diameter.  
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p(FBD + FBS + CD + SE) 

The size and slope of the focal branch can affect whether an animal decides to 
use it for resting/foraging/movement as well as the length of time spent on 
that branch, thus affecting detection. Position relative to the canopy may also 
affect accessibility of the focal branch for use and detection. 

Detection will increase with higher focal branch 
diameter, branch slope, and lower canopy differ-
ence 

p(CAM + FBD + SE) The size and height of the focal branch may affect whether a species uses the 
focal branch for movement through the canopy and thus detection.  

Detections will increase at higher camera height, 
larger tree DBH, and higher focal branch slope. 

Occupancy   

𝜓𝜓(CAN) 

Canopy height may be a measure of tree type and resource availability, such as 
fruit and insects, refuge from predators, den availability, etc. Seasonal flooding 
may push semi-arboreal species out of inundated areas, especially close to water 
and where canopy connectedness is poor 

Occurrence will increase with canopy height. 

𝜓𝜓(AC) 

Absolute cover is a measure of basal area per hectare, or a combination of 
tree size and density within the landscape. Species reliant on tree cover and 
spatial complexity, especially semi-arboreal species, are more likely to use 
sites with high absolute cover 

Occurrence will increase as absolute cover in-
creases. 

𝜓𝜓(WA) 
Reliable water sources, such as rivers and wetlands, are important for wildlife 
especially during the dry season when seasonal water sources dry up 

Occurrence will increase with proximity to wa-
ter. 
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𝜓𝜓(GRA) 

Distance to grassland can act as a proxy for the linear effect of forest succes-
sion and thereby maturity. Forest edges and grasslands may also provide re-
sources such as fruiting pioneer trees and fast growing, young vegetation con-
sumed by many omnivores and herbivores. 

Occurrence will decrease with distance from 
grassland for more adaptable and semi-arboreal 
species, and will increase for more specialist, ar-
boreal species. 

𝜓𝜓(RO) 
Roads facilitate accessibility to the forest by humans and can proximity to 
roads can thus act as a metric for perceived and real levels of human risk and 
other disturbances (i.e. vehicles, anthropogenic noise). 

Occurrence will decrease at sites closer to road 
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APPENDIX S14 

Table S1. Table of expected log predictive density values (eldp) for the GLMM candidate 

models derived using approximate leave-one-out cross validation. AC = absolute cover, 

CAM = camera height, CAN = canopy height, CC = Canopy connectivity, CD = canopy 

difference, DBH = focal tree DBH, FBD = focal branch diameter, FBS = focal branch 

slope, GRA = distance to grassland, RO = distance to road, WA = distance to water. 

 
Model Model eldp Δelpd 
Model 8b count ~ GRA + (CC + RO | species) -775.05 0.00 
Model 2b count ~ CC + (FBS + CAM | species) -775.66 -0.61 
Model 8a count ~ GRA + CC + RO + (1 | species) -778.00 -2.95 
Model 3b count ~ DBH + (CC + CAM| species) -778.51 -3.46 
Model 1b count ~ CC + (FBD + FBS | species) -780.41 -5.37 
Model 6b count ~ DBH + (CC + GRA | species) -780.82 -5.78 
Model 6a count ~ CC + GRA + DBH + (1 | species) -783.92 -8.87 
Model 7b count ~ AC + (CC + CAN | species) -784.61 -9.56 
Model 4b count ~ CAN + CD + (CC | species) -787.65 -12.60 
Model 5b count ~ WA + CAN + (CC | species) -787.81 -12.76 
Model 4a count ~ CC + CD + CAN + (1 | species) -791.82 -16.77 
Model 5a count ~ CC + WA + CAN + (1 | species) -793.00 -17.96 
Model 7a count ~ AC + CC + CAN + (1 | species) -793.09 -18.05 
Model 1a count ~ CC + FBD + FBS + (1 | species) -793.45 -18.41 
Model 2a count ~ CC + CAM + FBS + (1 | species) -794.12 -19.07 
Model 3a count ~ CC + DBH + CAM + (1 | species) -794.64 -19.60 
Model 9a count ~ AC + CAN + RO + (1 | species) -808.44 -33.40 
Model 9b count ~ CAN + (AC + RO | species) -809.03 -33.99 
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Table S2 WAIC table from single-species arboreal occupancy models for nine arboreal 

species. AC = absolute cover, CAM = camera height, CAN = canopy height, CC = Can-

opy connectivity, CD = canopy difference, DBH = focal tree DBH, FBD = focal branch 

diameter, FBS = focal branch slope, RO = distance to road, WA = distance to water. Dis-

tance to grass not included as an occupancy covariate due to moderate correlation with 

distance to water (see Appendix S11). 

 
(a) Black-shanked douc-langur 

Number Model WAIC ΔWAIC 
mod1 psi(AC) p(CAM + CC + FBS + SE)  745.26 0.00 
mod15 psi(AC) p(CC + CD + SE)  747.33 2.07 
mod2 psi(CAN) p(CAM + CC + FBS + SE)  748.14 2.88 
mod29 psi(AC) p(FBD + FBS + CD + SE)  749.96 4.71 
mod16 psi(CAN) p(CC + CD + SE)  750.50 5.24 
mod5 psi(DBH) p(CAM + CC + FBS + SE)  750.80 5.54 
mod6 psi(RO) p(CAM + CC + FBS + SE)  751.22 5.97 
mod3 psi(CC) p(CAM + CC + FBS + SE)  751.48 6.22 
mod4 psi(CD) p(CAM + CC + FBS + SE)  752.00 6.74 
mod7 psi(WA) p(CAM + CC + FBS + SE)  752.39 7.14 
mod19 psi(DBH) p(CC + CD + SE)  752.61 7.36 
mod17 psi(CC) p(CC + CD + SE)  753.18 7.92 
mod18 psi(CD) p(CC + CD + SE)  753.44 8.19 
mod20 psi(RO) p(CC + CD + SE)  753.57 8.32 
mod21 psi(WA) p(CC + CD + SE)  754.04 8.78 
mod30 psi(CAN) p(FBD + FBS + CD + SE)  754.04 8.79 
mod31 psi(CC) p(FBD + FBS + CD + SE)  754.72 9.46 
mod34 psi(RO) p(FBD + FBS + CD + SE)  755.01 9.75 
mod33 psi(DBH) p(FBD + FBS + CD + SE)  755.73 10.48 
mod22 psi(AC) p(FBD + CC + SE)  755.96 10.70 
mod32 psi(CD) p(FBD + FBS + CD + SE)  756.09 10.83 
mod35 psi(WA) p(FBD + FBS + CD + SE)  757.54 12.28 
mod8 psi(AC) p(CAM + FBD + SE)  757.82 12.56 
mod23 psi(CAN) p(FBD + CC + SE)  758.51 13.25 
mod25 psi(CD) p(FBD + CC + SE)  759.63 14.38 
mod24 psi(CC) p(FBD + CC + SE)  759.75 14.49 
mod27 psi(RO) p(FBD + CC + SE)  760.82 15.56 
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mod9 psi(CAN) p(CAM + FBD + SE)  760.88 15.62 
mod28 psi(WA) p(FBD + CC + SE)  762.20 16.95 
mod26 psi(DBH) p(FBD + CC + SE)  762.30 17.05 
mod13 psi(RO) p(CAM + FBD + SE)  762.49 17.23 
mod10 psi(CC) p(CAM + FBD + SE)  762.57 17.32 
mod11 psi(CD) p(CAM + FBD + SE)  764.05 18.80 
mod12 psi(DBH) p(CAM + FBD + SE)  764.66 19.40 
mod14 psi(WA) p(CAM + FBD + SE)  764.95 19.70 
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(b) Yellow-cheeked gibbon 

Number Model WAIC ΔWAIC 
mod2 psi(CAN) p(CAM + CC + FBS + SE)  168.45 0.00 
mod4 psi(CD) p(CAM + CC + FBS + SE)  170.85 2.40 
mod1 psi(AC) p(CAM + CC + FBS + SE)  172.58 4.13 
mod7 psi(WA) p(CAM + CC + FBS + SE)  173.41 4.96 
mod5 psi(DBH) p(CAM + CC + FBS + SE)  173.46 5.01 
mod3 psi(CC) p(CAM + CC + FBS + SE)  173.58 5.13 
mod6 psi(RO) p(CAM + CC + FBS + SE)  173.71 5.26 
mod30 psi(CAN) p(FBD + FBS + CD + SE)  174.98 6.53 
mod32 psi(CD) p(FBD + FBS + CD + SE)  178.86 10.41 
mod29 psi(AC) p(FBD + FBS + CD + SE)  179.40 10.95 
mod33 psi(DBH) p(FBD + FBS + CD + SE)  179.79 11.34 
mod35 psi(WA) p(FBD + FBS + CD + SE)  180.19 11.74 
mod31 psi(CC) p(FBD + FBS + CD + SE)  180.47 12.02 
mod34 psi(RO) p(FBD + FBS + CD + SE)  180.59 12.13 
mod16 psi(CAN) p(CC + CD + SE)  188.58 20.13 
mod9 psi(CAN) p(CAM + FBD + SE)  188.99 20.53 
mod23 psi(CAN) p(FBD + CC + SE)  190.25 21.80 
mod11 psi(CD) p(CAM + FBD + SE)  191.44 22.99 
mod10 psi(CC) p(CAM + FBD + SE)  192.52 24.07 
mod12 psi(DBH) p(CAM + FBD + SE)  192.86 24.41 
mod13 psi(RO) p(CAM + FBD + SE)  192.90 24.45 
mod8 psi(AC) p(CAM + FBD + SE)  193.11 24.66 
mod14 psi(WA) p(CAM + FBD + SE)  193.55 25.10 
mod17 psi(CC) p(CC + CD + SE)  193.58 25.12 
mod21 psi(WA) p(CC + CD + SE)  193.59 25.14 
mod15 psi(AC) p(CC + CD + SE)  193.83 25.38 
mod19 psi(DBH) p(CC + CD + SE)  193.88 25.43 
mod20 psi(RO) p(CC + CD + SE)  194.54 26.09 
mod18 psi(CD) p(CC + CD + SE)  195.19 26.74 
mod24 psi(CC) p(FBD + CC + SE)  196.84 28.39 
mod22 psi(AC) p(FBD + CC + SE)  197.08 28.63 
mod28 psi(WA) p(FBD + CC + SE)  197.10 28.65 
mod26 psi(DBH) p(FBD + CC + SE)  197.41 28.96 
mod25 psi(CD) p(FBD + CC + SE)  197.61 29.16 
mod27 psi(RO) p(FBD + CC + SE)  197.61 29.16 

 

  



   
 

123 
 

(c) Pig-tailed macaque 

Number Model WAIC ΔWAIC 
mod27 psi(RO) p(FBD + CC + SE)  926.41 0.00 
mod25 psi(CD) p(FBD + CC + SE)  927.42 1.01 
mod22 psi(AC) p(FBD + CC + SE)  928.22 1.81 
mod26 psi(DBH) p(FBD + CC + SE)  928.85 2.44 
mod23 psi(CAN) p(FBD + CC + SE)  929.18 2.77 
mod24 psi(CC) p(FBD + CC + SE)  929.75 3.34 
mod28 psi(WA) p(FBD + CC + SE)  929.82 3.41 
mod20 psi(RO) p(CC + CD + SE)  933.77 7.36 
mod18 psi(CD) p(CC + CD + SE)  934.85 8.44 
mod6 psi(RO) p(CAM + CC + FBS + SE)  935.12 8.71 
mod4 psi(CD) p(CAM + CC + FBS + SE)  935.84 9.43 
mod15 psi(AC) p(CC + CD + SE)  936.12 9.71 
mod19 psi(DBH) p(CC + CD + SE)  936.20 9.79 
mod16 psi(CAN) p(CC + CD + SE)  936.44 10.03 
mod17 psi(CC) p(CC + CD + SE)  936.48 10.07 
mod21 psi(WA) p(CC + CD + SE)  936.63 10.22 
mod3 psi(CC) p(CAM + CC + FBS + SE)  937.07 10.66 
mod5 psi(DBH) p(CAM + CC + FBS + SE)  937.14 10.73 
mod1 psi(AC) p(CAM + CC + FBS + SE)  937.36 10.95 
mod7 psi(WA) p(CAM + CC + FBS + SE)  937.88 11.47 
mod2 psi(CAN) p(CAM + CC + FBS + SE)  938.49 12.08 
mod13 psi(RO) p(CAM + FBD + SE)  944.31 17.90 
mod11 psi(CD) p(CAM + FBD + SE)  945.17 18.76 
mod34 psi(RO) p(FBD + FBS + CD + SE)  945.35 18.94 
mod8 psi(AC) p(CAM + FBD + SE)  946.17 19.76 
mod32 psi(CD) p(FBD + FBS + CD + SE)  946.60 20.19 
mod10 psi(CC) p(CAM + FBD + SE)  946.71 20.30 
mod12 psi(DBH) p(CAM + FBD + SE)  946.78 20.37 
mod9 psi(CAN) p(CAM + FBD + SE)  946.88 20.47 
mod31 psi(CC) p(FBD + FBS + CD + SE)  947.32 20.91 
mod14 psi(WA) p(CAM + FBD + SE)  947.34 20.94 
mod29 psi(AC) p(FBD + FBS + CD + SE)  947.39 20.98 
mod33 psi(DBH) p(FBD + FBS + CD + SE)  947.52 21.11 
mod30 psi(CAN) p(FBD + FBS + CD + SE)  948.17 21.76 
mod35 psi(WA) p(FBD + FBS + CD + SE)  948.49 22.08 
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(d) Long-tailed macaque 

Number Model WAIC ΔWAIC 
mod21 psi(WA) p(CC + CD + SE)  218.28 0.00 
mod7 psi(WA) p(CAM + CC + FBS + SE)  221.15 2.87 
mod35 psi(WA) p(FBD + FBS + CD + SE)  224.46 6.18 
mod14 psi(WA) p(CAM + FBD + SE)  224.55 6.27 
mod32 psi(CD) p(FBD + FBS + CD + SE)  228.08 9.80 
mod19 psi(DBH) p(CC + CD + SE)  229.16 10.87 
mod18 psi(CD) p(CC + CD + SE)  229.87 11.59 
mod31 psi(CC) p(FBD + FBS + CD + SE)  233.08 14.80 
mod33 psi(DBH) p(FBD + FBS + CD + SE)  233.64 15.36 
mod5 psi(DBH) p(CAM + CC + FBS + SE)  234.12 15.84 
mod17 psi(CC) p(CC + CD + SE)  234.90 16.61 
mod15 psi(AC) p(CC + CD + SE)  235.83 17.55 
mod30 psi(CAN) p(FBD + FBS + CD + SE)  237.01 18.72 
mod12 psi(DBH) p(CAM + FBD + SE)  237.11 18.83 
mod16 psi(CAN) p(CC + CD + SE)  237.29 19.00 
mod2 psi(CAN) p(CAM + CC + FBS + SE)  237.71 19.43 
mod3 psi(CC) p(CAM + CC + FBS + SE)  238.22 19.94 
mod4 psi(CD) p(CAM + CC + FBS + SE)  238.22 19.94 
mod20 psi(RO) p(CC + CD + SE)  238.28 20.00 
mod29 psi(AC) p(FBD + FBS + CD + SE)  238.63 20.35 
mod1 psi(AC) p(CAM + CC + FBS + SE)  239.92 21.64 
mod34 psi(RO) p(FBD + FBS + CD + SE)  240.29 22.01 
mod10 psi(CC) p(CAM + FBD + SE)  240.96 22.68 
mod6 psi(RO) p(CAM + CC + FBS + SE)  240.98 22.70 
mod9 psi(CAN) p(CAM + FBD + SE)  241.36 23.07 
mod8 psi(AC) p(CAM + FBD + SE)  243.07 24.78 
mod13 psi(RO) p(CAM + FBD + SE)  243.45 25.17 
mod11 psi(CD) p(CAM + FBD + SE)  244.75 26.47 
mod26 psi(DBH) p(FBD + CC + SE)  293.17 74.89 
mod28 psi(WA) p(FBD + CC + SE)  293.66 75.38 
mod22 psi(AC) p(FBD + CC + SE)  293.87 75.59 
mod24 psi(CC) p(FBD + CC + SE)  295.68 77.39 
mod23 psi(CAN) p(FBD + CC + SE)  297.02 78.73 
mod27 psi(RO) p(FBD + CC + SE)  297.30 79.01 
mod25 psi(CD) p(FBD + CC + SE)  297.30 79.02 
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(e) Common palm civet 

Number Model WAIC ΔWAIC 
mod27 psi(RO) p(FBD + CC + SE)  382.12 0.00 
mod22 psi(AC) p(FBD + CC + SE)  392.18 10.06 
mod23 psi(CAN) p(FBD + CC + SE)  394.21 12.09 
mod24 psi(CC) p(FBD + CC + SE)  394.24 12.12 
mod26 psi(DBH) p(FBD + CC + SE)  395.14 13.02 
mod28 psi(WA) p(FBD + CC + SE)  395.30 13.19 
mod25 psi(CD) p(FBD + CC + SE)  395.32 13.21 
mod20 psi(RO) p(CC + CD + SE)  398.25 16.14 
mod34 psi(RO) p(FBD + FBS + CD + SE)  399.14 17.02 
mod6 psi(RO) p(CAM + CC + FBS + SE)  402.08 19.97 
mod15 psi(AC) p(CC + CD + SE)  404.63 22.51 
mod16 psi(CAN) p(CC + CD + SE)  406.36 24.25 
mod21 psi(WA) p(CC + CD + SE)  407.16 25.04 
mod17 psi(CC) p(CC + CD + SE)  407.44 25.33 
mod18 psi(CD) p(CC + CD + SE)  407.92 25.81 
mod19 psi(DBH) p(CC + CD + SE)  408.15 26.03 
mod1 psi(AC) p(CAM + CC + FBS + SE)  409.24 27.13 
mod29 psi(AC) p(FBD + FBS + CD + SE)  409.35 27.23 
mod13 psi(RO) p(CAM + FBD + SE)  409.84 27.72 
mod31 psi(CC) p(FBD + FBS + CD + SE)  409.86 27.74 
mod2 psi(CAN) p(CAM + CC + FBS + SE)  410.01 27.90 
mod5 psi(DBH) p(CAM + CC + FBS + SE)  410.71 28.59 
mod33 psi(DBH) p(FBD + FBS + CD + SE)  410.75 28.63 
mod7 psi(WA) p(CAM + CC + FBS + SE)  410.76 28.65 
mod3 psi(CC) p(CAM + CC + FBS + SE)  411.03 28.92 
mod32 psi(CD) p(FBD + FBS + CD + SE)  411.16 29.04 
mod30 psi(CAN) p(FBD + FBS + CD + SE)  411.42 29.30 
mod35 psi(WA) p(FBD + FBS + CD + SE)  411.43 29.31 
mod4 psi(CD) p(CAM + CC + FBS + SE)  411.68 29.57 
mod8 psi(AC) p(CAM + FBD + SE)  416.35 34.24 
mod10 psi(CC) p(CAM + FBD + SE)  418.04 35.92 
mod9 psi(CAN) p(CAM + FBD + SE)  418.52 36.40 
mod14 psi(WA) p(CAM + FBD + SE)  419.29 37.18 
mod11 psi(CD) p(CAM + FBD + SE)  419.36 37.25 
mod12 psi(DBH) p(CAM + FBD + SE)  419.75 37.64 
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(f) Small-toothed palm civet 

Number Model WAIC ΔWAIC 
mod24 psi(CC) p(FBD + CC + SE)  447.91 0.00 
mod26 psi(DBH) p(FBD + CC + SE)  447.93 0.02 
mod22 psi(AC) p(FBD + CC + SE)  448.15 0.24 
mod27 psi(RO) p(FBD + CC + SE)  448.38 0.47 
mod23 psi(CAN) p(FBD + CC + SE)  448.62 0.71 
mod28 psi(WA) p(FBD + CC + SE)  449.24 1.33 
mod25 psi(CD) p(FBD + CC + SE)  449.73 1.82 
mod17 psi(CC) p(CC + CD + SE)  454.75 6.84 
mod15 psi(AC) p(CC + CD + SE)  454.88 6.97 
mod19 psi(DBH) p(CC + CD + SE)  455.06 7.15 
mod18 psi(CD) p(CC + CD + SE)  455.65 7.74 
mod20 psi(RO) p(CC + CD + SE)  455.72 7.81 
mod21 psi(WA) p(CC + CD + SE)  455.82 7.91 
mod3 psi(CC) p(CAM + CC + FBS + SE)  455.99 8.08 
mod16 psi(CAN) p(CC + CD + SE)  456.13 8.22 
mod7 psi(WA) p(CAM + CC + FBS + SE)  456.53 8.61 
mod4 psi(CD) p(CAM + CC + FBS + SE)  456.64 8.73 
mod6 psi(RO) p(CAM + CC + FBS + SE)  456.84 8.93 
mod1 psi(AC) p(CAM + CC + FBS + SE)  456.94 9.03 
mod2 psi(CAN) p(CAM + CC + FBS + SE)  457.12 9.21 
mod5 psi(DBH) p(CAM + CC + FBS + SE)  457.18 9.27 
mod31 psi(CC) p(FBD + FBS + CD + SE)  469.54 21.63 
mod33 psi(DBH) p(FBD + FBS + CD + SE)  470.72 22.81 
mod34 psi(RO) p(FBD + FBS + CD + SE)  471.29 23.38 
mod10 psi(CC) p(CAM + FBD + SE)  471.98 24.07 
mod35 psi(WA) p(FBD + FBS + CD + SE)  472.44 24.53 
mod29 psi(AC) p(FBD + FBS + CD + SE)  472.54 24.63 
mod12 psi(DBH) p(CAM + FBD + SE)  472.72 24.81 
mod30 psi(CAN) p(FBD + FBS + CD + SE)  473.10 25.19 
mod13 psi(RO) p(CAM + FBD + SE)  474.03 26.12 
mod11 psi(CD) p(CAM + FBD + SE)  474.75 26.84 
mod32 psi(CD) p(FBD + FBS + CD + SE)  475.06 27.15 
mod14 psi(WA) p(CAM + FBD + SE)  475.44 27.53 
mod9 psi(CAN) p(CAM + FBD + SE)  475.55 27.64 
mod8 psi(AC) p(CAM + FBD + SE)  476.27 28.36 
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(g) Yellow-throated marten 

Number Model WAIC ΔWAIC 
mod22 psi(AC) p(FBD + CC + SE)  299.42 0.00 
mod8 psi(AC) p(CAM + FBD + SE)  300.05 0.63 
mod29 psi(AC) p(FBD + FBS + CD + SE)  302.61 3.19 
mod15 psi(AC) p(CC + CD + SE)  303.68 4.26 
mod16 psi(CAN) p(CC + CD + SE)  304.61 5.19 
mod23 psi(CAN) p(FBD + CC + SE)  305.18 5.76 
mod28 psi(WA) p(FBD + CC + SE)  305.23 5.81 
mod9 psi(CAN) p(CAM + FBD + SE)  305.71 6.29 
mod1 psi(AC) p(CAM + CC + FBS + SE)  305.74 6.32 
mod14 psi(WA) p(CAM + FBD + SE)  305.88 6.46 
mod21 psi(WA) p(CC + CD + SE)  306.64 7.22 
mod26 psi(DBH) p(FBD + CC + SE)  306.76 7.34 
mod12 psi(DBH) p(CAM + FBD + SE)  307.13 7.71 
mod30 psi(CAN) p(FBD + FBS + CD + SE)  307.41 7.99 
mod2 psi(CAN) p(CAM + CC + FBS + SE)  307.50 8.08 
mod27 psi(RO) p(FBD + CC + SE)  307.58 8.16 
mod24 psi(CC) p(FBD + CC + SE)  307.77 8.35 
mod25 psi(CD) p(FBD + CC + SE)  307.82 8.40 
mod35 psi(WA) p(FBD + FBS + CD + SE)  308.09 8.67 
mod18 psi(CD) p(CC + CD + SE)  308.14 8.72 
mod11 psi(CD) p(CAM + FBD + SE)  308.14 8.72 
mod19 psi(DBH) p(CC + CD + SE)  308.29 8.87 
mod7 psi(WA) p(CAM + CC + FBS + SE)  308.32 8.90 
mod10 psi(CC) p(CAM + FBD + SE)  308.50 9.08 
mod13 psi(RO) p(CAM + FBD + SE)  308.55 9.13 
mod34 psi(RO) p(FBD + FBS + CD + SE)  309.15 9.73 
mod33 psi(DBH) p(FBD + FBS + CD + SE)  309.26 9.84 
mod31 psi(CC) p(FBD + FBS + CD + SE)  310.06 10.64 
mod17 psi(CC) p(CC + CD + SE)  310.34 10.92 
mod5 psi(DBH) p(CAM + CC + FBS + SE)  310.39 10.97 
mod32 psi(CD) p(FBD + FBS + CD + SE)  310.52 11.10 
mod20 psi(RO) p(CC + CD + SE)  310.64 11.22 
mod3 psi(CC) p(CAM + CC + FBS + SE)  311.17 11.76 
mod4 psi(CD) p(CAM + CC + FBS + SE)  311.84 12.42 
mod6 psi(RO) p(CAM + CC + FBS + SE)  312.32 12.90 
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(h) Black giant squirrel 

Number Model WAIC ΔWAIC 
mod13 psi(RO) p(CAM + FBD + SE)  415.11 0.00 
mod27 psi(RO) p(FBD + CC + SE)  415.18 0.07 
mod22 psi(AC) p(FBD + CC + SE)  415.40 0.29 
mod8 psi(AC) p(CAM + FBD + SE)  415.44 0.33 
mod12 psi(DBH) p(CAM + FBD + SE)  415.49 0.38 
mod14 psi(WA) p(CAM + FBD + SE)  415.61 0.50 
mod28 psi(WA) p(FBD + CC + SE)  415.79 0.68 
mod26 psi(DBH) p(FBD + CC + SE)  415.84 0.73 
mod25 psi(CD) p(FBD + CC + SE)  416.27 1.16 
mod11 psi(CD) p(CAM + FBD + SE)  416.27 1.16 
mod9 psi(CAN) p(CAM + FBD + SE)  416.29 1.19 
mod10 psi(CC) p(CAM + FBD + SE)  416.30 1.19 
mod24 psi(CC) p(FBD + CC + SE)  416.82 1.71 
mod23 psi(CAN) p(FBD + CC + SE)  416.85 1.74 
mod34 psi(RO) p(FBD + FBS + CD + SE)  419.39 4.29 
mod29 psi(AC) p(FBD + FBS + CD + SE)  419.45 4.34 
mod35 psi(WA) p(FBD + FBS + CD + SE)  419.76 4.65 
mod33 psi(DBH) p(FBD + FBS + CD + SE)  420.19 5.08 
mod30 psi(CAN) p(FBD + FBS + CD + SE)  420.29 5.18 
mod32 psi(CD) p(FBD + FBS + CD + SE)  420.78 5.67 
mod31 psi(CC) p(FBD + FBS + CD + SE)  420.99 5.88 
mod1 psi(AC) p(CAM + CC + FBS + SE)  424.79 9.68 
mod6 psi(RO) p(CAM + CC + FBS + SE)  427.05 11.94 
mod7 psi(WA) p(CAM + CC + FBS + SE)  427.64 12.53 
mod5 psi(DBH) p(CAM + CC + FBS + SE)  427.67 12.56 
mod4 psi(CD) p(CAM + CC + FBS + SE)  427.68 12.57 
mod3 psi(CC) p(CAM + CC + FBS + SE)  427.69 12.58 
mod2 psi(CAN) p(CAM + CC + FBS + SE)  428.51 13.40 
mod15 psi(AC) p(CC + CD + SE)  434.42 19.31 
mod20 psi(RO) p(CC + CD + SE)  435.50 20.39 
mod19 psi(DBH) p(CC + CD + SE)  436.80 21.69 
mod18 psi(CD) p(CC + CD + SE)  437.09 21.98 
mod16 psi(CAN) p(CC + CD + SE)  437.22 22.11 
mod17 psi(CC) p(CC + CD + SE)  437.25 22.15 
mod21 psi(WA) p(CC + CD + SE)  437.64 22.53 
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(i) Indian giant flying squirrel 

Number Model WAIC ΔWAIC 
mod9 psi(CAN) p(CAM + FBD + SE)  437.19 0.00 
mod14 psi(WA) p(CAM + FBD + SE)  440.63 3.44 
mod12 psi(DBH) p(CAM + FBD + SE)  441.81 4.62 
mod10 psi(CC) p(CAM + FBD + SE)  441.98 4.79 
mod8 psi(AC) p(CAM + FBD + SE)  443.83 6.64 
mod11 psi(CD) p(CAM + FBD + SE)  444.19 7.00 
mod13 psi(RO) p(CAM + FBD + SE)  444.70 7.51 
mod2 psi(CAN) p(CAM + CC + FBS + SE)  447.31 10.12 
mod3 psi(CC) p(CAM + CC + FBS + SE)  451.75 14.56 
mod5 psi(DBH) p(CAM + CC + FBS + SE)  452.17 14.97 
mod7 psi(WA) p(CAM + CC + FBS + SE)  452.35 15.16 
mod30 psi(CAN) p(FBD + FBS + CD + SE)  452.98 15.79 
mod4 psi(CD) p(CAM + CC + FBS + SE)  453.40 16.21 
mod1 psi(AC) p(CAM + CC + FBS + SE)  454.35 17.16 
mod6 psi(RO) p(CAM + CC + FBS + SE)  454.47 17.28 
mod35 psi(WA) p(FBD + FBS + CD + SE)  457.47 20.28 
mod33 psi(DBH) p(FBD + FBS + CD + SE)  458.60 21.41 
mod31 psi(CC) p(FBD + FBS + CD + SE)  459.30 22.11 
mod34 psi(RO) p(FBD + FBS + CD + SE)  460.50 23.31 
mod32 psi(CD) p(FBD + FBS + CD + SE)  460.51 23.32 
mod29 psi(AC) p(FBD + FBS + CD + SE)  460.70 23.51 
mod23 psi(CAN) p(FBD + CC + SE)  460.84 23.65 
mod28 psi(WA) p(FBD + CC + SE)  464.86 27.66 
mod24 psi(CC) p(FBD + CC + SE)  466.10 28.91 
mod26 psi(DBH) p(FBD + CC + SE)  466.12 28.93 
mod16 psi(CAN) p(CC + CD + SE)  467.62 30.43 
mod25 psi(CD) p(FBD + CC + SE)  468.42 31.23 
mod22 psi(AC) p(FBD + CC + SE)  468.67 31.47 
mod27 psi(RO) p(FBD + CC + SE)  469.25 32.06 
mod21 psi(WA) p(CC + CD + SE)  471.61 34.42 
mod17 psi(CC) p(CC + CD + SE)  472.53 35.34 
mod19 psi(DBH) p(CC + CD + SE)  472.80 35.60 
mod15 psi(AC) p(CC + CD + SE)  474.08 36.88 
mod20 psi(RO) p(CC + CD + SE)  474.53 37.34 
mod18 psi(CD) p(CC + CD + SE)  475.62 38.43 
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Table S3. WAIC table from multi-scale arboreal occupancy models for four semi-arboreal species. AC = absolute cover, CAN = can-

opy height, CC = Canopy connectivity, CD = canopy difference, FBD = focal branch diameter, GRA = distance to grassland, RO = 

distance to road, WA = distance to water. 

 
(a) Pig-tailed macaque  

Number Model WAIC ΔWAIC 
mod2 psi(CAN) theta(method) p(method +  arb:FBD + arb:CC + Terr:AC + SE) 4061.21 0.00 
mod3 Psi(GRA) theta(method) p(method + Arb:FBD + Arb:CC + Terr:AC + SE) 4061.60 0.38 
mod5 psi(RO) theta(method) p(method + Arb:FBD + Arb:CC + Terr:AC + SE) 4061.68 0.46 
mod4 psi(WA) theta(method) p(method + Arb:FBD + Arb:CC + Terr:AC + SE) 4061.75 0.54 
mod1 psi(AC) theta(method) p(method + Arb:FBD + Arb:CC + Terr:AC + SE) 4062.17 0.95 

 

(b) Long-tailed macaque  

Number Model WAIC ΔWAIC 
mod2 psi(CAN) theta(method) p(method +  Arb:CC + Arb:CD + Terr:AC + SE) 1350.71 0.00 
mod5 psi(RO) theta(method) p(method + Arb:CC + Arb:CD + Terr:AC + SE) 1352.24 1.54 
mod1 psi(AC) theta(method) p(method + Arb:CC + Arb:CD + Terr:AC + SE) 1358.12 7.42 
mod4 psi(WA) theta(method) p(method + Arb:CC + Arb:CD + Terr:AC + SE) 1358.47 7.77 
mod3 Psi(GRA) theta(method) p(method + Arb:CC + Arb:CD + Terr:AC + SE) 1358.59 7.89 

 

(c) Common palm civet  

Number Model WAIC ΔWAIC 
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mod5 psi(RO) theta(method) p(method + Arb:FBD + Arb:CC + Terr:AC + SE) 2871.60 0.00 
mod2 psi(CAN) theta(method) p(method +  Arb:FBD + Arb:CC + Terr:AC + SE) 2872.58 0.98 
mod1 psi(AC) theta(method) p(method + Arb:FBD + Arb:CC + Terr:AC + SE) 2872.67 1.07 
mod4 psi(WA) theta(method) p(method + Arb:FBD + Arb:CC + Terr:AC + SE) 2873.02 1.43 
mod3 psi(GRA) theta(method) p(method + Arb:FBD + Arb:CC + Terr:AC + SE) 2873.52 1.92 

 

(c) Yellow-throated marten  

Number Model WAIC ΔWAIC 
mod3 psi(GRA) theta(method) p(method + Arb:FBD + Arb:CC + Terr:AC + SE) 1272.45 0.00 
mod1 psi(AC) theta(method) p(method + Arb:FBD + Arb:CC + Terr:AC + SE) 1272.67 0.22 
mod4 psi(WA) theta(method) p(method + Arb:FBD + Arb:CC + Terr:AC + SE) 1272.87 0.42 
mod5 psi(RO) theta(method) p(method + Arb:FBD + Arb:CC + Terr:AC + SE) 1273.06 0.61 
mod2 psi(CAN) theta(method) p(method +  Arb:FBD + Arb:CC + Terr:AC + SE) 1273.38 0.93 
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APPENDIX S15 
 
Table S1. Mean, 95% BCI, and Prob. Effect for the random slope effects by species for 

two competing top arboreal GLMM models (a) count ~ GR + (CC + RO | species) and 

(b) count ~ CC + (FBS + CAM | Species). Prob. Effect indicates the probability an effect 

is different from zero; Bolded values indicate a strong effect (>0.9). 

(a) Canopy connectivity Distance to road 

Species Mean 95% BCI Prob. Ef-
fect Mean 95% BCI Prob. 

Effect 
Black-shanked douc-langur 0.38 (0.00, 0.79) 0.95 -0.34 (-0.69, 0.01) 0.94 
Yellow-cheeked gibbon 0.10 (-0.36, 0.59) 0.62 -0.35 (-0.89, 0.13) 0.88 
Pig-tailed macaque 0.41 (-0.01, 0.86) 0.95 -0.64 (-1.06, -0.23) 0.99 
Long-tailed macaque 1.19 (0.62, 1.84) 1.00 -0.65 (-1.13, -0.18) 0.99 
Common palm civet 0.91 (0.45, 1.40) 1.00 -0.62 (-1.08, -0.18) 0.99 
Small-toothed palm civet 0.76 (0.34, 1.23) 1.00 0.09 (-0.40, 0.64) 0.59 
Yellow-throated marten 0.30 (-0.15, 0.77) 0.87 0.10 (-0.32, 0.55) 0.63 
Black giant squirrel 0.51 (0.12, 0.93) 0.99 -0.49 (-0.94, -0.08) 0.97 
Indian giant flying squirrel 0.20 (-0.20, 0.58) 0.80 -0.27 (-0.64, 0.10) 0.88 

(b) Focal branch slope Camera height 

Species Mean 95% BCI Prob. Ef-
fect Mean 95% BCI Prob. 

Effect 
Black-shanked douc-langur -0.49 (-0.88, -0.12) 0.98 -0.04 (-0.64, 0.60) 0.55 
Yellow-cheeked gibbon -0.40 (-0.97, 0.10) 0.89 0.68 (0.01, 1.36) 0.95 
Pig-tailed macaque -0.01 (-0.42, 0.39) 0.51 -0.40 (-0.90, 0.13) 0.90 
Long-tailed macaque -0.05 (-0.62, 0.49) 0.55 -0.79 (-1.55, -0.14) 0.98 
Common palm civet 0.25 (-0.21, 0.74) 0.81 -0.60 (-1.22, -0.07) 0.97 
Small-toothed palm civet 0.38 (-0.04, 0.87) 0.92 0.14 (-0.42, 0.73) 0.65 
Yellow-throated marten 0.32 (-0.14, 0.82) 0.86 -0.14 (-0.68, 0.40) 0.66 
Black giant squirrel 0.01 (-0.43, 0.49) 0.51 0.80 (0.15, 1.47) 0.98 
Indian giant flying squirrel -0.42 (-0.87, 0.00) 0.95 1.15 (0.52, 1.86) 1.00 
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Table S2. Coefficient estimates (Mean and 95% BCI) from the top multi-scale model for four semi-arboreal mesomammal species. Int 

= intercept, Arb = arboreal, Terr = terrestrial, AC = absolute cover, CAM = camera height, CAN = canopy height, CC = Canopy con-

nectivity, CD = canopy difference, DBH = focal tree DBH, FBD = focal branch diameter, FBS = focal branch slope, GRA = distance 

to grassland, RO = distance to road, WA = distance to water. 

Species Estimates 
Black-shanked douc-langur P(int) p(CAM) p(CC) p(FBS) p(SE) Psi(Int) Psi(AC) 

Mean -1.23 0.2 0.37 -0.38 -0.62 0.65 -0.57 
95% BCI (-1.51, -0.95) (-0.11, 0.5) (0.18, 0.56) (-0.58, -0.16) (-1.01, -0.21) (0.03, 1.32) (-1.15, -0.01) 

Prob. Effect 1 0.9 1 1 1 0.98 0.98 

        
Yellow-cheeked gibbon P(int) p(CAM) p(CC) p(FBS) p(SE) Psi(Int) Psi(CAN) 

Mean -3.15 0.29 0.33 -1.06 0.44 -1.07 0.73 
95% BCI (-4.04, -2.3) (-0.32, 0.9) (-0.17, 0.84) (-1.74, -0.43) (-0.5, 1.38) (-2.05, -0.15) (-0.01, 1.57) 

Prob. Effect 1 0.82 0.9 1 0.81 0.99 0.97 

        
Pig-tailed macaque P(int) p(FBD) p(CC) p(SE) Psi(Int) Psi(RO) NA 

Mean -0.76 -0.22 0.32 -0.72 1.18 -0.51 NA 
95% BCI (-0.98, -0.54) (-0.4, -0.06) (0.17, 0.46) (-1.06, -0.39) (0.53, 1.91) (-1.15, 0.12) NA 

Prob. Effect 1 1 1 1 1 0.94 NA 

        
Long-tailed macaque P(int) p(CC) p(CD) p(SE) Psi(Int) Psi(WA) NA 

Mean -2.03 0.33 2.62 -0.04 -0.93 1.49 NA 
95% BCI (-2.7, -1.43) (0, 0.68) (1.87, 3.42) (-0.77, 0.75) (-1.74, -0.15) (0.66, 2.42) NA 

Prob. Effect 1 0.98 1 0.55 0.99 1 NA 
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Common palm civet P(int) p(FBD) p(CC) p(SE) Psi(Int) Psi(RO) NA 

Mean -2.18 0.83 0.53 0.02 0.13 -1.29 NA 
95% BCI (-2.64, -1.75) (0.38, 1.26) (0.32, 0.74) (-0.59, 0.61) (-0.71, 1.12) (-2.29, -0.47) NA 

Prob. Effect 1 1 1 0.53 0.59 1 NA 

        
Small-toothed palm civet P(int) p(FBD) p(CC) p(SE) Psi(Int) Psi(CC) NA 

Mean -2.14 -0.36 0.5 0.17 -0.07 0.31 NA 
95% BCI (-2.68, -1.63) (-0.69, -0.05) (0.29, 0.71) (-0.41, 0.76) (-0.75, 0.66) (-0.29, 0.93) NA 

Prob. Effect 1 0.99 1 0.72 0.6 0.85 NA 

        
Yellow-throated marten P(int) p(FBD) p(CC) p(SE) Psi(Int) Psi(AC) NA 

Mean -2.72 0.4 -0.05 -0.02 0.18 -0.76 NA 
95% BCI (-3.3, -2.15) (-0.19, 0.99) (-0.46, 0.33) (-0.8, 0.75) (-0.67, 1.21) (-1.55, -0.01) NA 

Prob. Effect 1 0.9 0.6 0.52 0.63 0.98 NA 

        
Black giant squirrel P(int) p(CAM) p(FBD) p(SE) Psi(Int) Psi(RO) NA 

Mean -1.2 -0.01 0.68 -0.81 -0.58 -0.36 NA 
95% BCI (-1.66, -0.76) (-0.46, 0.46) (0.32, 1.04) (-1.39, -0.22) (-1.23, 0.03) (-0.97, 0.23) NA 

Prob. Effect 1 0.53 1 1 0.97 0.88 NA 

        
Indian giant flying squirrel P(int) p(CAM) p(FBD) p(SE) Psi(Int) Psi(CAN) NA 

Mean -2.1 0.72 -0.47 0.52 -0.23 0.74 NA 
95% BCI (-2.59, -1.62) (0.42, 1.01) (-0.79, -0.16) (-0.03, 1.08) (-0.94, 0.45) (0.12, 1.43) NA 

Prob. Effect 1 1 1 0.97 0.75 0.99 NA 
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Table 3. Beta estimates (Mean and 95% BCI) from the top multi-scale model for four semi-arboreal mesomammal species. Int = inter-

cept, Arb = arboreal, Terr = terrestrial, AC = absolute cover, CAN = canopy height, CC = Canopy connectivity, CD = canopy differ-

ence, FBD = focal branch diameter, GRA = distance to grassland, RO = distance to road, WA = distance to water. 

Species Estimates 
Pig-tailed macaque p(Terr) p(Arb) p(Arb:FBD) p(Arb:CC) p(Terr:AC) p(SE) 

Mean -0.03 -0.75 -0.22 0.3 -0.1 -0.66 
95% BCI (-0.14, 0.09) (-0.91, -0.6) (-0.39, -0.05) (0.16, 0.44) (-0.2, 0.01) (-0.81, -0.51) 

Prob. Effect 0.68 1 1 1 0.96 1 

       
Long-tailed macaque p(Terr) p(Arb) p(Arb:CC) p(Arb:CD) p(Terr:AC) p(SE) 

Mean -1.47 0.1 0.11 2.16 -0.28 -0.25 
95% BCI (-1.73, -1.22) (-0.27, 0.45) (-0.14, 0.36) (1.53, 2.82) (-0.54, -0.03) (-0.59, 0.07) 

Prob. Effect 1 0.71 0.81 1 0.99 0.93 

       
Common palm civet p(Terr) p(Arb) p(Arb:FBD) p(Arb:CC) p(Terr:AC) p(SE) 

Mean -0.79 -1.46 0.75 0.51 0.05 0.26 
95% BCI (-0.93, -0.65) (-1.77, -1.17) (0.43, 1.07) (0.36, 0.67) (-0.06, 0.16) (0.07, 0.45) 

Prob. Effect 1 1 1 1 0.79 1 

       
Yellow-throated marten p(Terr) p(Arb) p(Arb:FBD) p(Arb:CC) p(Terr:AC) p(SE) 

Mean -2.53 -0.24 0.3 -0.01 0.1 0.04 
95% BCI -2.91, -2.16 -0.68, 0.2 -0.3, 0.92 -0.4, 0.34 -0.13, 0.32 -0.35, 0.43 

Prob. Effect 1 0.85 0.83 0.51 0.81 0.59 
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Species Estimates 
Pig-tailed macaque Theta(Terr) Theta(Arb) Psi(Int) Psi(CAN) 

Mean 3.96 -2.77 4.53 0.04 
95% BCI (2.83, 5.36) (-4.15, -1.5) (3.13, 6.36) (-0.97, 1.08) 

Prob. Effect 1 1 1 0.53 

     
Long-tailed macaque Theta(Terr) Theta(Arb) Psi(Int) Psi(CAN) 

Mean 0.45 -1.24 1.83 -1.18 
95% BCI (-0.17, 1.21) (-2.02, -0.55) (0.75, 3.32) (-2.26, 0.28) 

Prob. Effect 0.92 1 1 0.96 

     
Common palm civet Theta(Terr) Theta(Arb) Psi(Int) Psi(RO) 

Mean 3.7 -3.64 4.14 -0.52 
95% BCI (2.66, 4.98) (-4.98, -2.5) (2.81, 5.93) (-1.71, 0.86) 

Prob. Effect 1 1 1 0.79 

     
Yellow-throated marten Theta(Terr) Theta(Arb) Psi(Int) Psi(GRA) 

Mean 1.37 -0.74 2.46 0.54 
95% BCI 0.41, 2.78 -2.17, 0.57 1.17, 4.36 -0.63, 1.72 

Prob. Effect 1 0.88 1 0.84 
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